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Abstract

This book chapter describes an integrated architecture
for robots that combines the complementary strengths of
knowledge-based and data-driven methods for transparent
reasoning and learning. Specifically, the architecture builds
on the principle of step-wise iterative refinement to support
non-monotonic logical reasoning and probabilistic reasoning
with tightly-coupled transition diagrams of the domain at dif-
ferent resolutions. Reasoning with prior domain knowledge
triggers and guides the interactive learning of previously un-
known domain knowledge in the form of axioms governing
domain dynamics. Furthermore, the interplay between these
components is used to embed the principles of explainable
agency, enabling a robot to provide on-demand relational de-
scriptions of its decisions and beliefs in response to different
types of questions. The architecture’s capabilities are evalu-
ated in the context of visual scene understanding and planning
tasks performed in simulation and on physical robots.

1 Motivation
Consider an assistive robot that has to: (a) estimate the oc-
clusion of objects and stability of object configurations in
specific scenes—Figure 1; and (b) compute and execute
plans to achieve desired configurations. To perform these
tasks, the robot extracts information from on-board sensors
(e.g., camera), and reasons with this information and prior
domain knowledge. The uncertainty in its perception and
actuation is represented probabilistically, e.g., “I am 90%
certain I saw the robotics book in the study”. The robot’s
prior knowledge includes knowledge of some domain at-
tributes (e.g., the arrangement of rooms); some object at-
tributes (e.g., shape, surface); grounding of some prepo-
sitional words (e.g., above, in) that represent the spatial
relations between objects; some axioms governing actions
and change in the domain (e.g., “picking up an object will
cause it to be in the robot’s hand”); and default statements
(e.g., “books are usually in the study”) that hold in all but a
few exceptional circumstances (e.g., “cookbooks are in the
kitchen”). Furthermore, the existing knowledge has to be re-
vised over time, and the robot has to answer questions about
its decisions and beliefs during or after planning and execu-
tion. For example, if the goal in Figure 1 (right) is to have the
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Figure 1: Scenario for some robot experiments.

yellow ball on the orange block, and the plan is to move the
blue block to the table before placing the ball on the orange
block, the robot may be asked “why do you want to pick up
the blue block first?”, “why did you not pick up the pig?”,
or “what would happen if you rolled the ball?”.

Our architecture seeks to jointly address the knowledge
representation, reasoning, learning, and control challenges
posed by the motivating scenario. In this chapter, we fo-
cus on the ability to provide on-demand explanations of
decisions and beliefs in the form of relational descriptions
of relevant objects, object attributes, actions, and robot at-
tributes. Providing such explanations can help improve the
algorithms and establish accountability, but it is difficult to
do so in integrated robot systems that use knowledge-based
reasoning methods (e.g., for planning) and data-driven learn-
ing methods (e.g., for object recognition). It requires the as-
sociated architecture to support the key functional capabil-
ities of explainable agency, e.g., provide on-demand justi-
fication of decisions made during (or after) plan generation
and execution by considering alternative choices; present in-
formation at a suitable level of abstraction; and communi-
cate information such that it makes contact with human con-
cepts such as beliefs and goals (Langley et al. 2017). Our ar-
chitecture draws on cognitive systems research, which high-
lights the benefits of coupling different representations, rea-
soning schemes, and learning methods (Laird 2012; Winston
and Holmes 2018), to implement these functional capabili-
ties. Specifically, our architecture:

• Combines the principles of non-monotonic logical rea-
soning and deep learning for decision making, and au-
tomatically learns previously unknown axioms of state
constraints, action preconditions, and action effects;

• Leverages the interplay between representation, reason-
ing, and learning to embed the principles of explainable
agency, enabling a robot to provide on-demand relational
descriptions of its decisions and beliefs.



These capabilities are evaluated in the context of a robot ar-
ranging objects in desired configurations, and estimating oc-
clusion of objects and stability of object configurations, in
simulated scenes and in the real world. Results indicate the
ability to: (i) incrementally learn previously unknown ax-
ioms governing domain dynamics; and (ii) construct expla-
nations reliably and efficiently by automatically identifying
and reasoning with the relevant knowledge. We begin with
a discussion of related work (Section 2), followed by a de-
scription of the architecture (Section 3), some experimental
results (Section 4), and conclusions (Section 5).

2 Related Work
Early work on explanation generation drew on research in
cognition, psychology, and linguistics to characterize expla-
nations in terms of generality, objectivity, connectivity, rel-
evance, and information content (Friedman 1974). Subse-
quent studies involving human subjects have also indicated
that the important attributes of good explanations include
coherence, simplicity, generality, soundness, and complete-
ness (Read and Marcus-Newhall 1993). In parallel, funda-
mental computational methods were developed for explain-
ing unexpected outcomes by reasoning logically about po-
tential causes (de Kleer and Williams 1987).

In recent years, the increasing use of AI methods in
different domains has renewed the interest in understand-
ing the decisions of these methods, with many dedicated
workshops and special tracks at premier conferences. This
understanding can be used to improve the underlying al-
gorithms, and to make automated decision-making more
acceptable or trustworthy to humans (Anjomshoae et al.
2019; Miller 2019). Existing work in explainable AI can
be broadly grouped into two categories (Sreedharan, Kulka-
rni, and Kambhampati 2022a). Methods in one category
modify or map learned models or reasoning systems to
make their decisions more interpretable, e.g., by tracing de-
cisions back to input data (Koh and Liang 2017) or ex-
plaining the predictions of any classifier by learning equiv-
alent interpretable models (Ribeiro, Singh, and Guestrin
2016), or biasing a planning system towards making deci-
sions easier for humans to understand (Chakraborti, Sreed-
haran, and Kambhampati 2018). The other category of meth-
ods provide descriptions that make a reasoning system’s
decisions more transparent, e.g., explaining planning de-
cisions (Borgo, Cashmore, and Magazzeni 2018), provid-
ing causal and temporal relations (Seegebarth et al. 2012),
or reconciling the differences between the planner’s deci-
sions and the human expectations (Sreedharan, Kulkarni,
and Kambhampati 2022b). Much of this research is agnostic
to how an explanation is structured or assumes comprehen-
sive domain knowledge.

Since deep networks represent the state of the art for
different robotics/AI problems, methods have been devel-
oped specifically to understand the operation of these net-
works, e.g., by computing a heatmap of features most rel-
evant to a deep network’s outputs (Assaf and Schumann
2019). There has also been work on reasoning with learned
symbolic structure, or with a learned graph encoding scene

structure, in conjunction with deep networks to answer ques-
tions about images of scenes (Norcliffe-Brown, Vafeais, and
Parisot 2018; Yi et al. 2018). However, these approaches
do not fully integrate reasoning and learning to inform and
guide each other; or use the rich commonsense domain
knowledge for reliable and efficient reasoning, learning, and
the generation of explanations.

This chapter focuses on integrated robot systems that
combine knowledge-based and data-driven methods to rea-
son with and learn from incomplete commonsense domain
knowledge and observations. We describe an architecture
that enables such a robot to generate relational descrip-
tions of its decisions and beliefs in response to different
kinds of questions. This architecture builds on our previ-
ous refinement-based architecture that represents and rea-
sons at two coupled resolutions (Sridharan et al. 2019). It
implements a theory of explanations (Sridharan and Mead-
ows 2019), and leverages the interplay between knowledge-
based reasoning and data-driven learning (Sridharan and
Mota 2023), to enable the functional capabilities of explain-
able agency (Langley et al. 2017).

3 Architecture Description
Our architecture encodes the principle of step-wise itera-
tive refinement. It is based on tightly-coupled transition dia-
grams at different resolutions. These transition diagrams are
described using an action language ALd (Gelfond and In-
clezan 2013), which has a sorted signature with statics, flu-
ents, and actions, and supports causal laws, state constraints,
and executability conditions; the fluents can be non-Boolean
and axioms can be non-deterministic.

The architecture may be viewed as a logician, statisti-
cian, and an explorer working together, as shown in Fig-
ure 2. For ease of understanding, we will limit our discus-
sion of the architecture to two resolutions. For any given
goal, the logician performs non-monotonic logical reason-
ing at the coarse resolution based on commonsense domain
knowledge to provide a sequence of abstract actions. Each
abstract transition is implemented by the statistician as a
sequence of finer-granularity actions, incorporating proba-
bilistic models of uncertainty (e.g., in perception) and com-
municating the outcomes to the logician. In addition, the ex-
plorer revises the existing knowledge (e.g., of action capa-
bilities) when needed (e.g., in response to unexpected action
outcomes). The interplay between the architecture’s compo-
nents enables the desired functional capabilities of explain-
able agency, with the robot providing relational descriptions
of its decisions and beliefs at the desired resolution in re-
sponse to queries from a human. We will use the following
example to describe the architecture’s components.

Example: Assistive Robotics (AR) Domain. A robot: (i)
estimates occlusion of scene objects and stability of object
structures, and computes and executes plans to achieve de-
sired object configurations; and (ii) provides on-demand re-
lational descriptions of decisions and evolution of beliefs.
There is uncertainty in the robot’s perception and actuation;
probabilistic algorithms are used for visual object recogni-
tion and to move objects. The robot has some prior domain



Figure 2: Our architecture leverages strengths of declarative
programming, probabilistic reasoning, and interactive learn-
ing to represent, reason, and learn at different resolutions.

knowledge, which includes object attributes such as shape
and surface; spatial relations between objects (e.g., above,
below, behind, in); some domain attributes; and some ax-
ioms governing domain dynamics such as:
• Placing an object on top of an object with an irregular

surface results in an unstable object configuration.
• Removing all objects blocking the view of an object’s

frontal face causes this object to be not occluded.
• An object below another object cannot be picked up.

This knowledge may need to be revised over time, e.g., some
axioms and the value of some attributes may be unknown or
may change, as described in Section 3.2.

3.1 Knowledge Representation and Reasoning
The coarse resolution domain description comprises sys-
tem description Dc of transition diagram τc, a col-
lection of ALd statements, and history Hc. The sub-
script “c” refers to the coarse resolution. Dc comprises
sorted signature Σc and axioms. For the AR domain,
Σc includes basic sorts such as place, thing, robot,
person, object, cup, surface, and step; statics such as
next to(place, place) and obj surface(obj, surface); flu-
ents such as loc(thing, place), obj rel(relation, object, ob-
ject), and in hand(entity, object); and actions such as
move(robot, place) and give(robot, object, person). Ax-
ioms in Dc (for the AR domain) are statements such as:

move(rob1, P ) causes loc(rob1, P )

putdown(rob1, Ob1, Ob2) causes obj rel(on,Ob1, Ob2)

loc(O,P ) if loc(rob1, P ), in hand(rob1, O)

impossible give(rob1, O, P ) if loc(rob1, L1) 6= loc(P,L2)

that correspond to two causal laws, a state constraint, and an
executability condition respectively. We also include axioms
in Dc to encode theories of intention and affordance.

The history Hc of a dynamic domain is typically a
record of fluents observed to be true or false at a partic-
ular time step, obs(fluent, boolean, step); and of actions

that “happened”, i.e., were executed at a particular time step,
hpd(action, step). This definition is expanded to represent
prioritized defaults describing the values of fluents in the ini-
tial state, e.g., “books are usually in the library; if not there,
they are in the office”, along with exceptions (if any).

To reason with domain knowledge, we construct pro-
gram Π(Dc,Hc) in CR-Prolog, a variant of Answer Set
Prolog (ASP) that incorporates consistency restoring (CR)
rules (Gebser et al. 2012). Π includes Σc and axioms of
Dc, inertia axioms, reality checks, closed world assumptions
for actions, and observations, actions, and defaults fromHc.
Π also includes statements encoding information extracted
from sensor inputs (e.g., spatial relations, object attributes)
with sufficiently high probability. ASP is based on stable
model semantics, and supports default negation, epistemic
disjunction, and non-monotonic logical reasoning. Unlike
“¬a” that states a is believed to be false, “not a” only
implies a is not believed to be true, i.e., each literal can
be true, false or unknown. An answer set of Π represents
the beliefs of the robot associated with Π, with the liter-
als at each time step representing the corresponding state.
The non-monotonic logical reasoning ability enables recov-
ery from incorrect inferences drawn due to reasoning with
incomplete knowledge or noisy sensor inputs. Entailment,
planning, and diagnostics can be reduced to computing an-
swer sets of Π; we do so using the SPARC system (Balai,
Gelfond, and Zhang 2013).

For any given goal, reasoning at the coarse-resolution pro-
vides a plan of abstract actions. To implement the abstract
actions, we define a fine-resolution system description Df

as a refinement of Dc such that any given abstract transi-
tion between two states in τc has a path in τf between a
refinement of these two states. In the AR domain, a robot
would (for example) reason about grid cells in rooms and
parts of objects, attributes previously abstracted away by the
designer. To support interaction with the physical world, we
extend Df by introducing a theory of observation that en-
codes knowledge-producing actions and fluents, and non-
determinism (Dfr). Since reasoning with Dfr can become
computationally intractable for complex domains, we enable
the robot to automatically zoom to Dfr(T ), the part of Dfr

relevant to any given abstract transition T . Reasoning with
Dfr(T ) provides a sequence of concrete actions that im-
plement T , incorporating relevant probabilistic models of
uncertainty (e.g., in perception or in the outcomes of exe-
cuted actions) as appropriate. Fine-resolution outcomes with
a high probability are committed to the fine-resolution his-
tory, and the corresponding coarse-resolution outcomes are
added to Hc. For a more detailed description of refinement
and zooming, and the use of such a knowledge representa-
tion and reasoning architecture on physical robots, please
see (Sridharan et al. 2019). For an extension of this architec-
ture to encode an adaptive theory of intentions in the coarse
resolution, please see (Gomez, Sridharan, and Riley 2021).

3.2 Interactive Learning
Reasoning with incomplete knowledge, e.g., to fetch target
objects or estimate the occlusion of objects, can result in in-
correct outcomes. The state of the art for learning previously



Figure 3: Non-monotonic logical reasoning guides interac-
tive (e.g., deep, inductive) learning of previously unknown
domain knowledge to complete desired estimation tasks, and
to provide relational descriptions of knowledge and beliefs.

unknown actions, axioms, or object models, are based on
“end to end” data-driven methods that require many labeled
examples; it is difficult to provide such examples in com-
plex domains or to interpret the decisions made. Figure 3
shows the components for learning and explanation gener-
ation in our architecture; red (green) arrows denote inputs
(outputs) from (to) humans. The robot first attempts to use
ASP-based logical reasoning to complete the desired tasks
(e.g., planning, estimation). If this reasoning does not pro-
vide any outcome (e.g., no plan), or provides an incorrect
outcome (e.g., incorrect stability label), it is considered to
indicate that the knowledge is incomplete or incorrect, trig-
gering learning. The learning component’s implementation
is described below in the context of the estimation tasks.

Classification Block (CNNs). The main sensor inputs are
RGB/D images that are processed to extract spatial relations
and other attributes that are encoded as ASP statements. The
extraction of spatial relations is based on our prior work
that incrementally revises the physical world grounding of
prepositional words (e.g., “in”, “above”) representing these
relations (Mota and Sridharan 2018). For any given im-
age, the robot tries to estimate the occlusion and stability
of objects using ASP-based reasoning. If an answer is not
found, or an incorrect answer is found (for training images),
the robot automatically extracts relevant regions of inter-
est (ROIs) from the image. Parameters of existing Convolu-
tional Neural Network (CNN) architectures (e.g., Lenet (Le-
Cun et al. 1998), AlexNet (Krizhevsky, Sutskever, and Hin-
ton 2012)) are tuned to map information from each ROI to
the corresponding labels. The robot automatically identifies
and reasons with the relevant axioms and relations to deter-
mine the ROIs; the notion of relevance is also expanded to
construct explanations efficiently in Section 3.3.

Decision Tree induction. The images used to train the
CNNs are considered to contain information about missing
or incorrect constraints related to the estimation tasks (oc-
clusion, stability). Image features and spatial relations ex-

tracted from ROIs in each such image, and the known oc-
clusion and stability labels (during training), are used to
incrementally learn a decision tree summarizing the cor-
responding state transitions; this process repeatedly splits
nodes based on unused attributes likely to provide the high-
est entropy reduction. Trees are learned separately for dif-
ferent actions, and branches of a tree that satisfy minimal
thresholds on purity at the leaf and on the level of sup-
port from labeled examples, are used to construct candidate
constraints. Candidates without a minimal level of support
on unseen examples are removed and similar axioms are
merged. Specifically, axioms with the same head and some
overlap in the body are grouped. Each combination of one
axiom from each group is encoded in an ASP program along
with axioms that are not in any group. This program is used
to classify ten labeled scenes, only retaining axioms in the
program that provides the highest accuracy on these scenes.
Also, axioms that cease to be useful over time are identified
and removed by associating each axiom with a strength that
decays exponentially if it is not used or learned again.

In addition to constraints, the robot learns previously un-
known causal laws and executability conditions if there is
a mismatch between the observed state after action execu-
tion and the expected state based on reasoning with existing
knowledge. Any expected but unobserved fluent literal in-
dicates missing executability condition(s); any observed un-
expected fluent literal suggests missing causal law(s). Ex-
amples of learned axioms include:

¬stable(A) ← obj relation(above,A,B),

obj surface(B, irregular)

¬pickup(rob1, Ob1) ← in hand(rob1, Ob2)

which correspond to a state constraint (“an object placed on
another with an irregular surface is unstable”) and an exe-
cutability condition (“the robot cannot pick up an object if
it is already holding another object”) respectively. For more
details, see (Sridharan and Mota 2023).

Although we do not describe it in detail in this chapter,
our architecture includes a similar learning scheme for plan-
ning and diagnostics tasks. This scheme learns actions and
axioms from human descriptions of desired behavior, or ob-
servations obtained through active exploration or reactive
action execution in response to unexpected outcomes. Rea-
soning automatically limits this learning to states, actions,
and observations relevant to task(s) and goal(s) at hand;
see (Sridharan and Meadows 2018) for details.

3.3 Explanation Generation
We consider an “explanation” to be a relational description
of the robot’s decisions or beliefs. This component is based
on a theory of explanations that maps the postulates of ex-
plainable agency to: (i) claims about representing, reason-
ing with, and learning knowledge to support explanations;
(ii) a characterization of explanations along axes based on
abstraction, specificity, and verbosity; and (iii) a methodol-
ogy for constructing explanations (Sridharan and Meadows
2019). This component is described below.



Interaction interface. Human interaction with our archi-
tecture is through speech or text. Existing software and a
controlled vocabulary are used to parse human verbal in-
put and to convert text to verbal response. Specifically, hu-
man verbal input is transcribed into text from the controlled
vocabulary. This (or input) text is labeled using a part-
of-speech (POS) tagger, and normalized with the lemma
list (Someya 1998) and related synonyms and antonyms
from WordNet (Miller 1995). The processed text helps iden-
tify the type of request: a desired goal or a question about
decisions, beliefs, or hypothetical situations. Any goal is
sent to the ASP program for planning; the robot executes the
plan, performing diagnostics and replanning as needed, un-
til the goal is achieved. For any question, the “Program Ana-
lyzer” considers the domain knowledge, inferred beliefs, and
processed human input to automatically identify relevant ax-
ioms and literals. These literals are inserted into generic re-
sponse templates based on the controlled vocabulary, result-
ing in (textual) descriptions that make contact with human
concepts such as beliefs and goals, which are converted to
synthetic speech if needed. Whenever the posed query or re-
quest is ambiguous, the robot constructs and poses queries to
remove the ambiguity. Some examples of such interactions
are provided in Section 4.2.

Mental Simulations. In order to explain the evolution of
a particular belief or the (non)selection of a particular action
at a particular time step, our architecture includes the abil-
ity to infer the associated sequence of beliefs and axioms.
This capability is used by the “Program Analyzer” (below)
to construct explanations. We adapt proof trees, which have
been used to explain observations in the context of classical
first-order logic statements (Ferrand, Lessaint, and Tessier
2006), to our formulation based on non-monotonic logic, to
obtain the following methodology:
1. Select axioms with the target belief or action in the head.
2. Ground literals in the body of each selected axiom.

Check if they are supported by the current answer set.
3. Create a new branch in a proof tree (with the target belief

or action as the root) for each selected axiom supported
by the answer set, and store the axiom and the related
supporting ground literals in suitable nodes.

4. Repeats Steps 1-3 with the supporting ground literals in
Step 3 as target beliefs in Step 1, until all branches reach
a leaf node without any further supporting axioms.

Paths from the root to the leaves in these trees provide can-
didate explanations. If multiple paths exist, one of the short-
est branches is selected and used to construct answers—
see (Mota, Sridharan, and Leonardis 2021) for examples.

Program Analyzer. Algorithm 1 describes the approach
for automatically identifying and reasoning with the relevant
information to construct relational descriptions in response
to questions or requests. It does so in the context of four
types of explanatory requests or questions. The first three
types were introduced in prior work as questions to be con-
sidered by any explainable planning system (Fox, Long, and
Magazzeni 2017), and the fourth type considers the evolu-
tion of beliefs:

Algorithm 1: (Program Analyzer) Answer query
Input : Literal of input question; Π(D,H); answer

templates.
Output: Answer and answer Literals.
// Compute answer set

1 AS = AnswerSet(Π)
2 if question = plan description then

// Retrieve actions from answer set
3 answer literals = Retrieve(AS, actions)
4 else if question = ”why action X at step I?” then

// Extract actions after step I
5 next actions = Retrieve(AS, actions for step > I)

// Extract axioms influencing these
actions

6 relevant axioms = Retrieve(Π, head = ¬ next actions)
// Extract relevant literals from

Answer Set
7 relevant literals = Retrieve(AS, Body(relevant axioms)

∈ I∧ /∈ I + 1)
// Output literals

8 answer literals = pair(relevant literals, next actions)
9 else if question = ”why not action X at step I?” then

// Extract axioms relevant to action
10 relevant axioms = Retrieve(Π, head = ¬ occurs(X))

// Extract relevant literals from
Answer Set

11 answer literals = Retrieve(AS, Body(relevant axioms)
∈ I∧ /∈ I + 1)

12 else if question = ”why belief Y at step I?” then
// Extract axioms influencing this

belief
13 relevant axioms = Retrieve(Π, head = Y)

// Extract body of axioms
14 answer literals = Recursive Examine(AS,

Body(relevant axioms))
15 Construct Answer(answer literals, answer templates)

1. Plan description: When asked to describe a particular
plan, the robot parses the related answer set(s) to extract
a sequence of actions of the form occurs(action1, step1),
..., occurs(actionN, stepN) (line 3, Algorithm 1). These
actions are used to construct the response.

2. Action justification: Why action X at step I? To jus-
tify the execution of any particular action at step I:

(a) For each action A that occurred after time step I ,
the robot examines relevant executability condition(s)
and identifies literal(s) that would prevent A’s exe-
cution (lines 5-7). For the goal of placing the or-
ange block on the table in Figure 1 (right), assume
that the actions executed include occurs(pickup(robot,
blue block), 0), occurs(putdown(robot, blue block),
1), and occurs(pickup(robot, orange block), 2). If the
focus is on the first pickup action, an executability
condition related to the second pickup action:

¬occurs(pickup(robot, A), I) ←
holds(obj relation(below,A,B), I)

is ground in the scene to obtain obj relation(below, or-
ange block, blue block) as a literal of interest.



(b) If any identified literal is in the answer set at the time
step of interest (0 in current example), and is absent or
negated in the next step, it is a reason for executing the
action (X) being considered (line 7).

(c) The condition modified by the execution of the action
of interest (X) is paired with the subsequent action (A)
to construct the answer (line 8). For instance, the ques-
tion “Why did you pick up the blue block at time step
0?”, receives the answer “I had to pick up the orange
block, and it was located below the blue block”.

A similar approach is used to justify the selection of any
particular action in a plan that has not been executed.

3. Hypothetical actions: Why not action X at step I? For
questions about actions not selected for execution:

(a) The robot identifies executability conditions with ac-
tion X in the head, i.e., conditions that (if true) would
prevent X from being included in plans (line 10).

(b) For each identified executability condition, the robot
examines whether literals in the body are satisfied in
the corresponding answer set (line 11). If so, these lit-
erals are used to construct the answer.

Suppose action putdown(robot, blue block, table) oc-
curred at step 1 in Figure 1 (right). For the question “Why
did you not put the blue block on the tennis ball at step
1?”, the following executability condition is identified:

¬occurs(putdown(robot, A, B), I) ←
has surface(B, irregular)

which implies that an object cannot be placed on another
object with an irregular surface. The answer set indicates
that the tennis ball has an irregular surface. The robot an-
swers “Because the tennis ball has an irregular surface”.
This process uses the belief tracing approach above.

4. Belief query: Why belief Y at step I? To explain any
particular belief, the robot uses the belief tracing ap-
proach to identify the supporting axioms and relevant lit-
erals to construct the answer. For example, to explain the
belief that object ob1 is unstable in step I , the robot finds
the support axiom:

¬holds(stable(ob1), I) ← holds(small base(ob1), I)

Assume that the current beliefs include that ob1 has a
small base. Searching for why ob1 is believed to have
a small base identifies the axiom:

holds(small base(ob1), I) ←
holds(relation(below, ob2, ob1), I),

has size(ob2, small), has size(ob1, big)

Asking “why do you believe object ob1 is unstable at step
I?” would provide the answer “Because object ob2 is be-
low object ob1, ob2 is small, and ob1 is big”.

Disambiguation. Questions or requests posed by humans
may be ambiguous in terms of the objects or the time step
that they reference. Our architecture includes a method to

automatically construct questions to address such ambigu-
ities. Inspired by findings in psychology and cognitive sci-
ence (Friedman 1974; Read and Marcus-Newhall 1993), this
method enables the robot to construct queries comprising
the set of object attributes most likely to address the ambi-
guity. The method is based on three heuristic rules: (i) select
attributes that match with a minimum number of ambigu-
ous objects for the query and scene under consideration; (ii)
since queries with many attributes are more likely to con-
fuse a human, select questions with the minimum number
of attributes; (iii) assign higher priority to attributes that are
preferred by humans (if known) and are easy for the robot
to detect. We only summarize this capability here to provide
a complete description of the architecture. For more details
about the heuristic rules and their use to construct disam-
biguation queries, see (Mota and Sridharan 2021).

4 Experimental Results
Section 4.1 describes the experimental setup, followed by
execution traces in Section 4.2 and quantitative results in
Section 4.3. We evaluated the ability to learn axioms and
construct relational descriptions of decisions and beliefs in
response to different types of questions.

4.1 Experimental Setup
We experimentally evaluated the following hypotheses:

H1 : our architecture supports reliable learning of unknown
axioms, improving the quality of plans generated; and

H2 : leveraging the links between reasoning and learning im-
proves the accuracy of the explanatory descriptions.

Experimental trials considered images from the robot’s cam-
era and simulated images. Real world images contained 5−7
objects of different colors, textures, shapes, and sizes in dif-
ferent locations of the AR domain. The objects included
cubes (blocks), a pig, a bell pepper, a tennis ball, cups, an ap-
ple, an orange, and a pot. These objects were either stacked
on each other or spread on a table in different locations—
see Figure 1 (left). A total of 40 configurations were created,
each with five different goals for planning and four different
questions for each plan (one for each question type), result-
ing in a total of 200 plans and 800 questions. We used a
Baxter robot to manipulate objects on a tabletop.

Since it is difficult to explore a wide range of objects
and scenes with physical robots, we also used a real-time
physics engine (Bullet) to create 40 simulated images, each
with 7 − 9 objects (3 − 5 stacked and the remaining on
a flat surface). Objects included cylinders, spheres, cubes,
a duck, and five household objects from the Yale-CMU-
Berkeley dataset (apple, pitcher, mustard bottle, mug, and
box of crackers). We once again considered five different
goals for planning and four different questions (one for each
type) for each plan, resulting in the same number of plans
(200) and questions (800) as with the real world data.

To explore the interplay between reasoning and learning,
we focused on the effect of learned knowledge on plan-
ning and constructing explanations. Specifically, we pre-
pared a knowledge base in which some axioms governing



Figure 4: (Left) relation between blue cube and red cube
is important for the explanation in Execution Example 2;
(Right) simulated image used in Execution Example 3.

the domain dynamics were missing. We then ran experi-
ments in which our architecture learned the missing axioms
over time, as described in Section 3.2, and used them for
planning and explanation generation. The baseline for com-
parison in these experiments included the reasoning and ex-
planation generation components of our architecture but did
not support any learning, i.e., it only used the initial knowl-
edge base with some axioms missing. During planning, the
performance measures included the number of optimal, sub-
optimal, and incorrect plans, and the planning time. An ”op-
timal” plan is a minimal plan, i.e., the quality of a plan was
measured in terms of the ability to compute plans with re-
quire the least number of actions to achieve the goal. The
quality of an explanation was measured in terms of precision
and recall of the literals in the answer provided by our ar-
chitecture in comparison with the expected (“ground truth”)
response provided manually (by the designer). Any claims
of statistical significance were based on a paired t-test.

Note that the experimental setup described above does not
include any studies with human subjects evaluating the qual-
ity of the explanations provided by our architecture. Such
studies provide important feedback that can be used to eval-
uate and improve the architecture, but we leave such studies
for future work. Instead, we present some execution traces
describing the operation of our architecture. followed by a
discussion of quantitative experimental results.

4.2 Execution Traces
The following execution traces demonstrate the capabilities
of our architecture.
Execution Example 1. [Planning and learning]
The robot in the AR domain is in the study; it is asked
to bring a cup to the study, i.e., the goal state contains:
loc(C, study), not in hand(rob1, C), where C is a cup.
• The computed plan of abstract actions is:

move(rob1, kitchen), pickup(rob1, C),

move(rob1, study), putdown(rob1, C)

This plan uses the default knowledge that cups are usu-
ally in the kitchen that is next to the study.

• To implement each abstract transition T , the robot zooms
to Df (T ). For instance, only cells in the study and the
kitchen are relevant to the first move action; irrelevant
objects and locations are automatically ignored.

• The zoomed description is used to obtain a probabilistic
policy that is invoked repeatedly to execute a sequence

of concrete actions that implements the abstract action,
e.g., robot is in a cell in the kitchen after first move.
Other actions are executed in a similar manner.

• The robot’s attempt to pick up a cup in the kitchen failed.
The robot observes that the cup is heavy while its arm is
light. It then learns the following executability condition
(written as a statement in ALd):

impossible pickup(rob1, C) if arm(rob1, light),

obj weight(C, heavy)

It is also possible to learn and merge other kinds of ax-
ioms with the existing knowledge.

• The robot is also able to automatically provide on-
demand explanations at a suitable level of abstraction.
Human: “Please describe the executed plan in detail.”
Robot: “I moved to cell c2 in the kitchen. I picked the
large cup by its handle from the counter [...] I moved to
cell c4 of the study. I put the cup down on the red table.”

Next, consider the robot’s ability to provide explanations to
different kinds of queries.

Execution Example 2. [Explain plans and beliefs]
In the scene in Figure 4 (left), the robot’s goal is to achieve a
state in which the red cube is on top of the orange cube. The
following interaction takes place after the robot has executed
a plan to achieve the goal.

• Human: ”Please describe the plan.”
Baxter: ”I picked up the blue cube. I put the blue cube
on the table. I picked up the orange cube. I put the orange
cube on the table. I picked up the red cube. I put the red
cube on the orange cube.”

• The robot may have to justify a particular action.
Human: ”Why did you pick up the blue cube at step 0?”
Baxter: ”Because I had to pick up the red cube, and it
was below the blue cube.”
This answer is also used to automatically highlight the
relevant image regions that influenced this answer, pro-
viding additional transparency—see Figure 4 (left).

• The robot may have to justify the choice of actions.
Human: ”Why did you not put down the orange cube on
the blue cube?”
Baxter: ”Because the blue cube is small.” In the absence
of any reference to a particular time step, the robot con-
siders the single instance (in the executed plan) of putting
the orange cube on another cube or surface. The answer
is based on learned default knowledge that any structure
with a large object on a small object is typically unstable.

• The human may ask the robot to justify beliefs.
Human: ”Why did you believe that the red cube was be-
low the blue cube in the initial state?”
Baxter: ”Because I observed the red cube below the blue
cube in step 0.”

• The robot can run mental simulations to answer counter-
factual (i.e., hypothetical) questions.
Human: “What would happen if the ball is rolled?”
Baxter: “The structure of blocks would be unstable”.



Execution Example 3. [Disambiguation]
Consider the simulated scenario in Figure 4 (right).
• Human: “Move the yellow object on to the green cube.”

There is ambiguity in the reference to a yellow object.
Since the yellow cube is already on the green cube, and
the yellow cylinder is below other objects, the robot
poses the following clarification question.
Robot: “Should I move the yellow duck on top of the
green cube?”
Human: “No. Please move the yellow cylinder on top of
the green cube.”

• The robot computes the plan: pick up the green mug; put
the green mug on the table; pick up the red cube; put the
red cube on the table; pick up the yellow cube; put the
yellow cube on the table; pick up the yellow cylinder; put
the yellow cylinder on the green cube.
Note that there are other equally valid plans, e.g., one that
moves the yellow cube to the table first.
Human: “Why do you want to pick up the green mug?”
Robot: “I have to place the yellow cylinder on the green
cube, and the yellow cylinder is below the green mug.”

The robot can also trace the evolution of particular beliefs
and the application of relevant axioms to answer questions
after plan execution.
• Human: “Why did you not pick up the red cube at

step1?”
Robot: “Because the red cube is below the green mug.”
Human: “Why did you move the yellow cube onto the
table?”
Robot: “I had to put the yellow cylinder on top of the
green cube. The green cube was below the yellow cube.”

4.3 Empirical Results
To evaluate H1, we removed five axioms (two causal laws
and three executability conditions) from the robot’s knowl-
edge, and ran the learning algorithm 20 times. We measured
the precision and recall of learning these axioms in each run;
Table 1 summarizes the results. Each run was terminated if
the robot executed a number of actions without detecting any
inconsistency, or if the number of decision trees constructed
exceeded a number. The row labeled “Strict” summarizes
results when any variation in the target axiom, i.e., axioms
with additional irrelevant literals, was considered to be in-
correct. An example of such an axiom in which the second
literal in the body is irrelevant is shown below.

¬holds(in hand(R1, O1), I + 1) ←
occurs(putdown(R1, O1, O2), I),

¬holds(in hand(R1, O5), I). (1)

The row labeled “Relaxed” summarizes results when over-
specifications were not counted as errors. High precision and
recall support hypothesis H1.
The next set of experiments further evaluated H1.
1. For the 40 initial object configurations (Section 4.1), in-

formation extracted from the images corresponding to
top and front views (i.e., from the camera on each grip-
per) was encoded as initial state in the ASP program.

Table 1: Precision and recall for learning previously un-
known axioms. Errors under ”Strict” mainly correspond to
the inclusion of additional irrelevant literals.

Missing Axioms Precision Recall
Strict 69% 78%

Relaxed 96% 95%

Table 2: Number of plans and planning time after includ-
ing the learned axioms for reasoning (our architecture), ex-
pressed as a fraction of the values without including the
learned axioms (baseline).

Ratio (with/without)
Measures Real scenes Simulated scenes

Number of steps 1.15 1.23
Number of plans 0.81 1.08

Planning time 0.96 1.02

2. For each initial state, five goals were randomly encoded
(one at a time) in the ASP program. The robot reasoned
with the existing knowledge to create plans for these 200
combinations (40 initial states, five goals).

3. Plans were evaluated based on the number of optimal,
sub-optimal, and incorrect plans, and planning time. Tri-
als were repeated with and without the learned axioms.

Recall that our architecture reasons with a knowledge base
that includes the learned axioms whereas the knowledge
base used by the baseline does not include these axioms. We
conducted paired trials with and without the learned axioms
in the ASP program used for reasoning. The initial condi-
tions and goal were identical in each paired trial, but differed
between paired trials. We expressed the number of plans and
the planning time with the learned axioms as a fraction of
the corresponding values obtained by reasoning without the
learned axioms. The average of these fractions over all the
trials is reported in Table 2. We also computed the number
of optimal, sub-optimal, and incorrect plans in each trial as
a fraction of the total number of plans; we did this with and
without the learned axioms and the average over all trials is
summarized in Table 3.

These results indicate that for images of real scenes, rea-
soning with the learned axioms reduced the search space,
resulting in a smaller number of plans and a reduced plan-
ning time. The use of the learned axioms did not make any
significant difference with the simulated scenes. This is un-
derstandable because the simulated images had more ob-
jects (than real scenes) with several of them being small
objects. This increased the number of plans to achieve any
given goal. Also, when the robot used the learned axioms
for reasoning, it reduced the number of sub-optimal plans
and eliminated all incorrect plans; almost every sub-optimal
plan corresponded to a goal that could not be achieved with-
out creating an exception to a default. Without the learned
axioms, a larger fraction of the plans were sub-optimal or
incorrect, particularly for simulated scenes with multiple ob-
jects. These results further support H1.

The next set of experiments evaluated H2:

1. For each of the 200 combinations from the first set of
experiments with real-world data, we considered knowl-



Table 3: Number of optimal, sub-optimal, and incorrect
plans expressed as a fraction of the total number of plans.
Reasoning with the learned axioms (our architecture) im-
proves performance compared with the baseline that reasons
without the learned axioms.

Real Scenes Simulated Scenes
Plans Without With Without With

Optimal 0.4 0.9 0.14 0.3
Sub-optimal 0.11 0.1 0.46 0.7

Incorrect 0.49 0 0.4 0

Table 4: (Real scenes) Precision and recall of retrieving rel-
evant literals for constructing answers to questions with and
without using the learned axioms for reasoning. Using the
learned axioms significantly improves the ability to provide
accurate explanations in all but one type of query.

Precision Recall
Query Type Without With Without With

Plan description 78.5% 100% 67.5% 100%
Why X? 76.3% 95.3% 66.8% 95.3%

Why not X? 96.6% 96.6% 64% 100%
Why belief Y? 96.7% 99% 95.6% 100%

edge bases with and without the learned axioms and
asked the robot to compute plans to achieve the goals.

2. The robot had to describe the plan and justify the choice
of a particular action (chosen randomly) in the plan.
Then, one parameter of the chosen action was changed
randomly to ask why this new action could not be ap-
plied. Finally, a belief related to the previous two ques-
tions had to be justified—see Execution Example 2.

3. The literals present in the answers were compared against
the literals in the ”ground truth” response, with the aver-
age precision and recall scores shown in Table 4.

4. We also performed these experiments with simulated im-
ages, with the results summarized in Table 5.

Tables 4, 5 show that in all but one type of question (i.e.,
counterfactual) posed about real world scenes, the precision
and recall of relevant literals (for constructing explanations)
were higher when the learned axioms were used for reason-
ing compared with the baseline that did not use these learned
axioms. The improvement in performance was particularly
pronounced when the robot had to answer certain types of
questions about certain types of scenes (e.g., justification of
action choices). For certain types of questions (e.g., about
specific beliefs), the precision and recall rates were reason-

Table 5: (Simulated scenes) Precision and recall of retriev-
ing relevant literals for constructing answers to questions
with and without reasoning with learned axioms. Using the
learned axioms significantly improves the ability to provide
accurate explanations for all four types of queries.

Precision Recall
Query Type Without With Without With

Plan description 70.8% 100% 58% 100%
Why X? 65.6% 93.0% 57% 93.0%

Why not X? 90.5% 96.4% 65.2% 100%
Why belief Y? 92.7% 98.4% 90.3% 99.2%

able even when the learned axioms were not included. This
is because not all the learned axioms were needed to an-
swer each question. When the learned axioms were used
for reasoning, errors were rare and corresponded to addi-
tional literals being included in the explanation (i.e., over-
specified explanations). Enabling reasoning and learning to
inform each other thus resulted in more accurate relational
descriptions of decisions and beliefs in response to different
types of questions. These results support H2.

5 Conclusions
The architecture described in this paper is a step towards
greater transparency in reasoning and learning for inte-
grated robot systems. The architecture encodes the princi-
ple of stepwise refinement to leverage the complementary
strengths of non-monotonic logical reasoning with common-
sense domain knowledge, data-driven learning from a lim-
ited set of examples, and the inductive learning of previ-
ously unknown axioms governing domain dynamics. Once
the designer provides the domain-specific information, plan-
ning, diagnostics, and execution are automated. In addition,
the interplay between representation, reasoning, and learn-
ing is used to embed the principles of explainable agency,
enabling a robot to reliably and efficiently construct and
provide on-demand relational descriptions of its decisions
and beliefs in response to different types of questions. Ex-
perimental results in described in this chapter, and those
described in other related papers (Sridharan and Meadows
2019; Mota, Sridharan, and Leonardis 2021), demonstrate
the smooth transfer of control and relevant knowledge be-
tween components of the architecture, confidence in the cor-
rectness of the robot’s behavior, and the applicability of the
underlying methodology to different domains.

Our architecture opens up multiple directions of future
work. For example, we will further explore how the inter-
play between representation, reasoning, and learning can
be leveraged to support explainable agency in one or more
robots assisting humans in dynamic domains. In addition,
we will conduct experimental studies with human partici-
pants evaluating the quality of our explanations, and use the
feedback from these participants to make revisions of our ar-
chitecture and algorithms. Furthermore, we will investigate
whether our architecture can be extended to consider social
norms while generating explanations of the decisions and
beliefs of a robot assisting humans in complex domains.
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