
Spatial Relation Graph and Graph Convolutional Network for Object
Goal Navigation

D. A. Sasi Kiran∗1, Kritika Anand∗2, Chaitanya Kharyal∗1, Gulshan Kumar1

Nandiraju Gireesh1, Snehasis Banerjee2, Ruddra dev Roychoudhury2, Mohan Sridharan3

Brojeshwar Bhowmick2, Madhava Krishna1

1Robotics Research Center, IIIT Hyderabad, India
2TCS Research, Tata Consultancy Services, India

3Intelligent Robotics Lab, University of Birmingham, UK

Abstract— This paper describes a framework for the object-
goal navigation task, which requires a robot to find and
move to the closest instance of a target object class from a
random starting position. The framework uses a history of
robot trajectories to learn a Spatial Relational Graph (SRG)
and Graph Convolutional Network (GCN)-based embeddings
for the likelihood of proximity of different semantically-labeled
regions and the occurrence of different object classes in these
regions. To locate a target object instance during evaluation,
the robot uses Bayesian inference and the SRG to estimate
the visible regions, and uses the learned GCN embeddings to
rank visible regions and select the region to explore next. This
approach is tested using the Matterport3D benchmark dataset
of indoor scenes in AI Habitat, a visually realistic simulation
environment, to report substantial performance improvement
in comparison with state of the art baselines.

Index Terms— Spatial Relational Graph, Graph Convolu-
tional Networks, Semantic Object Navigation.

I. INTRODUCTION

Navigation is a fundamental task performed by a service
robot, e.g., in an office or a home. Navigation tasks are
broadly classified into PointGoal tasks (go to a point in
space), ObjectGoal tasks (go to a semantically distinct object
instance), and AreaGoal tasks (go to a semantically distinct
area) [1]. This work focuses on ObjectGoal navigation tasks,
also called ObjectNav. As a motivating example, consider a
service robot equipped with a camera, which has been asked
by a human to go to a ‘sink’ in a home. It is difficult for the
robot to perform such a task that humans perform effortlessly.
The robot needs to process sensor inputs, understand its
environment, and make suitable decisions to move to the
target. Specifically, to go to a ‘sink’, the robot needs to know
that a ‘sink’ is an object usually found in a region labeled
‘kitchen’. It also needs to confirm its current location based
on observations of relevant objects in view, e.g., it is in the
‘bedroom’ because it sees a ‘bed’ nearby.In addition, it needs
to use knowledge of the environment and the objects in its
view to estimate regions that are traversable, and select the
region that is most likely to lead to the target object. In the
current example, the robot knows it is very unlikely to find
a ‘sink’ in the ‘bedroom’, and decides to move to the ‘living

*Denotes equal contribution

room’, an adjacent region. The robot does not find a sink
in the living room but it does observe an ‘oven’ in a nearby
region. It reasons that the region is most probably a ‘kitchen’
because that is where an oven is most likely to be found.
Since the robot knows that a kitchen is very likely to contain
a sink, it decides to move to the corresponding region where
it finds a sink. Our framework makes the following novel
contributions towards realizing this motivating scenario:

• An approach that uses the robot’s trajectories in similar
environments to learn a Spatial Relational Graph (SRG)
that models the probability of proximity of different
semantically-labeled regions to each other and the oc-
currence of specific object classes in each region.

• An approach that uses a Graph Convolutional Network
(GCN) operating on the historical trajectories and the
learned SRG to learn the embeddings of each region
and object based on their co-occurrence.

• A Bayesian inference approach that uses the SRG
during evaluation to incrementally process the robot’s
current observations of specific objects and to estimate
the labels of the regions visible in its current location.

• An approach that uses the GCN-based embeddings to
select the visible region to explore next, computing for
each region the likelihood of leading to a region with
an instance of the target object class.

We use off-the-shelf algorithms for planning a path and
moving a robot to a desired location and abstract away the
object recognition task by assuming accurate recognition of
observed objects in images of any given scene. The frame-
work is evaluated using benchmark indoor scenes from the
Matterport3D (MP3D) dataset [2] and baseline methods in
the visually realistic AI Habitat simulation environment [3].
A marked improvement in relevant measures in comparison
with state of the art baselines is shown. Additional results
and supporting material are available online: https://
user432.github.io/objnav-srg/.

II. RELATED WORK

We review related work on the ObjectNav task, focusing
on state of the art data-driven methods.

https://user432.github.io/objnav-srg/
https://user432.github.io/objnav-srg/

Mapping based approaches: The use of data-driven
methods to learn a semantic map or an occupancy map
to assist in the ObjectNav task continues to be a popular
approach. These methods often use a dedicated module or a
(deep) neural network, e.g., the use of a neural network to
obtain a mao that is then used to sample a long-term goal to
guide exploration [4], [5], [6]. There has also been work on
using a neural network to estimate occupancy for the related
PointNav task, i.e., to reach a point instead of an instance
of an object class [7]. Instead of relying on a map, our
framework uses a spatial relational graph and embeddings
of the visible regions and objects to guide exploration.

End-to-End approaches: Data-driven methods have been
developed to directly move to a given goal based on sensor
inputs by learning to predict actions instead of building
multiple linked components [8], [9]. This includes the use
of Reinforcement Learning (RL) methods [10], [11].

Graph based approaches: Relational graphical models
have been trained and used to select actions for navi-
gation [12], [13], [14], [15]. One method builds a rela-
tional graph during training to encapsulate the relational
dependencies between different regions in the scene [12].
This graph is updated periodically during testing using a
Convolutional Neural Network(CNN)-based region predictor
network. Another method builds a topological graph during
exploration, with nodes representing the locations that are
used to select sub-goals [13]. There has also been work on
building a graph with region nodes, zone nodes, and object
nodes, with one of the zone nodes being selected as the
sub-goal that is reached using RL methods [14]. In another
method, the graph’s nodes are a few landmarks objects and
robot poses, and an RL agent is trained to navigate to all
possible objects [15]. There are also methods that exploit
graphical relations in different ways to aid navigation [16],
[17], [18]. Many of the methods discussed above focus
on specific simulators or datasets and make corresponding
assumptions. Our framework uses a relational graph as well,
but to capture the relational dependencies between both the
regions and the objects during training, and make decisions
during evaluation. It is also used to do region prediction
based on a probabilistic model which exploits this graph.

III. PROBLEM SPECIFICATION AND METHODOLOGY

We focus on the ObjectNav task in which a robot placed in
a random pose in a previously unknown indoor environment
is asked to find an instance of a target object class [19].
Figure 1 is an overview of our framework that has six stages.
The first three stages, described in Sections III-A- III-C,
correspond to the training process during which the robot
executes and uses trajectories of its movement through a
set of semantically-labeled scenes to compute the SRG and
the GCN embeddings. The next three stages, described in
Sections III-D- III-F, correspond to evaluation during which
the robot uses the trained SRG and GCN to process input
observations and compute a ranking of the visible regions in
terms of their likelihood to lead to an instance of the target
object class; an off-the-shelf planner is then used to control

the robot’s movement to the highest-ranked visible region.
Individual stages are described below.

A. Generating Valid Trajectories
Figure 2 is an overview of the first step of the training

process. The robot is initialized in a known MP3D scene
and given a goal to find the nearest instance of an object
class. The environment is known to the robot and it moves
to all the instances of the object category keeping a record
of the regions encountered along the path. The path with the
minimum distance to the target object is labeled as a valid
trajectory and stored. We generate multiple valid trajectory
paths for subsequent use.

As an example, consider a trial in which the target object
is a ‘sink’ with the robot initialized in the region ‘bedroom’.
There are instances of a sink in multiple regions of the
MP3D house/scene such as the bathroom, laundry room, and
kitchen; the nearest sink to the bedroom is in the bathroom.
If the robot instead starts in the ‘living room’ with the same
target object class (i.e., ‘sink’), the valid trajectory may be
{living room, hallway, dining room, kitchen} −→ sink, i.e., the
nearest ‘sink’ to the ‘living room’ is in the ‘kitchen’. To get to
the goal target object, we find the next action using shortest
path follower algorithm, which takes into consideration the
geodesic shortest path from the agent’s current position to the
goal position. Overall, we obtained 18, 488 trajectory paths
in AI Habitat MP3D environment.

B. Generation of Spatial Relational Graph
The proposed SRG graphically represents the information

about spatial relations between regions and objects, which
is essential for object goal navigation task. We denote this
graph by G = (V, E), where V and E represent the nodes and
the edges between nodes, respectively. In particular:

• Each node n ∈ V denotes an object category (object
node) or the region category (region node); and

• Each edge e ∈ E denotes the relationship between region
categories or between a region and an object category.

We consider 2 types of edges to encode: (i) ‘Includes’
relation between a region and an object category; and (ii)
‘Adjacency/proximity’ relation between a pair of regions.

In any MP3D scene with n regions, the robot is al-
lowed to move from region Ri to other regions Rj , i.e.,
i, j ∈ [1, . . . n], i ̸= j. For each scene, an edge is created
between region nodes nRk

and nRl
if nodes representing Rk

and Rl are adjacent in the path between Ri and Rj . Also,
we create an edge between object node no and a region node
nRi

, if object o is in region Ri. We create such scene graphs
(G1, G2, G3, . . . , Gm ∈ G) for all m scenes in the MP3D
dataset. These graphs in G are used to build the spatial
relational graph (Gs) as depicted in Figure 4.

Gs encodes the proximity and spatial co-occurrence (fre-
quency) statistics of regions and objects extracted from the
MP3D scenes explored in the valid trajectories. Specifically,
the SRG associates an attribute ‘weight’ with the two differ-
ent types of edge between the nodes; it represents the object-
region co-occurrence probability for the includes relation

Fig. 1: Our ObjectNav framework has three stages each for training and evaluation. It trains and uses an SRG encoding the
proximity of regions to each other and object-region co-occurrence, and a GCN-based embedding of this information and
historical data of executed trajectories in indoor environments, to identify and move to the region most likely to contain an
instance of the target object class in a previously unseen environment.

Fig. 2: Generating valid trajectories by exploring target
object classes in MP3D dataset scenes using AI Habitat.

Fig. 3: Training GCN to encode embedding of information
in SRG based on ‘valid’ trajectories.

between a particular object and a particular region, and
the proximity likelihood for the adjacency/proximity relation
between any two regions. These weights are computed for
the individual graphs corresponding to the MP3D scenes
(G1, G2, G3, . . . , Gm). For example, to estimate the weight
of an edge connecting object node (no=bed) and region
node (nRi=bedroom) in Gs, we find the frequency of ‘bed
in bedroom’ in the graphs in G and normalize it by the
frequency of ‘bedroom’. The weight for the edge between
any two regions ri and rj is computed by dividing the
total number of co-occurrences of ri adjacent to rj by the

minimum of the frequency of the individual regions in G.
Figure 4 shows an example SRG constructed from the

scene graphs. We observe that the weight is high (0.89) for
‘bed in bedroom’ and for ‘bedroom adjacent to bathroom’
(weight = 0.87), whereas it is low (0.05) for ‘bed in kitchen’
and ‘bathroom adjacent to kitchen’ (weight = 0.35). These
priors will help the robot discover and navigate towards the
target object from its current position. For example, seeing a
dining table from the living room will help the robot identify
and navigate to an adjacent kitchen that is likely to contain
a sink, which is the robot’s target.

C. Encoding Object-region Embeddings in GCN
The previous section described how the SRG probabilisti-

cally encodes the proximity of regions to each other and the
co-occurrence of objects and regions. For the ‘ObjectNav’
task, it is useful to obtain a low-dimensional embedding of
this information and the useful trajectories contained in the
valid trajectories collected during training.

Specifically, the objective is to train embeddings such that
regions and objects more likely to occur together on the
path to the target object have a high similarity score based
on the embeddings. These embeddings are learned from the
SRG and the positive trajectories by optimizing a cross-
entropy loss function. Since positive trajectories represent the
path taken by the robot in a known indoor environment to
successfully locate the target object, the learned embeddings
are similar to the Word2vec representation for computing an
embedding for words in a sentence [20] .

We use a GCN to learn the embeddings because it is
well-suited to capture the relationships in the SRG and
trajectories. As before, we assume that the robot is able to

correctly recognize objects in any observation of the current
scene. Recall that the trained SRG Gs has two types of edges.
As we are only interested in the most likely links in Gs,
edges that have a weight ≤ 0.5 are pruned.

The GCN takes two inputs during training: (i) input
features for every node i, represented as a N × D matrix
(N: number of nodes, D: number of input features); and (ii)
graph structure in the form of an adjacency matrix A of size
N × N [21]. It produces an output of dimension N × E
where E is the dimension of the embedding. The region and
object categorical values are mapped to integer values using
the one-hot encoding vector to avoid bias, i.e., the index of
the node has value 1 and other values are zeros. Specifically,
a three-layer GCN takes as input the SRG in the form of an
adjacency matrix and an one-hot encoding of the features of
region and object nodes. The dimension of feature vectors
is the sum of the number of objects and regions; in this
paper, we consider 19 objects and 28 regions. For training,
we use the graph convolutional operator (GCNConv) [21];
the first layer has input dimension 47 and the last layer’s
output dimension is the embedding size (128 in this paper).

For every index x ∈ {2, 3, · · · , n − 1} in a valid tra-
jectory {i1, i2, i3, · · · in} → itarget, we find its prefix path
{i1, i2, i3, · · · , ix−1}. In the loss function, we maximize the
similarity of the embedding of node (i.e., region) ix with
the embedding of in, and with the embedding of each node
in its prefix path. Suppose the robot took the path {living
room, hallway, bedroom} → bed to reach the nearest instance
of object class bed from its starting region. We maximize
the similarity of the embedding of node hallway with node
bedroom, and hallway with living room. Also, for each
trajectory, we maximize the embedding of in with itarget,
i.e., bedroom with target bed in the current example.

For each valid prefix path, we also generate invalid prefix
paths in which the intermediate nodes are iinvalid = R -
ivalid, where R is the set of regions in the dataset and ivalid
is the set of nodes (i.e., regions) in the trajectory to the target
object. For example, if the prefix path p1 is: {living room,
hallway, bedroom}, the invalid prefix path will be {living
room, x, bedroom}, where x ∈ iinvalid, i.e., {living room,
bathroom, bedroom}, {living room, dining room, bedroom},
· · · , {living room, stairs, bedroom}. For an invalid prefix path
pinvalid = {i1, i2, i3, · · · , ix} and every index j ∈ {2, 3, ..x−
1}, we minimize the similarity of the embedding of node ij
with the embedding of itarget. During evaluation in a new
scene, the embedding helps select a path most similar to the
valid trajectories in the trained model.

D. Visible Region Estimation using SRG
During evaluation (i.e., testing), the robot has to use the

learned SRG and GCN embeddings to reach an instance of
a target object class in a previously unseen scene. To do
so, the robot first identifies the visible regions based on the
observed objects and the SRG. We use Bayesian inference
and some simplifying assumptions to compute the probability
of a region R being visible given a set of visible objects
Ov = {o1, o2, · · · on}. Without loss of generality, assume

Algorithm 1 Computing visible regions using SRG.

Input: SRG, Ov = {o1, o2, · · · , ol}
Output: V

1: visible_regions = []
2: for obj in Ov do
3: cand_objs = obj ∪ nearest_objects(obj, Ov , k=4)

4: compute probabilities p(Ri|cand_objs) ∀i ∈ [1, n]

5: visible_regions[obj]= argmaxi{p(Ri|cand_objs)}
6: end for
7: return visible_regions

that the robot has observed two objects oj and ok. Then:

p(Ri|oj , ok) =
p(Ri, oj , ok)

p(oj , ok)
=

p(oj |Ri, ok) · p(Ri, ok)

p(oj , ok)
(1)

where p(Ri|oj , ok) is the probability of region Ri being in
the robot’s view given the objects oj , ok ∈ Ov . If we make
the simplifying assumption that the presence of each object
is independent of the other objects, we obtain:

p(oj |Ri, ok) =
p(oj , Ri, ok)

p(Ri, ok)
=

p(oj , ok|Ri) · p(Ri)

p(Ri, ok)
(2)

=
p(oj |Ri) · p(ok|Ri) · p(Ri)

p(ok|Ri) · p(Ri)

= p(oj |Ri)

which leads us to:

p(Ri|oj , ok) =
p(oj |Ri) · p(ok|Ri) · p(Ri)

p(oj , ok)
(3)

Since p(oj , ok) will be a factor in the probability computation
of any region, it can be treated as a constant scaling factor.
We also make an assumption that all the regions are equally
likely initially, leading to:

p(Ri|oj , ok) = λ · (p(oj |Ri) · p(ok|Ri)) (4)

where λ is a constant, and we get p(oj |Ri) · p(ok|Ri) from
the ‘includes’ edges of the SRG. This computation can be
performed incrementally to consider any number of observed
objects in the scene, to obtain the region probabilities:

p(Ri|oj , · · · , ok) ∀i ∈ [1, n] (5)

While estimating the visible region list, for every visible
object, we consider the set of candidate objects {oj , · · · , ok}
to also include k (experimentally set as 4) of its closest
visible objects. This set is used to compute the region
probabilities in Equation 5. The region label assigned to the
visible object is that of the region with the highest probability
in the vector above. Algorithm 1 summarizes these steps.

E. Identifying Next Region to Explore
Among the visible regions, the robot needs to select the

region to explore next. Suppose that the robot is currently
able to view regions V : {vr1 , vr2 , vr3 ,...,vrl}. The robot uses

Fig. 4: Learning SRG from valid trajectories obtained through exploration of MP3D scenes. Nodes represent regions (blue)
or object classes (orange), and edges encode likelihood of proximity (between regions) or occurrence of objects in regions.

the trained GCN to compute the embedding of each visible
region and the similarity of these embeddings with those of
the target object t. The region with the highest similarity is
chosen to be explored next.

Choose argmax
vri

(
Sim(Emb(t),Emb(vri))

)
|i∈[1,l] (6)

where Sim() is the cosine similarity function and Emb() is
the embedding output from the GCN.

F. Action Controller
After reaching the new region, if the agent sees the target

object, it moves towards the object using a shortest path
follower. If the target is within 1m Euclidean distance to the
agent, the episode is terminated as a success. If the target
object is not present in the new region a new set of visible
regions is computed and the process is repeated until the
target is found or the maximum number of steps (350 in
this work) for the episode is reached. One step corresponds
to a translation movement of 0.3 m forward or backward, or
a 300 rotation to the left or right. An existing off-the-shelf
planner is used for planning and executing local navigation.

IV. EXPERIMENTAL SETUP

As baselines for comparison, we used three strategies: (i)
Random action selection ; (ii) Active Neural Slam (ANS) [6];
and (iii) Graph convolutional region estimator network (GC-
Exp) [22]. In ANS, the long term goal of the robot was
chosen such that the exploration policy tried to maximize
the area explored. A key component of GCExp was a region
classification network (RCN), a graph neural network that
mapped a Semantic graph St with objects from any of the
ND object classes as nodes, to a probability distribution over
the NR regions for each node. Its inputs include:

• Feature vector matrix X ∈ RN×ND for node represen-
tation, where N is the number of nodes in St. For each
node n, the input feature vector xn ∈ RND is a one hot
encoding of its object category.

• Adjacency matrix A ∈ RN×N of the graph structure.
We experimentally evaluated the following hypotheses:
H1: The proposed framework substantially improves the

success rate compared with the above baselines.

H2: The use of SRG for visible region estimation provides
performance comparable with the use of the RCN in
our framework, while significantly reducing the com-
putational effort.

H3: The SRG-based approach improves transparency in
visible region estimation by explicitly identifying the
objects influencing this estimation.

Hypotheses H1 and H2 were evaluated quantitatively while
H3 was evaluated qualitatively. Evaluation of hypotheses H1-
H2 was based on four well-established measures taken from
related literature [1], [22], [23] :

1) Success: ratio of the number of successful episodes to
total number of episodes. An episode is successful if
the robot is ≤ 1.0 m from the target object.

2) SPL (Success weighted by path length): measures the
efficiency of path taken by robot compared with optimal
path; it is is computed as:

SPL =
1

N

N∑
i=1

Si.
li

max(pi, li)

where N is the number of test episodes, Si is a binary
success indicator, li is the length of shortest path to the
closest instance of target object from the robot’s initial
position, and pi is the length of path traversed by robot.

3) SoftSPL: it replaces the binary Si from SPL with
a continuous success indicator ∈ [0, 1] depending on
robot’s distance to the goal.

SoftSPL =
1

N

N∑
i=1

(1− di
max(li, di)︸ ︷︷ ︸

episode_progress

).(
li

max(pi, li)
)

where N, li, and pi are as before, and di is the length
of the shortest path to the goal from the robot’s position
at episode termination.

4) Distance to Success (DTS): denotes the distance be-
tween the agent and the permissible distance to target
for success at the end of an episode.

DTS = max(∥xT −G∥2 − d, 0)

where ∥xT −G∥2 is the L2 distance between robot and
goal at the end of the episode; d is the success threshold.

TABLE I: Comparing ‘Success’ of proposed framework with
baselines. Proposed framework provides better performance
than baselines; use of SRG instead of RCN for region
estimation provides comparable performance at much lower
computational effort.

Method Success↑
Random 0.0056

ANS 0.69
ANS+GCExp 0.72

Framework with RCN 0.773
Framework with SRG 0.751

TABLE II: Comparing proposed framework and baselines
on all four measures, focusing on the comparison between
SRG and RCN for region estimation; use of SRG provides
comparable performance at much lower computational effort.

Method Success ↑ SPL ↑ SoftSPL ↑ DTS (m) ↓
Random 0.0056 0.0032 0.0751 7.1565

Framework+RCN 0.773 0.548 0.565 1.993
Framework+SRG 0.751 0.530 0.553 2.348

As stated earlier, training and evaluation used different sets
of scenes from the Matterport3D (MP3D) benchmark dataset
for ObjectNav task, within the visually realistic AI Habitat
simulation environment. The proposed framework is trained
on the trajectories taken from 51 scenes and the testing is
done on 250 episodes (each) on five MP3D scenes.

V. EXPERIMENTAL RESULTS

To evaluate hypotheses H1-H2, we first compared our
proposed approach with the baselines in terms of the ‘Suc-
cess’ measure, with the corresponding results summarized in
Table I. We observe that the proposed approach performed
better than the baselines, e.g., top three rows of table
compared with last row. The use of SRG for visual region
estimation provided performance comparable to the use of
RCN for visual region estimation in our framework; there
was no significant qualitative difference in the results, but
incremental Bayesian inference with SRG involved much
less computational effort than training and testing the sub-
stantially more complex deep network structure of RCN.

Next, we compared the proposed framework with the base-
lines using all four measures, focusing on the comparison
between SRG and RCN for region estimation. The results
summarized in Table II indicate that SRG and RCN provide
comparable performance. However, RCN involves computa-
tionally expensive training and use of a deep network for
visible region estimation. SRG, on the other hand, supports
incremental and efficient region estimation. Tables III-IV
summarize results of a similar comparison on some repre-
sentative scenes from the MP3D benchmark dataset.

We also explored the sensitivity of the framework’s perfor-
mance to the values of key parameters. Recall that we fix the
radius d of the space within which we consider visible ob-
jects as 10m. We also set the maximum number k of nearby
objects that we considered for each object as 5 (Section III-
D). The framework’s performance for other specific values
of these parameters is summarized in Tables V-VI.

TABLE III: Our framework’s performance on specific scenes
in MP3D with SRG for region estimation.

Scene Success ↑ SPL ↑ SoftSPL ↑ DTS (m) ↓
17DRP5sb8fy 0.864 0.609 0.622 0.52
rPc6DW4iMge 0.700 0.494 0.520 2.61
S9hNv5qa7GM 0.616 0.393 0.403 2.67
b8cTxDM8gDG 0.868 0.675 0.689 1.25
EDJbREhghzL 0.708 0.491 0.529 4.69

Average 0.7512 0.530 0.553 2.348

TABLE IV: Our framework’s performance on specific scenes
in the MP3D with RCN for region estimation.

Scene Success ↑ SPL ↑ SoftSPL ↑ DTS (m) ↓
17DRP5sb8fy 0.878 0.626 0.639 0.72
rPc6DW4iMge 0.714 0.496 0.516 2.52
S9hNv5qa7GM 0.532 0.335 0.345 3.56
b8cTxDM8gDG 0.936 0.690 0.697 0.725
EDJbREhghzL 0.806 0.595 0.631 2.443

Average 0.7732 0.548 0.565 1.994

Finally, to evaluate H3, we qualitatively compared the use
of SRG-based region estimation with the use of RCN within
our framework. Our framework improves transparency by
providing a readily interpretable list of objects influencing
the decision about specific visible regions; we also obtain a
probability distribution over the candidate regions. Figure 5
shows an example of region estimation on a particular
image and Table VII shows additional examples. An added
advantage of using the SRG for region estimation is the reuse
of the model in very different scenes if the distribution of
objects over the semantic regions is similar.

Additional results and supporting material are
available online: https://user432.github.io/
objnav-srg/. Since our framework is designed for
the ObjectNav task, it may not provide high accuracy
as a generalized navigation module due to variations in
the environment and the objective functions. However,
experimental results indicate that extensive training on
representative and realistic scenes leads to good performance
on previously unseen scenes from similar environments.

TABLE V: Performance of our framework with SRG based
Probabilistic Estimation Model; for d=7m.

Scene Success ↑ SPL ↑ SoftSPL ↑ DTS (m) ↓
17DRP5sb8fy 0.82 0.58 0.60 1.01
rPc6DW4iMge 0.65 0.43 0.45 3.17
S9hNv5qa7GM 0.52 0.338 0.353 3.58
b8cTxDM8gDG 0.77 0.57 0.59 2.03
EDJbREhghzL 0.54 0.38 0.43 6.9

Average 0.66 0.4596 0.4846 3.338

TABLE VI: Performance of our framework with SRG based
Probabilistic Estimation Model; for k=7.

Scene Success ↑ SPL ↑ SoftSPL ↑ DTS (m) ↓
17DRP5sb8fy 0.82 0.60 0.61 0.87
rPc6DW4iMge 0.632 0.427 0.45 2.7
S9hNv5qa7GM 0.55 0.388 0.4 3.39
b8cTxDM8gDG 0.768 0.56 0.58 1.96
EDJbREhghzL 0.7 0.50 0.53 4.8

Average 0.694 0.495 0.514 2.744

https://user432.github.io/objnav-srg/
https://user432.github.io/objnav-srg/

TABLE VII: Visible region estimations: Outputs of SRG
based visible region estimation model, over varied objects.

Objects in FOV Estimated Region
‘cushion’,‘bed’,‘chair’

‘cabinet’,‘cushion’ Bedroom
‘towel’,‘shower’,‘sink’

‘towel’,‘chair’ Bathroom
’sofa’, ’sofa’, ’cushion’

’table’, ’picture’ Living Room
‘table’,‘chair’,‘chair’

‘chair’,‘picture’ Meeting room / Conference room
‘counter’,‘cabinet’,‘sink’ Bar

‘gym_equipment’,‘towel’,‘stool’
‘gym_equipment’,‘cabinet’ Gym / Exercise room

Fig. 5: Visible region estimation: Living Room. The objects
seen by the model leading to the region estimation of ‘Living
Room’ are (‘sofa’, ‘sofa’, ‘cushion’, ‘table’, ‘picture’)

VI. CONCLUSION

We have described a framework for the object-goal navi-
gation (ObjectNav) task, which requires a robot to find and
move to an instance of a target object class in previously un-
seen scenes. The framework uses robot trajectories collected
from other related scenes during a training phase to learn a
Spatial Relational Graph (SRG) and Graph Convolutional
Network (GCN)-based embeddings for the proximity of
different semantically-labeled regions and the occurrence of
different object classes in these regions. When the robot has
to locate a target object instance during evaluation, Bayesian
inference and the SRG are used to estimate the visible
regions, and the GCN embeddings are used to rank and select
the visible region to explore next. We have experimentally
evaluated our framework using scenes from the Matterport3D
(MP3D) benchmark dataset of indoor scenes in the visually
realistic AI Habitat simulation environment. The quantitative
and qualitative experimental results have demonstrated an
improvement in the ability to locate the target object in
comparison with baselines methods. Also, our framework
significantly improves transparency while providing perfor-
mance comparable with that of "black box", deep network-
based approach for visible region estimation.

Future work will extend our framework by relaxing its
assumptions. First, instead of assuming that the robot can
accurately recognize the observed objects in any given image,
we will enable the robot to perform probabilistic object
recognition, potentially by also considering neighboring ob-

jects. Second, we will extract and use knowledge about in-
door regions and objects from publicly-available knowledge
graphs, and explore the performance of our framework on
benchmark datasets of different origin (e.g., ReplicaCAD,
Gibson). Finally, we will conduct trials on a physical robot to
investigate the adaptation from simulation to the real world.

REFERENCES

[1] P. Anderson, A. Chang, D. S. Chaplot, A. Dosovitskiy, S. Gupta,
V. Koltun, J. Kosecka, J. Malik, R. Mottaghi, M. Savva,
et al., “On evaluation of embodied navigation agents,” preprint
arXiv:1807.06757, 2018.

[2] A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Niessner, M. Savva,
S. Song, A. Zeng, and Y. Zhang, “Matterport3d: Learning from rgb-d
data in indoor environments,” IEEE 3DV, 2017.

[3] M. Savva, A. Kadian, O. Maksymets, Y. Zhao, E. Wijmans, B. Jain,
J. Straub, J. Liu, V. Koltun, J. Malik, et al., “Habitat: A platform for
embodied ai research,” in ICCV, 2019, pp. 9339–9347.

[4] D. S. Chaplot, D. Gandhi, S. Gupta, A. Gupta, and R. Salakhutdinov,
“Learning to explore using active neural slam,” in ICLR, 2020.

[5] S. K. Ramakrishnan, D. S. Chaplot, Z. Al-Halah, J. Malik, and
K. Grauman, “Poni: Potential functions for objectgoal navigation with
interaction-free learning,” preprint arXiv:2201.10029, 2022.

[6] D. S. Chaplot, R. Salakhutdinov, A. Gupta, and S. Gupta, “Neural
topological slam for visual navigation,” in CVPR, 2020.

[7] S. K. Ramakrishnan, Z. Al-Halah, and K. Grauman, “Occupancy
anticipation for efficient exploration and navigation,” arXiv, vol.
2008.09285, 2020.

[8] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. J. Ballard, A. Banino,
M. Denil, R. Goroshin, L. Sifre, K. Kavukcuoglu, D. Kumaran, and
R. Hadsell, “Learning to navigate in complex environments,” arXiv,
vol. 1611.03673, 2017.

[9] T. Chen, S. Gupta, and A. Gupta, “Learning exploration policies for
navigation,” arXiv, vol. abs/1903.01959, 2019.

[10] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and
A. Farhadi, “Target-driven visual navigation in indoor scenes using
deep reinforcement learning,” arXiv, vol. 1609.05143, 2016.

[11] A. Mousavian, A. Toshev, M. Fiser, J. Kosecka, and J. Davidson,
“Visual representations for semantic target driven navigation,” arXiv,
vol. 1805.06066, 2018.

[12] Y. Wu, Y. Wu, A. Tamar, S. Russell, G. Gkioxari, and Y. Tian,
“Bayesian relational memory for semantic visual navigation,” in ICCV,
2019, pp. 2769–2779.

[13] N. Savinov, A. Dosovitskiy, and V. Koltun, “Semi-parametric topolog-
ical memory for navigation,” in ICLR, 2018.

[14] S. Zhang, X. Song, Y. Bai, W. Li, Y. Chu, and S. Jiang,
“Hierarchical object-to-zone graph for object navigation,” preprint
arXiv:2109.02066, 2021.

[15] N. Sünderhauf, “Where are the keys?–learning object-centric naviga-
tion policies on semantic maps with graph convolutional networks,”
preprint arXiv:1909.07376, 2019.

[16] H. Du, X. Yu, and L. Zheng, “Learning object relation graph and
tentative policy for visual navigation,” arXiv, vol. 2007.11018, 2020.

[17] Y. Qiu, A. Pal, and H. I. Christensen, “Learning hierarchical relation-
ships for object-goal navigation,” arXiv, vol. 2003.06749, 2020.

[18] X. Hu, Z. Wu, K. Lv, S. Wang, and Y. Lin, “Agent-centric relation
graph for object visual navigation,” arXiv, vol. abs/2111.14422, 2021.

[19] D. Batra, A. Gokaslan, A. Kembhavi, O. Maksymets, R. Mot-
taghi, M. Savva, A. Toshev, and E. Wijmans, “Objectnav revisited:
On evaluation of embodied agents navigating to objects,” preprint
arXiv:2006.13171, 2020.

[20] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation
of word representations in vector space,” preprint arXiv:1301.3781,
2013.

[21] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” preprint arXiv:1609.02907, 2016.

[22] G. Kumar, N. S. Shankar, H. Didwania, R. Roychoudhury,
B. Bhowmick, and K. M. Krishna, “Gcexp: Goal-conditioned explo-
ration for object goal navigation,” in RO-MAN, 2021, pp. 123–130.

[23] D. S. Chaplot, D. Gandhi, A. Gupta, and R. Salakhutdinov, “Object
goal navigation using goal-oriented semantic exploration,” in NeurIPS,
2020.

	Introduction
	Related Work
	Problem Specification and Methodology
	Generating Valid Trajectories
	Generation of Spatial Relational Graph
	Encoding Object-region Embeddings in GCN
	Visible Region Estimation using SRG
	Identifying Next Region to Explore
	Action Controller

	EXPERIMENTAL SETUP
	EXPERIMENTAL RESULTS
	Conclusion
	References

