
A Keypoint-based Object Representation for
Generating Task-specific Grasps

Mark Robson∗ and Mohan Sridharan†
Intelligent Robotics Lab

School of Computer Science
University of Birmingham, UK

Email: ∗mxr880@student.bham.ac.uk, †m.sridharan@bham.ac.uk

Abstract—This paper describes a method for generating robot
grasps by jointly considering stability and other task and object-
specific constraints. We introduce a three-level representation
that is acquired for each object class from a small number of
exemplars of objects, tasks, and relevant grasps. The represen-
tation encodes task-specific knowledge for each object class as
a relationship between a keypoint skeleton and suitable grasp
points that is preserved despite intra-class variations in scale
and orientation. The learned models are queried at run time
by a simple sampling-based method to guide the generation of
grasps that balance task and stability constraints. We ground
and evaluate our method in the context of a Franka Emika
Panda robot assisting a human in picking tabletop objects for
which the robot does not have prior CAD models. Experimental
results demonstrate that in comparison with a baseline method
that only focuses on stability, our method is able to provide
suitable grasps for different tasks.

Index Terms—Robot grasping, visual object representation,
learning and adaptive systems.

I. INTRODUCTION

Consider the robot manipulator in Fig 1 performing dif-
ferent tasks that involve interacting with relevant domain
objects. Grasping an object involves contact between the
fingers of the robot’s hand and the object [1]. State of the art
algorithms consider stability as a key criterion in computing
suitable grasp locations on the object for the robot’s fingers.
However, not all stable grasps are suitable for the subsequent
manipulation tasks. For example, if the task is to hand a
screwdriver to a human collaborator, one would expect the
robot to grasp the metallic part of the screwdriver close to
the sharp tip. This is not a good location in terms of stability
or when the robot has to use the tool to tighten a screw. In a
similar manner, the suitable location to grasp a cup depends
on whether the task is to hand it to a human or to pour its
contents into a bowl.

Existing work on specifying task-specific constraints and
regions for grasping objects use data-driven methods to learn
from simulation trials or to define task-specific approach
vectors [2]. There is also work on associating a semantic
keypoint skeleton to an object class to identify grasp poses
for specific object classes [3], [4]. However, existing methods
require many labelled examples and do not encode constraints
that jointly consider different tasks, objects, and grasp poses.
In this paper, we present an approach that seeks to address
this limitation by making the following contributions:

(a) Robot set up (b) Object Set

Fig. 1: Franka manipulator robot and some objects used in the
experiments. Where to grasp an object is dependent on task-
specific and object-specific constraints in addition to stability.

• A three-level representation of objects in terms of class
membership, a semantic skeleton of keypoints, and a
point cloud distribution.

• A method for encoding knowledge of grasps in the
form of task and object-specific constraints learned
from a single exemplar object and modelled to preserve
the relationship between keypoints and grasp locations
despite changes in scale and orientation.

• A simple sampling-based method that queries the
learned models at run time to generate grasps which
balance the task and stability constraints.

We implement and evaluate our approach in the context of a
Franka manipulator assisting humans by grasping objects on
a tabletop. We show experimentally that in comparison with a
baseline method that focuses on stability, our formulation also
considers other task-specific criteria and provides grasps that
are robust to intra-class variations in shape and appearance.

II. RELATED WORK

Robot grasping refers to the use of a gripper with two or
more fingers to grasp an object to perform tasks of interest.
State of the art methods for achieving stable grasps have
transitioned in the last decade from analytic methods to data-
driven methods [5]. Methods using deep neural networks and
RGBD images have reported high success rates for grasping
novel objects with a two finger parallel gripper [6]–[9].

Since grippers with multiple degrees of freedom pose a
high-dimensional search problem, dimensionality reduction
methods have been explored to identify good grasps that tend

to cluster in this search space [10], [11]. Generative methods
have also been developed to sample the space of grasp
candidates, with some methods initialising grasp candidates
based on previously successful grasps before optimising for
hand configuration and finger placement [12]–[15]. It is
difficult to compare these methods because grasp success
measures are often task and domain dependent.

The choice of a good grasp is essential for the success
of automated robot grasping and manipulation [16], [17].
Considering task requirements may result in a less optimal
grasp in terms of stability but it may increase the ability
to manipulate the object as required by the task [18], [19].
Knowledge of manipulation trajectory can also be used to
impose checks on kinematic feasibility of grasps at the start
and end poses, and reduce the grasp space considerably [20].

Methods developed to specify task-specific constraints and
regions suitable for grasping an object learn these regions
from simulation trials [21]–[23], from large numbers of
labelled images [24], or as an abstract function that defines
task-specific approach vectors for object classes [2], [25].
Other work has explored the construction of a semantic
keypoint skeleton to an object class [4], [26]. They use the
skeleton to parameterize a single grasp pose for an object
class using the keypoint skeleton for motion planning and
control, but do not build a multi-level object representation,
and do not explicitly model or reason about constraints that
affect grasp quality. Our method, on the other hand, leverages
a keypoint representation to encode task knowledge acquired
from a very small set of exemplars in a model that jointly
considers task- and object class-specific constraints to score
grasp candidates; it is compatible with any sampling-based
grasp generation method.

III. PROBLEM FORMULATION AND APPROACH

This section describes our three-level representation of
objects (Section III-A), which guides the selection of grasps
(Section III-B), the learning of object class- and task-specific
constraints for grasp generation in addition to grasp stability
(Section III-C), and the sampling-based approach for the
generation of grasps (Section III-D).

A. Object Representation

Our three-level object representation is based on a single
exemplar for each object class. At the top level, any object is
an instance of a particular class (e.g., cup or hammer). The
lowest level is a point cloud representation of an object’s
surfaces, encoding the geometric data (e.g., shape, size)
necessary for planning grasps. The intermediate level is a
small set of keypoints that concisely define the object’s pose
while allowing for in-class variations in shape and size.

The point cloud representation of an object is based on
the probabilistic signed distance function (pSDF) [27], which
allows multiple views of an object to be combined and
models measurement uncertainty. A voxel grid is used to
capture the signed distance to the surface from the center
of each voxel. Distance data is only stored for voxels close

Fig. 2: Keypoint representation: (a) illustrates in-class vari-
ation; (b) shows coordinate systems mapped to keypoints,
a domain expert associates good grasps for fastening task
with points in dashed region; (c) vectors between relevant
keypoints and good surface points.

to the measured surface using a truncation threshold. Instead
of modeling distance uncertainty as a weight [28], surface
distance is modeled as a random variable with a normal dis-
tribution N (dsdf , σ

2
sdf). The effect of any new measurement

(dsens, σ2
sens) at step k is merged using a Gaussian update:

dk =
dk−1.σ

2
sens,k + dsens,k.σ

2
k−1

σ2
k−1 + σ2

sens,k

(1)

σ2
k =

σ2
k−1.σ

2
sens,k

σ2
k−1 + σ2

sens,k

where the measurement variance (σ2
sens) is computed exper-

imentally (see Equation 9). We implement this encoding by
revising the Open3D library [29]. A uniformly-sampled point
cloud, with an uncertainty measure at each point, is then
extracted from the pSDF representation using the marching
cubes algorithm [30].

Our intermediate representation is a lightweight set of
semantic keypoints that builds on existing work [4], [26]
to model large in-class variations—Figure 2(b) illustrates
this for screwdrivers—and provide an object pose estimate
in terms of the spatial relationships between keypoints.
In our implementation, 2D keypoints are detected in each
colour image using a stacked hourglass network originally
developed for human pose estimation [31]. We triangulate
the 3D positions of keypoints from multiple views, with
links between the keypoints forming a skeleton. This skeleton
is used to guide grasp generation and (as we show in
Section IV-B) to transfer knowledge for grasping across
similar objects when used to perform similar tasks.

B. Guiding Grasp Selection

Our objective is to identify good grasps while consid-
ering stability, measurement uncertainty, and task-specific
constraints. There is existing work on considering different
criteria to design and evaluate grasps with different grippers,
e.g., estimating the marginal success probability P (S) of
a proposed grasp g, given object state x, as the sum of a
weighted set of probabilistic criteria Pi [32]:

P (S|x, g) =
n∑
i=1

wi.Pi,

n∑
i=1

wi = 1 (2)

where wi are the weights. We modify the original criteria
to incorporate task-specific scoring functions and focus on
factors relevant to any dexterous gripper. Additional functions
and factors can be added to modify grasping behaviour for
specific gripper designs or tasks.

One factor of interest is a good contact angle α between
gripper finger contact vector and the surface normal of the
contact region on the object. We estimate the probability of
good contacts for grasps with any number k of finger tips:

P1 =


k∑
i=1

1− 2
θ |π − αi|
k

,
∏k
i=1 zi > 0

0, else

 (3)

zi =

{
1, |π − αi| < θ/2
0, else

}
where θ is the static friction cone’s maximum contact angle,
which is set to 0.54 radians in our experiments.

The next factor is based on the insight that grasp success
probability is dependent on the extent to which an object’s
surface is recovered from observed data. Poor surface recov-
ery makes it difficult to estimate the surface location, and
a surface with a high degree of curvature or variations may
not provide a good contact region. The probability of a set
of surface points being good contact points is given by:

P2 =


k∏
i=1

(1− ci
cmax

).(1− 3ui), ci < cmax

0, else

 (4)

where u is a measure of the surface variation at each
point based on the eigenvalue decomposition of points in
its neighbourhood; u = 0 if all points lie on a plane and
u = 1/3 if points are isotropically distributed [33]. Also, c
is an estimate of the uncertainty in the location of the point,
as obtained from the pSDF; cmax is the maximum value of
this uncertainty, which is experimentally set to be 5mm.

Finally, each task and object-specific constraint is encoded
as a function that assigns a score ∈ [0, 1] to each recovered
surface point describing its likelihood of being a finger tip
location for grasps that meet this constraint. The overall
probability for this factor is then the product of the values
of probabilistic functions for individual constraints:

P3 =
∏
j

Tj (5)

In this paper, we illustrate this factor by considering one
constraint per combination of task and object. Next, we
describe these probabilistic functions.

C. Task and Object Specific Constraints

While defining the functions that encode task and object-
specific constraints about where to grasp an object, the
objective is to model and preserve the relationship between
keypoints and suitable grasp points for specific tasks across
changes in factors such as scale and orientation.

Specifically, we extend the keypoint representation to
include a class-specific Euclidean coordinate system at each
keypoint—see Figure 2(b). Consider a pair of keypoints on
an object for which an exemplar grasp is available in the
form of recovered grasp points on the object’s surface for any
particular task. The keypoints are linked by a line segment
of length S. The origin of the Euclidean coordinate system
would be at one keypoint (the reference) with the x-axis
aligned with the link. The orientation of the y-axis and z-axis
axes are defined by the plane formed by these two keypoints
and one other keypoint, and the normal to the plane; if the
object model has less than three keypoints, the coordinate
system is based on eigenvectors of the object’s point cloud.

Given the axes at a keypoint, unit directional vectors
〈x, y, z〉 = 1 are computed to each recovered surface point of
the exemplar grasp. These vectors are scaled onto a sphere of
radius S and converted into spherical coordinates θ, φ with:

S2 = x2+y2 + z2 (6)

tan θ = y/x, φ = arccos

(
z

S

)
where θ ∈ [−2π, 2π] and φ ∈ [−π, π]. The scaled vectors
are used to construct a Gaussian Mixture Model (GMM)
for each keypoint using an existing software implementation
of Dirichlet Process inference and Expectation Maximisa-
tion [34]. Our representation based on spherical coordinates
provides some robustness to scaling and orientation changes
in new object instances of the corresponding class. At run
time, point cloud points on the surface of an object are
assigned a probabilistic score based on the GMM models of
the “relevant” keypoints, i.e., those that are on the nearest link
(based on Euclidean distance). The object and task-specific
probability value Ti for each surface point is the product of
the probabilities from the relevant keypoints.

D. Sampling and Generating Grasps

We developed a sampling-based grasp generation algo-
rithm. For any target object, RGBD images collected from
four predefined poses are combined using the pSDF method
described in Section III-A to obtain the object’s point cloud,
with the measurement error estimated as described in Sec-
tion IV-A. A set of 45 starting positions are sampled on
the object’s recovered surface (i.e., point cloud) with sample
probability Ti (computed as described above). Note that
the baseline algorithm used for experimental evaluation (see
Section IV-A) does not consider task knowledge, i.e., all
points are equally likely to be sampled.

For each sampled point, the robot virtually simulates
the placement of a fingertip aligned to oppose the surface
normal at the point. The gripper is positioned so that the
body of the gripper is located above the object at rotations
of 0◦ and +/-20◦ from the plane formed by the surface
normal (at the sampled point) and the upward vector of
the robot’s base coordinate system. We use the Eigengrasp
approach [10] to close the gripper around the object until the

other fingers contact the object’s surface. The contact points
of the grasp candidates which successfully close to form
additional contacts with the object, and which do not collide
with the table plane, are assigned scores using the weighted
criteria described in Section III-B. Of the 135 samples, the
best scoring grasp candidate in the virtual experiments is
further optimised locally in three iterations with initial offsets
in grasp rotation and position of 15◦ and 5mm, which are
halved in each iteration. Only the best (optimised) grasp is
executed on the robot. Note that this method is applicable to
different gripper designs with different number of fingers.

IV. EXPERIMENTAL SETUP AND RESULTS

Next, we describe the experimental setup and results.

A. Experimental Setup

Physical experiments were conducted using a Franka
Panda robot manipulator with low-cost Intel Realsense D415
cameras mounted on the end effector and as shown in
Figure 1. Objects were placed on the gray tray to ensure
it was within the robot’s workspace and field of view. We
segmented the object from the background in each image
using a pretrained Detectron2 segmentation network [35].
The masked RGBD images were passed through the pSDF
algorithm to obtain a point cloud.

a) Estimating measurement noise: The pSDF algorithm
requires a model of measurement noise for each pixel in
the input images. The measurement update variance σ2

sens in
Equation 1 is estimated as the sum of two known sources of
measurement error for the Realsense cameras, which we set
to an X resolution Xres of 1280 pixels and a horizontal field
of view (HFOV) of 65 degrees. The first source is the RMS
error Edrms of depth measurement, which is the noise for a
localised plane at a given depth d in mm [36]:

Edrms =
0.08d2

55f
(7)

where f is the camera focal length in pixels:

f =
0.5Xres

tan (HFOV2)
(8)

The second source of error is based on the angle between the
ray from the camera and the surface, measured as θ ∈ [0, π]
radians. This error Eθ (mm) is estimated as described in [37]:

Eθ =
θ

(π2 − θ)2
(9)

b) Object classes and tasks: We considered six object
classes for our physical robot experiments: cup, hammer,
screwdriver, brush, dustpan, and spoon. Figure 1 shows the
specific instances of each class used in our experiments.
Object rotation was varied to create additional instances of
each class, but cups were always placed with the opening
facing upwards to allow the robot to grasp the handle.

For each class, we defined semantic keypoints (e.g., han-
dle, top, bottom), exemplar grasps, and specific tasks. For

object classes with a “handle” region, a grasp is suitable for
the “handover” task if it leaves the handle unobstructed to
allow another agent to grasp it when the object is presented.
Each object class also supports a “tool use” or “pour” task.
A grasp is suitable for the “pour” task if it leaves the outlet
unobstructed to pour the liquid out. A grasp is suitable for
“tool use” if it leaves unobstructed the region of the object
that interacts with the environment when the tool is used, e.g.,
a hammer’s head. These grasps should also target the handle
that is often designed to maximise performance when per-
forming associated tasks. Figures 3 and 4 show examples of
learned models for different tasks, along with the keypoints,
for two object classes. Note that certain circumstances may
require us to identify grasps for a sequence of tasks; we leave
this as a direction for further research. We experimentally
evaluated the following hypothesis:

H1 Our method provides better grasps than baseline meth-
ods by balancing stability constraints with task/object-
specific constraints;

H2 Our object representation supports reuse of the learned
task-specific object models for other similar objects
being used to perform similar tasks; and

H3 Our method provides robustness to variations in size,
shape, scale, and orientation within each object class.

Hypotheses H1 and H2 were evaluated through robot trials,
using our method to pick different objects. We compared our
method with a baseline method that does not encode task-
specific knowledge, i.e., it considers P1 (Equation 3) and
P2 (Equation 4) but not P3 (Equation 5) in Section III-B;
the relative weights in Equation 2 were tuned experimentally.
Hypothesis H3 was evaluated qualitatively and quantitatively
by exploring the use of task models’ on images depicting a
range of in-class variations. In each trial, candidate grasps
were generated as described in Section III-D. The robot
executed the best grasp found and attempted to lift the
object 10cm from the table and hold it for 10 seconds; if
it succeeded, the grasp was recorded as being successful and
stable. Suitability of each stable grasp to any given task was
assessed visually against the given exemplars.

B. Experimental Results

Figures 3 and 4 illustrate the use of some task models from
two object classes (screwdriver, cup), including the scoring
of surface points of five previously unseen objects from these
classes. We show just the point cloud data in these figures for
ease of explanation; during run time, our algorithm processed
real-world scenes containing the objects of interest.

In Figure 3, we can see that the learned models of task and
object-specific constraints scale well to new object instances
despite variations in the shape of the handle or length of
the screwdriver shaft. The nonlinear shapes of the cups is
modelled and considered when evaluating the suitability of
new surface points as grasp points in Figure 4, with different
sets of points being preferred for the the handover task
and the pour task. These qualitative results demonstrate our

Fig. 3: Some instances of “screwdriver” class. Top row shows mesh model, middle row corresponds to tool use task, and
bottom row to handover task. In first column, blue points are “good” grasp points used for training the models, green points
are keypoints. Subsequent columns show score for each point on surface of point cloud using the colour scale on the right.
This class has three semantic keypoints: handle start, handle end, and tip.

Fig. 4: Some instances of “cup” class. Top row shows mesh model, middle row corresponds to pour task, bottom row to
handover task. In first column blue points are “good” grasp points used for training the models, green points are keypoints.
Subsequent columns show score for each point on the surface of point cloud using the colour scale on the right. This class
has three semantic keypoints: top, bottom, and handle.

TABLE I: Summary of results from 450 trials split across 5 object classes. For each class, 30 practical trials spread evenly
across three example objects (see Figure 1b) were conducted for each of three task-specific models (stability, handover, tool
use). In each case, the “Stability” column indicates the proportion of successful grasps while the “Handover” and “Tool use”
columns present the proportion of stable grasps which met the associated task criteria. Bold-faced numbers along each row
indicate the best scores for the corresponding object class for each of the three tasks.

Object Class
Baseline Model Handover Model Tool Use Model

Stability Handover Tool Use Stability Handover Tool Use Stability Handover Tool Use
Brush 56.7% 52.9% 35.3% 83.3% 100.0% 0.0% 90.0% 0.0% 100.0%
Cup 80.0% 83.3% 12.5% 80.0% 95.8% 4.2% 76.7% 0.0% 82.6%
Dustpan 86.7% 100.0% 0.0% 96.7% 100.0% 0.0% 96.7% 0.0% 100.0%
Screwdriver 83.3% 12.0% 72.0% 80.0% 91.7% 0.0% 83.3% 0.0% 96.0%
Spoon 70.0% 52.4% 47.6% 90.0% 88.9% 11.1% 90.0% 0.0% 100.0%

method’s ability to use models learned from a small set of
exemplars to evaluate grasps for different tasks and guide
grasping towards locations favoured by the domain expert.

To evaluate H1-H3, we completed a total of 530 grasp
trials on the physical robot platform. Table I summarizes
results for all five classes. The results for the object class
Hammer are shown separately in Figure 5 that focuses on
the stability criterion to highlight some interesting results that
are discussed further below.

In Table I, bold-faced numbers along each row indicate
the best scores for the corresponding object class for each of
the three tasks. For example, for the class cup, the ‘Baseline’
and ‘Handover’ model were equally good for providing good
stability, while the ‘Handover’ model and ‘Tool use’ model
(i.e., the task-specific models) provide the best performance

for the corresponding tasks. Our experiments showed that
for some object classes the baseline algorithm is more likely
to produce grasps which suit one task, e.g., handover for
cups and tool use for screwdrivers. This result is expected as
these tasks require grasps which place the fingers on larger,
lower curvature areas of the model that better fit the stability
criteria optimised by the baseline approach. Results also
indicated that including task and object-specific information
in the learned models for different classes steered grasps
towards regions that better suit the task under consideration
and produced more successful grasps.

To evaluate H2, we focused on the brush and dustpan
object classes, which have a “handle” configuration similar to
that of the screwdriver; we modelled this configuration with
a keypoint at each end. In our trials for these new object

Fig. 5: Trials in the hammer class focusing on stability; trials
split 20:10:10 across the three hammer objects for each of
the baseline and keypoint models for a total of 80 trials.

classes, we applied the same “tool use” model which had
been trained for the screwdriver. Our results show that this
produced grasps with both high stability and task suitability
illustrating that our method can be used to translate learned
task knowledge to other similar object classes when they are
used to perform similar functions.

The results also supported H3. For example, experiments
in the screwdriver class showed adaption to scaling changes
by stretching the learned models based on keypoint positions
to handle length (size) differences. Also, the trials for the
cup class illustrated the ability of our approach to handle
intra-class variations in appearance and shape, with each
cup having different height, diameter, thickness, and handle
design. Figures 3 and 4 show some variations in these
two classes in the point cloud representation; additional
qualitative results are shown in Figure 6.

For some objects there is a small drop in stability with
our approach when our task-specific models result in the
robot targeting regions that the baseline algorithm is less
likely to target, such as when the robot attempts to grasp
the cup handle for pouring. This is expected as the handle
regions typically have reduced low curvature surface area
for the gripper finger tips to contact. The drop in stability is
balanced by the other constraints in grasp scoring resulting in
grasps with an acceptable stability which also meet the task
requirements. As an additional test, we added a 6mm thick
strip of foam to the handle of the cup with the thinnest handle
and repeated an additional ten trials with the pour task model.
With a larger surface area for grasping, the rate of successful
grasps increased from 70% to 90% with our approach, and
the proportion of these grasps that met the criteria for the
pour task increased from 71% to 88%. Overall, these results
support hypotheses H1-H3.

The results in Figure 5 for the hammer class highlight
some issues of interest. Many grasp algorithms in literature
aim for the centre of objects to increase the likelihood of a
stable grasp. In the case of a hammer this heuristic is flawed

as the functional design of a hammer requires concentration
of mass at the head end. With the baseline model and the
parallel gripper, it was difficult to find a stable grasp to lift a
hammer without the hammer rotating in the grasp; the robot
was not able to successfully grasp, lift, and hold the hammer
for the required time in many trials. The use of our learned
models showed a significant improvement in stability over
the baseline method because our approach learned to guide
grasping away from the handle and towards the head end of
the hammer shaft for stability (and handover). The functional
distribution of weight and our choice of gripper make it
difficult to run trials successfully for a tool use task even
with our learned model; the robot often selects the correct
grasp points on the handle but is unable to stably hold the
object for the required time. This can be fixed by using a
different gripper (e.g., more fingers that wrap around the the
handle), which we will explore further in future work.

V. CONCLUSIONS AND FUTURE WORK

We presented an approach for considering task and object-
specific constraints while generating suitable grasp points
on the target object’s surface for robot manipulation. Unlike
existing methods that focus on stability as the key criterion,
our approach trades off stability with task-specific constraints
on suitable grasp locations. We introduced a three-level repre-
sentation for objects including class membership, point cloud
data, and semantic keypoints. We also learn a model that
preserves the relationship between keypoints and grasp points
for specific tasks despite changes in factors such as scale and
orientation of objects. Experimental evaluation on a Franka
robot manipulator with a parallel gripper, with a baseline
that does not consider the task-specific criteria, indicates
the ability to learn from a single (or small number of)
exemplar(s) provided by the designer, achieving the desired
task-specific trade off and producing successful grasps of
previously unseen instances of the object classes.

Our research opens up many directions for further work
that address current limitations. First, we have explored the
trade off of some task-specific criteria with stability; future
work will include additional object classes and criteria, e.g.,
many task-oriented grasps align with the object’s principal
axes and a measure of this alignment can be use to optimise
grasp locations. Second, we currently do not consider the
approach vector of the hand in our grasp generation model.
One extension would be to include a model of approach
vectors to relevant semantic keypoints to learn task-specific
grasp approach vectors. Third, the work described in this
paper built an object representation based on semantic key-
points that provided some robustness to changes in scale and
orientation. Our experiments also provided promising results
for the transfer of knowledge (models) learned for one object
class to other classes that share similar semantic regions,
e.g., handles. We will explore this transfer of knowledge in
more detail in future work, using many other object classes.
Finally, it would also be interesting to reduce the extent
of involvement of a human expert by exploring methods

Fig. 6: Illustrative examples of qualitative results. The first seven rows show use of task-specific models to guide grasping
despite intra-class variations in scale and orientation: first column shows keypoints; second shows heatmap of good grasp
locations (lighter colors are better); and third shows preferred grasp. Rows 1-5 show use of same task-specific model (of
screwdriver class) for the same task (tool use) across different object classes. Rows 6 and 7 show the “handover” task
model for the dustpan class and the “pour” model for the cup class respectively. Final row shows some failure cases: first
image shows incorrect keypoint detection; second shows an instance where the object moved during imaging; and third is
an example of a point cloud with substantial noise, potentially leading to incorrect grasp placement.

that automatically segment and process image sequences
(i.e., videos) to learn semantic keypoints and grasp regions
for additional objects. The overall objective would be to
smoothly trade off different criteria to result in safe and
successful grasps for a wide range of object classes and tasks.

ACKNOWLEDGMENT
This work was supported in part by the Manufactur-

ing Technology Centre and and the UK EPSRC award
EP/S032487/1. All conclusions are those of the authors alone.

REFERENCES

[1] A. M. Okamura, N. Smaby, and M. R. Cutkosky, “An Overview of
Dexterous Manipulation,” in Proceedings of the 2000 IEEE Interna-
tional Conference on Robotics & Automation, no. April, 2000, pp.
255–262.

[2] M. Kokic, J. A. Stork, J. A. Haustein, and D. Kragic, “Affordance
detection for task-specific grasping using deep learning,” in IEEE-RAS
International Conference on Humanoid Robots, no. November, 2017,
pp. 91–98.

[3] Z. Luo, W. Xue, J. Chae, and G. Fu, “Skp: Semantic 3d keypoint
detection for category-level robotic manipulation,” IEEE Robotics and
Automation Letters, 2022.

[4] L. Manuelli, W. Gao, P. Florence, and R. Tedrake, “kPAM:
KeyPoint Affordances for Category-Level Robotic Manipulation,”
in International Symposium on Robotics Research (ISRR),, Hanoi,
Vietnam, 2019. [Online]. Available: http://arxiv.org/abs/1903.06684

[5] J. Bohg, A. Morales, T. Asfour, and D. Kragic, “Data-driven grasp
synthesis-A survey,” IEEE Transactions on Robotics, vol. 30, no. 2,
pp. 289–309, 2014.

[6] D. Morrison, P. Corke, and J. Leitner, “Closing the Loop for Robotic
Grasping: A Real-time, Generative Grasp Synthesis Approach,”
in Robotics: Science and Systems, 2018. [Online]. Available:
http://arxiv.org/abs/1804.05172

[7] Y. Song, J. Wen, D. Liu, and C. Yu, “Deep robotic grasping prediction
with hierarchical rgb-d fusion,” International Journal of Control,
Automation and Systems, vol. 20, pp. 243–254, 2022.

[8] Y. Yang, Y. Lui, H. Liang, X. Lou, and C. Choi, “Attribute-based
robotic grasping with one-grasp adaptation,” in 2021 IEEE Interna-
tional Conference on Robotics and Automation (ICRA).

[9] A. Zeng, S. Song, K.-T. Yu, E. Donlon, F. R. Hogan, M. Bauza,
D. Ma, O. Taylor, M. Liu, E. Romo, N. Fazeli, F. Alet, N. C.
Dafle, R. Holladay, I. Morona, P. Q. Nair, D. Green, I. Taylor,
W. Liu, T. Funkhouser, and A. Rodriguez, “Robotic Pick-and-
Place of Novel Objects in Clutter with Multi-Affordance Grasping
and Cross-Domain Image Matching,” 2017. [Online]. Available:
http://arxiv.org/abs/1710.01330

[10] M. Ciocarlie, C. Goldfeder, and P. K. Allen, “Dexterous Grasping
via Eigengrasps: A Low-dimensional Approach to a High-complexity
Problem,” Robotics Science and Systems, 2007.

[11] Z. Deng, B. Fang, B. He, and J. Zhang, “An adaptive planning
framework for dexterous robotic grasping with grasp type detection,”
Robotics and Autonomous Systems, vol. 140, 2021. [Online].
Available: https://doi.org/10.1016/j.robot.2021.103727

[12] E. Arruda, J. Wyatt, and M. Kopicki, “Active vision for dexterous
grasping of novel objects,” in IEEE International Conference on
Intelligent Robots and Systems, 2016, pp. 2881–2888.

[13] E. Arruda, C. Zito, M. Sridharan, M. Kopicki, and J. L. Wyatt,
“Generative grasp synthesis from demonstration using parametric
mixtures,” in RSS workshop on Task-Informed Grasping, 2019.
[Online]. Available: http://arxiv.org/abs/1906.11548

[14] M. Kopicki, R. Detry, M. Adjigble, R. Stolkin, A. Leonardis, and J. L.
Wyatt, “One-shot learning and generation of dexterous grasps for novel
objects,” The International Journal of Robotics Research, vol. 35, no. 8,
pp. 959–976, jul 2016.

[15] Q. Lu and T. Hermans, “Modeling Grasp Type Improves Learning-
Based Grasp Planning,” IEEE Robotics and Automation Letters, vol.
Pre-print, pp. 1–8, 2019.

[16] A. Holladay, J. Barry, L. P. Kaelbling, and T. Lozano-Perez, “Object
placement as inverse motion planning,” Proceedings - IEEE Interna-
tional Conference on Robotics and Automation, pp. 3715–3721, 2013.

[17] Z. Li and S. S. Sastry, “Task-Oriented Optimal Grasping by Multi-
fingered Robot Hands,” IEEE Journal on Robotics and Automation,
vol. 4, no. 1, pp. 32–44, 1988.

[18] A. M. Ghalamzan E., N. Mavrakis, M. Kopicki, R. Stolkin, and
A. Leonardis, “Task-relevant grasp selection: A joint solution to
planning grasps and manipulative motion trajectories,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, oct 2016, pp. 907–914.

[19] F. Zacharias, Knowledge Representations for Planning Manipulation
Tasks. Springer, 2012, vol. 16.

[20] A. H. Quispe, H. B. Amor, H. Christensen, and M. Stilman, “Grasping
for a Purpose: Using Task Goals for Efficient Manipulation Planning,”
2016. [Online]. Available: http://arxiv.org/abs/1603.04338

[21] D. Berenson, “Constrained Manipulation Planning,” Ph.D. dissertation,
Carnegie Mellon Univeristy, Pittsburgh, Pennsylvania, 2011.

[22] Y. Laili, Z. Chen, L. Ren, X. Wang, and M. J. Deen, “Custom grasping:
A region-based robotic grasping detection method in industrial cyber-
physical systems,” IEEE Transactions on Automation Science and
Engineering, 2022.

[23] B. Wen, W. Lian, K. Bekris, and S. Schaal, “Catgrasp: Learning
category-level task-relevant grasping in clutter from simulation,” in
ICRA 2022, 2022.

[24] K. Qian, X. Jing, Y. Duan, B. Zhou, F. Fang, J. Xia, and X. Ma,
“Grasp pose detection with affordnace-based task constraint learning in
single-view point clouds,” Journal of Intelligent and Robotic Systems,
pp. 145–163, 2020.

[25] D. Song, C. H. Ek, K. Huebner, and D. Kragic, “Task-Based Robot
Grasp Planning Using Probabilistic Inference,” IEEE Transactions on
Robotics, vol. 31, no. 3, pp. 546–561, 2015.

[26] W. Gao and R. Tedrake, “kpam 2.0: Feedback control for
category-level robotic manipulation,” IEEE Robotics Autom. Lett.,
vol. 6, no. 2, pp. 2962–2969, 2021. [Online]. Available:
https://doi.org/10.1109/LRA.2021.3062315

[27] V. Dietrich, D. Chen, K. M. Wurm, G. V. Wichert, and P. Ennen,
“Probabilistic multi-sensor fusion based on signed distance functions,”
in Proceedings - IEEE International Conference on Robotics and
Automation, vol. 2016-June, 2016, pp. 1873–1878.

[28] B. Curless and M. Levoy, “A volumetric method for building complex
models from range images,” Proceedings of the 23rd annual conference
on Computer graphics and interactive techniques - SIGGRAPH ’96,
pp. 303–312, 1996.

[29] Q.-Y. Zhou, J. Park, and V. Koltun, “Open3D: A modern library for
3D data processing,” arXiv:1801.09847, 2018.

[30] W. E. Lorensen and H. E. Cline, “Marching cubes: A high
resolution 3d surface construction algorithm,” SIGGRAPH Comput.
Graph., vol. 21, no. 4, p. 163–169, Aug. 1987. [Online]. Available:
https://doi.org/10.1145/37402.37422

[31] A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks for
human pose estimation,” Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 9912 LNCS, pp. 483–499, 2016.

[32] D. Chen, V. Dietrich, Z. Liu, and G. von Wichert, “A Probabilistic
Framework for Uncertainty-Aware High-Accuracy Precision Grasping
of Unknown Objects,” Journal of Intelligent and Robotic Systems:
Theory and Applications, vol. 90, no. 1-2, pp. 19–43, 2018.

[33] M. Pauly, M. Gross, and L. P. Kobbelt, “Efficient simplification
of point-sampled surfaces,” Proceedings of the IEEE Visualization
Conference, no. Section 4, pp. 163–170, 2002.

[34] Scikit-Learn, “Gaussian mixture models,” https://scikit-
learn.org/stable/modules/mixture.html.

[35] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, “Detectron2,”
https://github.com/facebookresearch/detectron2, 2019.

[36] A. Grunnet-Jepsen, J. N. Sweetser, and J. Woodfill, “Best-known-
methods for tuning intel R© realsenseTM d400 depth cameras for best
performance,” Intel, Tech. Rep., 2019.

[37] M. S. Ahn, H. Chae, D. Noh, H. Nam, and D. Hong, “Analysis and
Noise Modeling of the Intel RealSense D435 for Mobile Robots,” 2019
16th International Conference on Ubiquitous Robots, UR 2019, pp.
707–711, 2019.

