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1 Introduction
A key challenge in climate modeling is the assessment of the impact of global climate variables on regional
weather measurements such as temperature and precipitation. This assessment is usually done by down-
scaling the output of (coarse resolution) global climate models to regional (high resolution) predictions.
There are two independent downscaling pathways: dynamic and statistical. Dynamic downscaling uses
high resolution physical models of regional climate in conjunction with global models to make regional cli-
mate predictions. Although dynamic downscaling methods account for regional geographic variations, they
are computationally expensive even on modern supercomputers. Statistical downscaling algorithms, on the
other hand, establish correlations between global model outputs and historical (decadal) weather observa-
tions, developing statistical models that translate global model output into regional weather projections.

In recent times, many machine learning (ML) algorithms and statistical methods have been used for sta-
tistical downscaling, e.g., Bayesian frameworks, artificial neural networks, support vector machines, mul-
tilayer neural networks [4, 5, 7, 9] and ensemble methods (e.g., boosting, bagging and stacking).However,
climate downscaling poses some open challenges such as: incomplete representation (and non-linearity) of
physical processes in global models, non-stationarity in the global models and (hence) the relationships with
regional observations, and computational complexity of processing large Petabyte-scale datasets. Many ex-
isting ML algorithms are limited in their ability to model complex functions with many variations that
represent deep relationships between input and output variables [1].

Research in ML shows that architectures designed to model complex functions need to be of sufficient
depth (i.e., maximum length of path from any input to any output) to prevent poor generalization [2]. Many
ML algorithms do not correspond to deep architectures, e.g., under certain assumptions, decision trees have
two levels, logistic regression has one, kernel machines have two levels and ensemble methods add one
level to the base learner [1]. Even in multilayered neural networks, learning algorithms perform poorly
when complex functions require (error) gradients to be propagated across many levels. Another limitation
of many ML algorithms is the use of local estimators, i.e., input space is partitioned into regions and the
degrees of freedom in the underlying model are used to account for variations of the target function in these
regions. As a result, algorithms such as decision-trees and local kernel machines (e.g., Gaussian processes
and manifold learning algorithms) may not generalize well for complex functions with many variations [3].

2 Technical Approach
We propose to use deep architectures [1] to learn the complex relationships between global climate model
output and observed station data. Deep architectures use multiple levels of distributed representations,
where the input pattern is represented by features that are not mutually exclusive [1]. We start by investigat-
ing the use of convolutional neural networks (CNNs), a benchmark for visual recognition tasks [6]. A CNN
is a multilayered network of neurons, a deep architecture motivated by the structure of the human visual
system. A CNN has layers of two types: convolutional and subsampling. These layers have topographic
structure, i.e., neurons or nodes have a 2D spatial position (e.g., in an image) in addition to a receptive field



that influences the response of the corresponding neurons. Neurons in each layer (other than the first layer)
are associated through weights with neurons in specific positions in a previous layer. Such a structure allows
for better propagation of the error gradients over space (and time) in a network with many layers. In addi-
tion, the hierarchical connections help capture local variability and enable modeling of prior knowledge of
the connectivity. Since learning parameters for all layers is rather challenging, unsupervised learning is used
within each layer to move parameters in the right direction [8]. Unsupervised learning also decomposes the
overall learning problem into subproblems with different levels of abstraction, e.g. features extracted in one
layer serve as input features to the next higher layer.

We hypothesized that CNNs will result in robust models of the complex relationships between global
climate model output and observed historical data because:

• The input parameters are not treated as independent variables but as arising from some spatial structure
whose topology is captured by the model.

• CNNs provide the flexibility of using a larger number of layers (e.g., in comparison to multilayered
neural nets), automatically varying the number of layers to provide better generalization.

The hypotheses are evaluated experimentally in the context of decadal climate downscaling datasets. The
results are compared with those obtained with ensemble methods and multilayered neural nets. These re-
sults will serve to quantify the uncertainty in the data sources and to (potentially) guide the use of deep
architectures for climate modeling.
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