
Can I Do That? Discovering Domain Axioms Using
Declarative Programming and Relational Reinforcement

Learning

Mohan Sridharan, Prashanth Devarakonda, and Rashmica Gupta

Department of Electrical and Computer Engineering, The University of Auckland, NZ
vdev818@auckland.ac.nz; m.sridharan@auckland.ac.nz;

rashmicy@gmail.com

Abstract. Robots deployed to assist humans in complex, dynamic domains need
the ability to represent, reason with, and learn from, different descriptions of in-
complete domain knowledge and uncertainty. This paper presents an architecture
that integrates declarative programming and relational reinforcement learning to
support cumulative and interactive discovery of previously unknown axioms gov-
erning domain dynamics. Specifically, Answer Set Prolog (ASP), a declarative
programming paradigm, is used to represent and reason with incomplete com-
monsense domain knowledge. For any given goal, unexplained failure of plans
created by inference in the ASP program is taken to indicate the existence of
unknown domain axioms. The task of learning these axioms is formulated as a
Reinforcement Learning problem, and decision-tree regression with a relational
representation is used to generalize from specific axioms identified over time. The
new axioms are added to the ASP-based representation for subsequent inference.
We demonstrate and evaluate the capabilities of our architecture in two simulated
domains: Blocks World and Simple Mario.

1 Introduction

Robots1 are increasingly being used to assist humans in complex domains such as dis-
aster rescue and health care. While it is difficult for robots to operate in such domains
without considerable domain knowledge, human participants may not have the time and
expertise to equip robots with comprehensive and accurate domain knowledge. Robots
receive incomplete but useful commonsense knowledge about the domain, including
default knowledge that holds in all but a few exceptional circumstances, e.g., “books
are typically in the library, but cookbooks may be in the kitchen”. Robots also receive
unreliable information by processing inputs from sensors such as cameras and micro-
phones. Furthermore, the axioms governing the dynamics of the domain may be known
partially and may change over time. To truly assist humans in such domains, robots
need the ability to represent, reason with, and learn from, such different descriptions of
knowledge and uncertainty at both the cognitive level and the sensorimotor level.

Towards addressing the challenges described above, we have developed architec-
tures that have combined the non-monotonic logical reasoning capabilities of declara-
tive programming with the uncertainty modeling capabilities of probabilistic graphical

1 We use the terms “robot”, “agent” and “learner” interchangeably in this paper.

models. These architectures allow robots to represent and reason with logic-based and
probabilistic representations of knowledge and uncertainty, for planning and diagno-
sis [1–4]. The architecture describe in this paper builds on our prior work [5, 6] to
support incremental and interactive discovery of previously unknown domain axioms.
The key features of the architecture are:
• An action language is used to describe the dynamics of the domain. This description

and histories with initial state defaults are translated to an Answer Set Prolog (ASP)
program that is solved for inference, planning and diagnostics.

• For any given goal, unexplained failures during plan execution are taken to indicate
the existence of previously unknown domain axioms. The task of interactively dis-
covering such unknown axioms is formulated as a reinforcement learning problem.

• Decision-tree regression and a relational representation are used to improve compu-
tational efficiency, and to generalize from specific axioms identified through rein-
forcement learning. These newly discovered axioms are added to the ASP program
and used for subsequent reasoning.

These features are demonstrated in two simulated domains: Blocks World and the Sim-
ple Mario game. We show experimentally that the proposed architecture and the rela-
tional representation allow the robot to reliably discover previously unknown domain
axioms more efficiently than traditional reinforcement learning.

The remainder of this paper is organized as follows. First, Section 2 summarizes
prior work and describes some background material. Next, Section 3 describes the prob-
lem formulation and the proposed architecture. The experimental results are discussed
in Section 4, followed by conclusions in Section 5.

2 Related Work

We motivate the proposed approach by reviewing some related work. We also provide
some background information about ASP, reinforcement learning and relational repre-
sentations, and their use on robots.

Probabilistic graphical models are used widely to formulate planning, sensing, nav-
igation, and interaction, on robots [7, 8], but these formulations, by themselves, make it
difficult to reason with commonsense knowledge. Research in planning has provided
many algorithms for knowledge representation and reasoning on robots [9, 10], but
these algorithms require considerable prior knowledge about the domain. Many of these
algorithms are based on first-order logic, and do not support non-monotonic logical rea-
soning, default reasoning, and the ability to merge new, unreliable information with the
current beliefs. Other logic-based formalisms address some of these limitations, e.g.,
Answer Set Prolog (ASP), a declarative language designed for representing and rea-
soning with commonsense knowledge [11], has been used by an international research
community for cognitive robotics applications [12–14]. However, ASP does not sup-
port probabilistic models of uncertainty, and does not inherently support incremental
and interactive learning from experience.

Combining logical and probabilistic reasoning is a fundamental research problem
in robotics and AI. Architectures have been developed to support hierarchical represen-
tation of knowledge in first-order logic, and probabilistic processing of perceptual in-

formation [15, 16]. Existing approaches have combined deterministic and probabilistic
algorithms for task and motion planning [17, 18], switched between probabilistic rea-
soning and first-order logic based to use semantic maps and commonsense knowledge
in a probabilistic relational representation [19], and used a three-layered organization of
knowledge to combine first-order logic and probabilistic reasoning for open world plan-
ning [20]. Other approaches for combining logical and probabilistic reasoning include
Markov logic networks [21], Bayesian Logic [22], probabilistic first-order logic [23],
first-order relational POMDPs [24], and probabilistic extensions to ASP [25, 26]. Many
of these algorithms are based on first-order logic, and have the corresponding limita-
tions, e.g., non-monotonic logical reasoning and reasoning with default knowledge are
challenging. Other algorithms based on logic programming do not support all desired
capabilities such as reasoning with large probabilistic components, reasoning with open
worlds, and incremental and interactive learning of domain knowledge.

Many tasks that require the agent to learn from repeated interactions with their envi-
ronment have been posed as Reinforcement Learning (RL) problems [27] and modeled
as Markov Decision Processes (MDPs). It is challenging to design RL algorithms that
scale to complex domains, and allow the transfer of knowledge between related tasks
or domains. Relational reinforcement Learning (RRL) combines relational representa-
tions of states and actions with regression for Q-function generalization [28]. An RRL
formulation enables the use of structural similarities, and the reuse of relevant expe-
rience in related regions of the state-action space [29]. Existing approaches, however,
use RRL for planning, and generalization, e.g., with a decision tree [30], is limited to a
single MDP corresponding to a specific planning task. Furthermore, these approaches
do not fully support the ability to reason with commonsense knowledge.

We have designed architectures that combine the complementary strengths of declar-
ative programming and probabilistic graphical models for planning and diagnostics in
robotics [1–3]. In this paper, we abstract away the unreliability of perception, and com-
bine declarative programming with RRL for incrementally and interactively discover-
ing axioms, and generalizing across individual axiom instances. Unlike prior work that
used inductive logic and ASP to monotonically learn causal rules [31], or integrated
ASP with RL for discovering domain axioms [5], we use relational representation for
generalization. Unlike existing work in RRL that primarily focuses on planning, our ap-
proach uses relational representations for discovering domain axioms, and generalizes
across different MDPs, i.e., different decision making tasks in the domain.

3 Proposed Architecture

This section describes the proposed approach for incrementally and interactively dis-
covering previously unknown axioms governing domain dynamics. The overall archi-
tecture is shown in Figure 1. For any given goal, ASP-based non-monotonic reasoning
with a coarse-resolution domain description provides a sequence of abstract actions.
Each such action is implemented as a sequence of concrete actions, using a partially
observable Markov decision process (POMDP) to probabilistically model the relevant
part of the fine-resolution description obtained by refining the coarse-resolution de-
scription. In this paper, we abstract away the uncertainty in perception for simplicity,

ASP

POMDP

decision−making

Probabilistic

observations,
actions,

fluents action outcomes

Non−monotonic

logical reasoning

Representation

Coarse−resolution

Representation

Fine−resolution
probabilities

Formulation

Learning

Axioms

Reinforcement

Learning

Fig. 1. The overall architecture integrates the complementary strengths of declarative program-
ming, probabilistic graphical models, and reinforcement learning.

Fig. 2. Blocks world scenario with four blocks.

and thus do not discuss probabilistic planning. Instead, we represent the domain at a
single resolution, use ASP-based reasoning with commonsense knowledge for plan-
ning and diagnosis, and focus on RRL-based interactive discovery of domain axioms.
We illustrate the capabilities of this architecture using two simulated domains.

1. Blocks World (BW): a tabletop domain where the agent’s objective is to stack
blocks characterized by different colors, shapes, and sizes, in specific configura-
tions on a table. Figure 2 illustrates a scenario with four blocks, which corresponds
to≈ 70 states under a standard RL/MDP formulation [28]. In this domain, the agent
may not know, for instance, that a block should not be placed on a prism-shaped
block, and any corresponding action should not be attempted.

2. Simple Mario (SM): a simplified version of the popular Mario game, where the
agent (mario) has to navigate between specific locations while avoiding obstacles
and hazards. The domain has ≈ 80 states and 4 parametrized actions in a standard
MDP formulation. Figure 3(a) shows the safe actions (moving or jumping left or
right), while the unsafe actions are shown in Figure 3(b) (colliding with a monster),
Figure 4(a) (landing on spikes), and Figure 4(b) (landing on an empty space).

(a) Safe actions (b) Unsafe action: collision

Fig. 3. Examples of safe actions (e.g., moving, jumping to unoccupied locations) and unsafe
actions (e.g., collision with a monster) in the Simple Mario domain.

(a) Moving to spike block (b) Moving to air block

Fig. 4. Examples of unsafe actions that cause episode termination (e.g., moving to a block made
of spike or air material) in the Simple Mario domain.

3.1 Knowledge Representation

The transition diagram of our illustrative domain is described in an action language
ALd [11]. Action languages are formal models of parts of natural language used for
describing transition diagrams. ALd has a sorted signature containing three sorts: statics,
fluents and actions. Statics are domain properties whose truth values cannot be changed
by actions, while fluents are properties whose truth values can be changed by actions—
actions refer to a set of elementary actions. Fluents are of two types: inertial fluents
obey the laws of inertia and are changed directly by actions, whereas defined fluents
do not obey the laws of inertia and cannot be changed directly by actions—they are
changed based on other fluents. A domain property p or its negation ¬p is a domain
literal. ALd allows three types of statements:

a causes lin if p0, . . . , pm (Causal law)
l if p0, . . . , pm (State constraint)
impossible a0, . . . ,ak if p0, . . . , pm (Executability condition)

where a is an action, l is a literal, lin is an inertial fluent literal, and p0, . . . , pm are domain
literals. The causal law states that action a causes inertial fluent literal lin if the literals
p0, . . . , pm hold true. A collection of statements of ALd forms a system description.

The domain representation consists of a system description D and history H . D
consists of a sorted signature Σ and axioms used to describe the transition diagram
τ . The sorted signature Σ is a tuple that defines the names of objects, functions, and

predicates available for use in the domain. For instance, the sorts of the BW domain
include elements such as block, place, color, shape, size, and robot, whereas the sorts
of the SM domain include elements such as location, block, material, size, direction
and thing. When some sorts are subsorts of other sorts, e.g., agent (i.e., mario) and
monster may be subsorts of thing, they can be arranged hierarchically.

We describe the fluents and actions of the domain in terms of the sorts of their
arguments. The BW domain’s fluent on(block, place), defined in terms of the sorts
of the arguments, states that a specific block is at a specific place. This is an iner-
tial fluent that obeys the laws of inertia. There are some statics for block attributes
has color(block,color), has shape(block,shape) and has size(block,size). The action
move(block, place) moves a block to a specific place (table or on top of another block).
In the SM domain, the fluents are the location of mario and the monster (assuming there
is only one monster)—we reason about the former and assume the latter is defined flu-
ent known at all times, i.e., the inertial fluent is loc(agent,block). Mario can move
to the left or the right by one position, or jump to the left or right by up to three posi-
tions, which are represented as actions move(mario,dir) and jump(mario,dir,numpos)
with direction (le f t, right) and number of positions (1,2,3) as arguments. Statics de-
scribe block attributes, e.g., has material(block,material), and location attributes, e.g.,
right o f (block,block).

For the BW domain, the dynamics are defined in terms of causal laws such as:

move(B,L) causes on(B,L)

state constraints such as:

¬on(B,L2) if on(B,L1), L1 6= L2

and executability conditions such as:

impossible move(B2,L) if on(B2,L), B1 6= B2

The SM domain’s dynamics are defined in a similar manner, using causal laws such as:

move(mario,right) causes loc(mario,B2), right o f (B2,B1), loc(mario,B1)

state constraints such as:

¬loc(mario,B2) if loc(mario,B1), B1 6= B2

and executability conditions such as:

impossible move(mario,right) if loc(mario,B1), right o f (B2,B1),

has material(B2,spike)

The recorded history of a dynamic domain is usually a record of (a) fluents observed to
be true at a time step obs(f luent,boolean,step), and (b) the occurrence of an action at
a time step hpd(action,step). Our prior architecture expanded on this view by allowing
histories to contain (prioritized) defaults describing the values of fluents in their initial

(a) Planned goal state (b) Error in plan execution

Fig. 5. Illustrative example of (a) planned goal state; and (b) error in a plan execution step.

states [2, 32]. For instance, we can represent a default statement of the form “blocks
are usually on the table or on another block that is on the table” and elegantly encode
exceptions to such default knowledge.

The domain representation is translated into a program Π(D ,H) in CR-Prolog, a
variant of Answer Set Prolog (ASP) that supports representation and reasoning with de-
faults and their direct and indirect exceptions [33]. This program is a collection of state-
ments describing domain objects and relations between them, and incorporates consis-
tency restoring (CR) rules in ASP [11]2. ASP is based on stable model semantics and
non-monotonic logics, and includes default negation and epistemic disjunction, e.g.,
unlike ¬a that implies a is believed to be false, not a only implies that a is not believed
to be true, and unlike “p ∨ ¬p” in propositional logic, “p or ¬p” is not tautologous.
ASP can represent recursive definitions, defaults, causal relations, and constructs that
are difficult to express in classical logic formalisms. The ground literals in an answer set
obtained by solving Π represent beliefs of an agent associated with Π ; statements that
hold in all such answer sets are program consequences. Algorithms for computing the
entailment of CR-Prolog programs, and for planning and diagnostics, reduce these tasks
to computing answer sets of CR-Prolog programs. Π consists of causal laws of DH , in-
ertia axioms, closed world assumption for defined fluents, reality checks, and records
of observations, actions, and defaults from H . Every default is turned into an ASP rule
and a CR rule that allows the robot to assume, under exceptional circumstances, that
the default’s conclusion is false, so as to restore program consistency—see [32, 2] for
formal definitions of states, entailment, and models for consistent inference. Although
not discussed here, the ASP program representing the current beliefs of the robot also
supports other capabilities such as jointly explaining unexpected action outcomes and
partial descriptions extracted from sensor inputs—see [1] for more details.

It is challenging to provide and encode all the knowledge corresponding to any given
complex domain. For instance, some of the domain axioms may be unknown or may
change over time, and the plans created using this incomplete knowledge may not suc-
ceed. Consider a scenario in the BM domain in which the goal is to stack three of four
blocks placed on the table. Figure 5(a) shows a possible goal configuration that could be
generated based on the available domain knowledge. The corresponding plan (starting
with all four blocks on the table) has two steps: move(b1,b0) followed by move(b2,b1).

2 We use the terms “ASP” and “CR-Prolog” interchangeably in this paper.

The robot expects to use this plan to stack the blocks as desired. Unknown to the robot,
it is not possible to stack any block on top of a prism-shaped block in this domain, and
execution of this plan results in failure that cannot be explained—specifically, action
move(b1,b0) does not result in the configuration shown in Figure 5(b). In this paper,
we focus on discovering previously unknown executability conditions that can prevent
such actions from being executed.

3.2 Relational RL for Discovering Axioms

Our approach for incremental and interactive discovery of domain axioms differs from
previous work by us and other researchers. The proposed approach:
• Explores the existence of previously unknown axioms only when unexpected action

outcomes cannot be explained by reasoning about exogenous actions [1].
• Uses RRL and decision tree regression for improving the computational efficiency

of identifying candidate axioms, and for generalizing from specific axioms.
• Focuses on the discovery of unknown axioms by generalizing across multiple MDPs,

instead of using RRL for planning, which limits generalization to a specific MDP.
Generalization and computational efficiency are key considerations for incremental and
interactive learning. For instance, in the BW domain, discovery of the axiom “a red cube
should not be placed on a blue prism” does not help when the tabletop has a red prism
and blue cube, unless the agent realizes that the axiom it has discovered is a specific
instance of the general axiom “no block should be placed on a prism-shaped block”.

A sequence of steps is used to identify and generalize from candidate axioms. First,
when a specific plan step fails, the corresponding state is considered the goal state in a
RL problem, with the objective of finding state-action pairs that are most likely to lead
to this error state. The RL problem uses an MDP formulation and the tuple 〈S,A,T,R〉,
where:

– S: set of states.
– A:set of actions.
– T : S×A×S′→ [0,1] is the state transition function.
– R : S×A×S′→ℜ is the reward function

Popular RL algorithms such as Q-learning or SARSA, which estimate Q(s,a), the
Q-values of state-action pairs, become computationally intractable as the state space
increases in size and do not generalize to relationally equivalent states and actions.
The second step uses a relational representation to support generalization. After a few
episodes (i.e., iterations) of Q-learning (with eligibility traces) for a specific goal state,
all state-action pairs that have been visited, along with their Q-values, are used to con-
struct a binary (i.e., logical) decision tree (BDT). The path from the root node to any leaf
node corresponds to one state-action pair, and individual nodes correspond to specific
fluents—the value at the leaf node is the average of the values of all training samples
that are grouped under that node. The BDT created after one iteration is used to com-
pute the policy (based on a soft-max function [27]) in the subsequent episode. When
the learning is terminated after convergence of the Q-values or after a specific num-
ber of episodes, the BDT relationally represents the experiences of the robot. Figure 6
illustrates a subset of a BDT constructed for the BW domain.

Fig. 6. Illustrative example of a subset of the binary decision tree for a specific scenario in the
BW domain.

The method described above only considers generalization within a specific MDP.
To truly identify general domain axioms, the third step of our approach simulates similar
errors (to the one actually encountered due to plan step execution failure) and consid-
ers the corresponding MDPs as well. The Q-value of a state-action pair is now the the
weighted average of the values across different MDPs. The weight assigned to a partic-
ular state-action pair in a specific MDP is inversely proportional to the shortest distance
between the state and the goal state of the corresponding MDP based on the optimal
policy for that MDP:

wi =
1/di

N
∑
j=0

1/d j

where wi is the weight of the state-action pair of MDPi, di is the distance from the state
to the goal state of MDPi and N is the number of MDPs considered. Note that these
similar MDPs are currently chosen randomly—future work will use the information
encoded in the CR-Prolog program to direct attention to objects and attributes more
relevant to the observed failure.

The fourth step identifies candidate executability constraints. The head of such an
axiom has a specific action, and the body contains attributes that influence (or are in-
fluenced by) the action. We construct training samples by considering each such possi-
ble action and the corresponding attributes based on the BDT constructed as described
above. These training samples are used to construct a decision tree whose root node cor-
responds to non-occurrence of the action, intermediate nodes correspond to attributes

Fig. 7. Illustrative example of a decision tree constructed to represent candidate axioms related to
a specific action in the BW domain.

of object involved in the action, and the leaf nodes are the average of the values of the
training samples grouped under that node. Each path from the root node to a leaf is a
candidate axiom with a corresponding value. Figure 7 illustrates a subset of such a tree
for a specific action.

The final step considers all candidate axioms (for different actions), and uses the
K-means algorithm to cluster these candidates based on their value. The axioms that
fall within the cluster with the largest mean are added to the CR-Prolog program and
used in the subsequent reasoning steps.

4 Experimental Setup and Results

The proposed architecture and algorithms were grounded and experimentally evaluated
in the Blocks World domain and the Simple Mario domain. We describe the perfor-
mance in illustrative execution scenarios in these domains. We also compare the rate of
convergence of the proposed algorithm for discovering axioms, henceforth referred to
as “Q-RRL”, with that of traditional Q-learning.

4.1 Blocks World

As stated in Section 3, the robot’s objective in the BW domain was to stack the blocks
in a specified configuration. Consider the experimental trials in which the robot did not
know that it was not possible to move any block on top of a prism-shaped block. We
considered different scenarios with blocks of different shapes and colors (but the same
size). For instance, one scenario had the following four blocks: b0 (Red Prism); b1
(Red Cube); b2 (Blue Cuboid); and b3 (Blue Prism). All blocks were initially on the ta-
ble, i.e., on(b0, table), on(b1, table), on(b2, table), and on(b3, table). We provided the

Fig. 8. Comparing the rate of convergence of Q-RRL with that of Q-learning in a specific scenario
in the BW domain—Q-RRL converges much faster.

goal state description as (on(b0, table), on(b1,b0), on(b2,b1), on(b3, table)), i.e., the
objective was to stack three of the four blocks on the table. The plan obtained by solving
the ASP program had actions move(b1,b0) and move(b2,b1). The action move(b1,b0)
fails, as expected. During Q-RRL and Q-Learning, the agent experiences a reward of
+100 when it reaches goal state and a negative reward (i.e., cost) of −1.5 otherwise
(i.e., for all other actions).

As stated earlier, RRL is triggered when executing plan steps to stack the blocks
results in an unexpected and unexplained outcome. When such an error occurs, differ-
ent related scenarios are simulated to generate the training samples for generalization.
Figure 8 shows the rate of convergence of the average Q-value obtained using Q-RRL
and Q-learning. The Q-RRL algorithm converges much faster, i.e., the optimal policy
is computed in a much fewer number of iterations. Note that the rate of convergence is
the performance measure in these experiments—it does not matter whether the actual
average Q-values of one algorithm are higher (or lower) than the other algorithm. The
following are some axioms identified during the various iterations:

¬occurs(move(A,D), I)←has shape(D, prism),has shape(A,cuboid),

has color(D,blue)

¬occurs(move(A,D), I)←has shape(D, prism),has shape(A,cube),

has color(D,blue),has color(A,red)

¬occurs(move(A,D), I)←has shape(D, prism),has shape(A, prism),

has color(A,red),has color(D,blue)

¬occurs(move(A,D), I)←has shape(D, prism),has shape(A,cube),

has color(D,red)

Fig. 9. Comparing the rate of convergence of Q-RRL with that of Q-learning in a specific scenario
in the SM domain—Q-RRL converges much faster.

As the robot explores different scenarios, there are fewer and fewer errors because ac-
tions that are impossible are no longer included in the plans that are generated. Further-
more, the robot is able to incrementally generalize from the different specific axioms to
finally add an axiom to the CR-Prolog program:

impossible move(A,D) if has shape(D, prism) (action language)
¬occurs(move(A,D), I)← has shape(D, prism) (CR-Prolog statement)

In other experimental trials, the proposed architecture and algorithms resulted in the
successful discovery of other such domain axioms.

4.2 Simple Mario

In the SM domain, the agent “mario” has to travel to a specific destination, “flag”, from
a starting position. As described at the beginning of Section 3, moving actions move
mario one position away from the current position, while jumping actions attempt to
move up to three positions away. If an obstacle prevents the agent from moving to a
certain location, it lands on the closest (open) position available. Collision with any
angry monster in the domain terminates the episode. Furthermore, blocks in the domain
are made of different materials—brick blocks are harmless, whereas materials such as
spike or air will result in the termination of the episode. The objective is to pick actions
that will not result in episode termination—any such unexpected termination that cannot
be explained triggers RRL for discovering axioms.

To evaluate the ability to efficiently discover generic domain axioms in the SM do-
main, scenarios related to the one causing an error (e.g., with different block attributes,
and different locations for mario and monsters) are simulated (see Section 3.2). These
simulated scenarios provide the training samples necessary for generalizing from the

specific axioms discovered. For instance, in one scenario, three positions that would
result in episode termination were used to trigger RRL. The first and second positions
involve movement to blocks with spike material, while the third position involves colli-
sion with an angry monster. Figure 9 compares the rate of convergence of Q-RRL with
that of Q-learning as a function of the number of episodes. Similar to the results ob-
tained in the BW domain, Q-RRL converges significantly faster than Q-learning. Over
a set of episodes, the following are some generalized axioms discovered:

¬occurs(move(mario, le f t), I)← loc(mario,B1), le f t o f (B2,B1),

has material(B2,spike)

¬occurs(move(mario,right), I)← loc(mario,B1), right o f (B2,B1),

has material(B2,spike)

¬occurs(jump(mario, le f t,1), I)← loc(mario,B1), le f t neighbor(B2,B1),

has material(B2,spike)

¬occurs(jump(mario,right,1), I)← loc(mario,B1), right neighbor(B2,B1),

has material(B2,spike)

These axioms specify that mario cannot execute a move or jump action if this action
will lead it to a block with spike material. Similar performance was observed in other
scenarios that resulted in the failure of the corresponding plans, with the successful
discovery of the corresponding domain axioms.

5 Conclusion

Robots collaborating with humans in complex domains frequently need to represent,
reason with, and learn from different descriptions of incomplete domain knowledge
and uncertainty. The architecture described in this paper combines the complementary
strengths of declarative programming and relational reinforcement learning to discover
previously unknown axioms governing domain dynamics. We illustrated the capabili-
ties of this architecture in some simulated domains, with promising results. Future work
will explore the ability to discover other kinds of axioms in more complex domains. We
will also compare the performance of our algorithm with other popular relational rein-
forcement learning algorithms. Furthermore, we will conduct experimental trials on a
mobile robot after including some probabilistic models of the uncertainty in perception
on robots.

Acknowledgments

This work was supported in part by the US Office of Naval Research Science of Auton-
omy award N00014-13-1-0766. All opinions and conclusions in this paper are those of
the authors alone.

References

1. Colaco, Z., Sridharan, M.: What Happened and Why? A Mixed Architecture for Planning
and Explanation Generation in Robotics. In: Australasian Conference on Robotics and Au-
tomation (ACRA), Canberra, Australia (December 2-4, 2015)

2. Zhang, S., Sridharan, M., Gelfond, M., Wyatt, J.: Towards An Architecture for Knowledge
Representation and Reasoning in Robotics. In: International Conference on Social Robotics
(ICSR), Sydney, Australia (October 27-29, 2014) 400–410

3. Zhang, S., Sridharan, M., Wyatt, J.: Mixed Logical Inference and Probabilistic Planning for
Robots in Unreliable Worlds. IEEE Transactions on Robotics 31(3) (2015) 699–713

4. Sridharan, M.: Towards An Architecture for Knowledge Representation, Reasoning and
Learning in Human-Robot Collaboration. In: AAAI Spring Symposium on Enabling Com-
puting Research in Socially Intelligent Human-Robot Interaction, Stanford, USA (March
21-23, 2016)

5. Sridharan, M., Rainge, S.: Integrating Reinforcement Learning and Declarative Program-
ming to Learn Causal Laws in Dynamic Domains. In: International Conference on Social
Robotics (ICSR), Sydney, Australia (October 27-29, 2014)

6. Sridharan, M., Gelfond, M.: Using Knowledge Representation and Reasoning Tools in the
Design of Robots. In: IJCAI Workshop on Knowledge-based Techniques for Problem Solv-
ing and Reasoning (KnowProS), New York, USA (July 10, 2016)

7. Bai, H., Hsu, D., Lee, W.S.: Integrated Perception and Planning in the Continuous Space: A
POMDP Approach. International Journal of Robotics Research 33(8) (2014)

8. Hoey, J., Poupart, P., Bertoldi, A., Craig, T., Boutilier, C., Mihailidis, A.: Automated Hand-
washing Assistance For Persons With Dementia Using Video and a Partially Observable
Markov Decision Process. Computer Vision and Image Understanding 114(5) (2010) 503–
519

9. Galindo, C., Fernandez-Madrigal, J.A., Gonzalez, J., Saffioti, A.: Robot Task Planning using
Semantic Maps. Robotics and Autonomous Systems 56(11) (2008) 955–966

10. Varadarajan, K.M., Vincze, M.: Ontological Knowledge Management Framework for Grasp-
ing and Manipulation. In: IROS-2011 Workshop on Knowledge Representation for Au-
tonomous Robots. (September 25, 2011)

11. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning and the Design of Intelligent
Agents. Cambridge University Press (2014)

12. Balduccini, M., Regli, W.C., Nguyen, D.N.: An ASP-Based Architecture for Autonomous
UAVs in Dynamic Environments: Progress Report. In: International Workshop on Non-
Monotonic Reasoning (NMR), Vienna, Austria (July 17-19, 2014)

13. Chen, X., Xie, J., Ji, J., Sui, Z.: Toward Open Knowledge Enabling for Human-Robot Inter-
action. Journal of Human-Robot Interaction 1(2) (2012) 100–117

14. Erdem, E., Patoglu, V.: Applications of Action Languages to Cognitive Robotics. In: Correct
Reasoning. Springer-Verlag (2012)

15. Laird, J.E.: Extending the Soar Cognitive Architecture. In: International Conference on
Artificial General Intelligence, Memphis, USA (March 1-3, 2008)

16. Talamadupula, K., Benton, J., Kambhampati, S., Schermerhorn, P., Scheutz, M.: Planning
for Human-Robot Teaming in Open Worlds. ACM Transactions on Intelligent Systems and
Technology 1(2) (2010) 14:1–14:24

17. Kaelbling, L., Lozano-Perez, T.: Integrated Task and Motion Planning in Belief Space. In-
ternational Journal of Robotics Research 32(9-10) (2013) 1194–1227

18. Saribatur, Z., Erdem, E., Patoglu, V.: Cognitive Factories with Multiple Teams of Hetero-
geneous Robots: Hybrid Reasoning for Optimal Feasible Global Plans. In: International
Conference on Intelligent Robots and Systems, Chicago, USA (2014) 2923–2930

19. Hanheide, M., Gretton, C., Dearden, R., Hawes, N., Wyatt, J., Pronobis, A., Aydemir, A.,
Gobelbecker, M., Zender, H.: Exploiting Probabilistic Knowledge under Uncertain Sensing
for Efficient Robot Behaviour. In: International Joint Conference on Artificial Intelligence
(IJCAI), Barcelona, Spain (July 16-22, 2011)

20. Hanheide, M., Gobelbecker, M., Horn, G., Pronobis, A., Sjoo, K., Jensfelt, P., Gretton, C.,
Dearden, R., Janicek, M., Zender, H., Kruijff, G.J., Hawes, N., Wyatt, J.: Robot Task Plan-
ning and Explanation in Open and Uncertain Worlds. Artificial Intelligence (2015)

21. Richardson, M., Domingos, P.: Markov Logic Networks. Machine Learning 62(1-2) (Febru-
ary 2006) 107–136

22. Milch, B., Marthi, B., Russell, S., Sontag, D., Ong, D.L., Kolobov, A.: BLOG: Probabilistic
Models with Unknown Objects. In: Statistical Relational Learning. MIT Press (2006)

23. Halpern, J.Y.: Reasoning about Uncertainty. MIT Press (2003)
24. Sanner, S., Kersting, K.: Symbolic Dynamic Programming for First-order POMDPs. In:

AAAI Conference on Artificial Intelligence, Atlanta, USA (July 11-15, 2010) 1140–1146
25. Baral, C., Gelfond, M., Rushton, N.: Probabilistic Reasoning with Answer Sets. Theory and

Practice of Logic Programming 9(1) (January 2009) 57–144
26. Lee, J., Wang, Y.: A Probabilistic Extension of the Stable Model Semantics. In: AAAI

Spring Symposium on Logical Formalizations of Commonsense Reasoning. (March 2015)
27. Sutton, R.L., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge,

MA, USA (1998)
28. Dzeroski, S., Raedt, L.D., Driessens, K.: Relational Reinforcement Learning. Machine

Learning 43 (2001) 7–52
29. Tadepalli, P., Givan, R., Driessens, K.: Relational Reinforcement Learning: An Overview. In:

Relational Reinforcement Learning Workshop at the International Conference on Machine
Learning. (2004)

30. Blockeel, H., Raedt, L.D.: Top-down Induction of First-order Logical Decision Trees. Arti-
ficial Intelligence 101(1-2) (1998) 285–297

31. Otero, R.P.: Induction of the Effects of Actions by Monotonic Methods. In: International
Conference on Inductive Logic Programming. (2003) 299–310

32. Sridharan, M., Gelfond, M., Zhang, S., Wyatt, J.: A Refinement-Based Architecture for
Knowledge Representation and Reasoning in Robotics. Technical report, Unrefereed CoRR
abstract: http://arxiv.org/abs/1508.03891 (August 2015)

33. Balduccini, M., Gelfond, M.: Logic Programs with Consistency-Restoring Rules. In: AAAI
Spring Symposium on Logical Formalization of Commonsense Reasoning. (2003) 9–18

