
Reasoning with Commonsense Knowledge and Decision
Heuristics for Scalable Ad hoc Human-Agent Collaboration

Hasra Dodampegama

Mohan Sridharan

hasra.dodampegama@ed.ac.uk

m.sridharan@ed.ac.uk

Institute of Perception, Action, and Behavior, School of Informatics, University of Edinburgh

Edinburgh, UK

Abstract
AI agents in practical domains often have to cooperate with other

agents without prior coordination. State of the art approaches for

such ad hoc teamwork pose this task as a learning problem, using a

large dataset to model the action choices of other agents (or agent

types) and determine the actions of the ad hoc agent. These meth-

ods lack transparency and make it difficult to rapidly revise existing

knowledge in response to changes. We present an architecture for

ad hoc teamwork that leverages the complementary strengths of

knowledge-based and data-driven methods for reasoning and learn-

ing. For any given goal, the ad hoc agent determines its actions

through non-monotonic logical reasoning with: (a) prior domain-

specific commonsense knowledge; (b) models learned and revised

rapidly to predict the behavior of other agents; and (c) anticipated

abstract future goals based on generic knowledge of similar situ-

ations in an existing foundation model. The agent also processes

natural language descriptions and observations of other agents’

behavior, incrementally acquiring and revising knowledge in the

form of objects, actions, and axioms that govern domain dynam-

ics. We experimentally evaluate our architecture’s capabilities in

VirtualHome, a realistic simulation environment.

Keywords
Knowledge representation, Non-monotonic logical reasoning, Eco-

logical rationality, Large language model, Ad hoc teamwork

1 Introduction
Consider an assistive AI agent deployed to complete household

tasks in collaboration with a human it has not worked with before.

Figure 1 shows snapshots of a motivating scenario in which the AI

agent and a human agent are preparing breakfast and setting up a

workstation. The agents have a limited view of the environment

and do not communicate with each other. Each agent is aware

of the state of the domain, including the location of teammates

and the outcomes of their actions (e.g., change in location of an

object moved by a teammate). The agents have to reason with

different descriptions of domain knowledge and uncertainty that

include qualitative statements (“eggs are usually in the fridge") and

quantitative measures of uncertainty (“I am 90% sure I saw the eggs

on the table"), adapting their actions to changes in the domain and

teammates’ behavior. These characteristics correspond to Ad hoc
Teamwork (AHT), that requires cooperation “on the fly" without

prior coordination [26]; and arises in many practical applications

in robotics, like disaster rescue and exploration.

Figure 1: Screenshots from VirtualHome [21] showing a hu-
man (female in green top) and an assistive AI agent (male in
blue shirt) collaborating.

Research in AHT has evolved from using predefined protocols

that encoded specific actions for the ad hoc agent in specific situa-

tions, to methods that learn probabilistic or deep network models

to estimate the behavior of other agents (or agent “types") and

optimize the ad hoc agent’s actions based on a long history of prior

interactions with these agents. It is often difficult to gather such

datasets of different situations and computationally expensive to

build the necessary models. Moreover, these models lack trans-

parency, making it difficult to understand the agent’s decisions.

In a departure from existing work, our prior work developed an

AHT architecture that enabled an ad hoc agent to make decisions

based on non-monotonic logical reasoning with prior knowledge

and simple predictive models of other agents’ behavior [6]. This

paper extends our prior work to enable each ad hoc agent to:

(1) Leverage a Large Language Model (LLM) to anticipate fu-

ture tasks to be completed, adapting the LLM’s output to

domain-specific knowledge and experience;

(2) Compute and execute plans for completing current task

and preparing for upcoming tasks through non-monotonic

logical reasoning with prior knowledge and rapidly-learned

predictive models of other agents’ behavior;

(3) Incrementally revise prior knowledge using LLM-based

processing of natural language descriptions of actions and

outcomes, and decision tree induction from observations.

We use Answer Set Programming (ASP) [11] for non-monotonic

logical reasoning, GPT4o mini [20] as the LLM. We explored de-

cision making at different abstractions in household scenarios in

VirtualHome, a realistic physics-based 3D simulation environment

for multiagent collaboration [21].

2 Related Work
Researchers have explored AHT for more than two decades under

different names [18]. Initial work used predefined protocols or plays

https://orcid.org/0000-0003-2302-1501
https://orcid.org/0000-0001-9922-8969


Dodampegama et al.

that encoded specific actions for the ad hoc agent in specific sce-

narios [4]. Subsequent work used probabilistic and sampling-based

methods such as Upper Confidence bounds for Trees to determine

the ad hoc agent’s actions [1, 3, 23]. Recent approaches consid-

ered state of the art for AHT have posed it primarily as a learning

problem; a key component predicts behavior of other agents and

determines the ad hoc agent’s behavior using a long history of

prior interactions with similar agents or agent types. This includes

the use of Fitted Q Iteration to learn action selection policies from

offline data of each teammate type [2]; attention-based recurrent

neural networks for real-time adaptation [5]; graph neural net-

works to simulate interactions with other agents (agent types) and

determine the ad hoc agent’s behavior [22]; self-play to learn a

cooperation policy and candidate teammate policies [9]; sequential

and hierarchical variational auto encoders to model teammates’

changing behaviors [28]; and model-based RL methods to learn

separate models of the environment and teammates [27]. These

methods are resource-hungry, requiring substantial computation

and training examples to learn the models that are often opaque,

limiting interpretability of the system.

Frameworks based on “foundation" models are considered state

of the art for various problems in robotics and AI, and an LLM-

based framework has been developed to compute the ad hoc agent’s

actions [16]. At the same time, it is known that such models can

make arbitrary decisions in novel situations, do not plan, and are

more effective when used to generate abstract guidance that is

validated before use [14].

This paper builds on our proof-of-concept work [6] that enabled

an ad hoc agent to reason with domain knowledge and predictive

models of other agents in simple domains (e.g., soccer). Here we

consider a more complex household domain, enabling the agent to

leverage an LLM to anticipate high-level future tasks, use logics to

jointly plan for current and future tasks, and use decision-tree in-

duction and an LLM for acquiring previously unknown knowledge

from observations and natural language descriptions.

3 Architecture Description
Figure 2 outlines KAT, our architecture for an ad hoc agent collabo-

rating with other agents (human, AI). An external task generator
is used to generate a realistic, evolving routine of tasks for any

given day (e.g., “make breakfast", “set up workstation"), dispatch-

ing tasks one at a time to all agents. Each agent is unaware of the

task generation strategy and starts with no prior knowledge of the

preferences, capabilities, and strategies of other agents, although it

expects teammates to collaborate to complete assigned tasks. Each

agent receives information about the current state, and computes

and executes actions to complete task(s). The ad hoc agent deter-

mines its action by reasoning with prior knowledge (Section 3.1)

and the actions of other agents predicted by models learned from

runtime observations (Section 3.2). It also prompts an LLM with

recent observations and completed tasks to anticipate future tasks

(Section 3.3). It validates and adapts the LLM’s output based on

domain-specific knowledge, and jointly plans actions to achieve

the current and anticipated task(s). In addition, a human (agent) oc-

casionally describes an agent’s actions (e.g.,“Agent 1 cannot put the

cake in the microwave since its door is closed"). The ad hoc agent

uses these descriptions to learn previously unknown knowledge in

the form of objects, actions, and axioms. It also uses observations

obtained during plan execution to learn missing axioms based on

decision tree induction (Section 3.4). We use the example scenario

given below to describe KAT’s components for one ad hoc agent

and a human; we consider additional agents during evaluation.

Example 1. [Human-AI agent collaboration scenario]
Consider an AI agent and a human agent collaborating to complete

daily household tasks such as preparing breakfast or setting up the

home work-station (see Figure 1). The agents can interact with the

environment through actions that involve moving to places, picking

up or placing objects, switching appliances on or off, and open-

ing or closing appliances. Completing a task requires a sequence

of such actions to be computed and executed by members of the

team without any direct communication between them. The ad

hoc agent assumes that any teammate will have access to the same

information about domain state, predicts the actions the teammate

will execute over the next few steps, and computes its plan to com-

plete the current task and prepare for the upcoming task(s). Each

ad hoc agent’s prior commonsense knowledge includes relational

descriptions of some attributes of the domain, objects, and human.

It also includes axioms governing actions and changes, e.g., each

agent is aware that it cannot hold more than two objects at a time.

3.1 Knowledge Representation and Reasoning
In KAT, any given domain’s transition diagram is described using

an extension of action language AL𝑑 [10]. Action languages are

formal models of parts of natural language for describing tran-

sition diagrams of dynamic systems. The domain representation

comprises a system description D, a collection of statements of

AL𝑑 , and a history H . D has a sorted signature Σ with basic

sorts, and domain attributes (statics, fluents) and actions described

in terms of these sorts. Basic sorts in our example scenario in-

clude 𝑜𝑏 𝑗𝑒𝑐𝑡 , 𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒 , 𝑎𝑑_ℎ𝑜𝑐_𝑎𝑔𝑒𝑛𝑡 , ℎ𝑢𝑚𝑎𝑛, and 𝑠𝑡𝑒𝑝 (for tem-

poral reasoning), and are arranged hierarchically, e.g., 𝑎𝑝𝑝𝑙𝑒 is

a sub-sort of 𝑓 𝑜𝑜𝑑 , a sub-sort of 𝑔𝑟𝑎𝑠𝑝𝑎𝑏𝑙𝑒 , a sub-sort of 𝑜𝑏 𝑗𝑒𝑐𝑡 .

Actions can be 𝑎𝑔𝑒𝑛𝑡_𝑎𝑐𝑡𝑖𝑜𝑛𝑠 such as 𝑔𝑟𝑎𝑏 (𝑎𝑑_ℎ𝑜𝑐_𝑎𝑔𝑒𝑛𝑡, 𝑜𝑏 𝑗𝑒𝑐𝑡),
𝑚𝑜𝑣𝑒 (𝑎𝑑_ℎ𝑜𝑐_𝑎𝑔𝑒𝑛𝑡, 𝑙𝑜𝑎𝑐𝑡𝑖𝑜𝑛1, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛2) that are performed by

ad hoc agent; or 𝑒𝑥𝑜_𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (exogenous actions) such as 𝑒𝑥𝑜_𝑔𝑟𝑎𝑏

(𝑜𝑡ℎ𝑒𝑟_𝑎𝑔𝑒𝑛𝑡, 𝑜𝑏 𝑗𝑒𝑐𝑡), and 𝑒𝑥𝑜_𝑠𝑤𝑖𝑡𝑐ℎ_𝑜𝑛(𝑜𝑡ℎ𝑒𝑟_𝑎𝑔𝑒𝑛𝑡, 𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒)
which are performed by other agents, e.g., human or another AI

agent. Statics (fluents) are domain attributes whose values cannot

change. Fluents can be inertial, which obey inertia laws and are

changed by the ad hoc agent’s actions, e.g.,𝑎𝑡 (𝑎𝑑_ℎ𝑜𝑐_𝑎𝑔𝑒𝑛𝑡, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛)
is the ad hoc agent’s location; or defined, which do not obey inertia

laws and are not directly changed the by ad hoc agent’s actions,

e.g., 𝑎𝑔𝑒𝑛𝑡_𝑎𝑡 (𝑜𝑡ℎ𝑒𝑟_𝑎𝑔𝑒𝑛𝑡, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛) is a teammate’s location com-

puted by (say) external sensors. Given a specific Σ, the domain’s

dynamics are described using axioms such as:

𝑜𝑝𝑒𝑛(𝐴, 𝐸) causes 𝑜𝑝𝑒𝑛𝑒𝑑 (𝐸) (1a)

¬𝑎𝑡 (𝐴, 𝐿1) if 𝑎𝑡 (𝐴, 𝐿2), 𝐿1 ≠ 𝐿2 (1b)

impossible 𝑔𝑟𝑎𝑏 (𝐴,𝑂) if 𝑜𝑛(𝑂, 𝐸), ¬𝑜𝑝𝑒𝑛𝑒𝑑 (𝐸) (1c)

where Statement 1(a), a causal law, implies that an agent executing

the 𝑜𝑝𝑒𝑛(𝐴, 𝐸) action causes an appliance 𝐸 to be opened; State-

ment 1(b), a state constraint, implies that an agent (𝐴) cannot be



Reasoning with Commonsense Knowledge and Decision Heuristics for Scalable Ad hoc Human-Agent Collaboration

Figure 2: KAT leverage the complementary strengths of knowledge-based and data-driven reasoning and learning.

in two places (𝐿1, 𝐿2) at the same time; and Statement 1(c), an exe-
cutability condition, prevents the ad hoc agent(𝐴) from trying to grab

an object (𝑂) from an appliance (𝐸) that is not open. The history,

H , is a record of statements of the form 𝑜𝑏𝑠 (𝑓 𝑙𝑢𝑒𝑛𝑡, 𝑏𝑜𝑜𝑙𝑒𝑎𝑛, 𝑠𝑡𝑒𝑝),
which represent observations, and ℎ𝑝𝑑 (𝑎𝑐𝑡𝑖𝑜𝑛, 𝑠𝑡𝑒𝑝), which rep-

resent executed actions, at specific steps.H also includes default

statements that are true in the initial state.

To reason with knowledge, a script automatically constructs

program Π(D,H) in CR-Prolog, an extension to ASP that supports

consistency restoring (CR) rules. Π(D,H) contains statements

from D andH , inertia axioms, reality check axioms, closed world

assumptions for defined fluents and actions, helper relations such

as ℎ𝑜𝑙𝑑𝑠 (𝑓 𝑙𝑢𝑒𝑛𝑡, 𝑠𝑡𝑒𝑝) and 𝑜𝑐𝑐𝑢𝑟𝑠 (𝑎𝑐𝑡𝑖𝑜𝑛, 𝑠𝑡𝑒𝑝) that imply (respec-

tively) that a fluent is true and an action is part of a plan at a

particular time step, and helper axioms that define goals and guide

planning and diagnosis. ASP is based on stable model semantics,

and encodes default negation and epistemic disjunction, i.e., unlike
“¬𝑎” that states a is believed to be false, “𝑛𝑜𝑡 𝑎” only implies a is not
believed to be true, and unlike “𝑝 ∨ ¬𝑝”, “𝑝 𝑜𝑟 ¬𝑝” is not tautologous.

Each literal is true, false, or unknown, and the agent only believes

that which it is forced to believe. ASP supports non-monotonic log-

ical reasoning, i.e., the ability to revise previous conclusions, which

is essential for agents operating in complex, practical domains. The

CR rules allow the agent to make assumptions under exceptional

circumstances to recover from inconsistencies. All reasoning tasks,

i.e., planning, diagnostics, and inference are reduced to computing

answer sets of Π subject to some criteria (e.g., minimize costs) and

extracting the action sequence.

Our example scenario is complex, with many objects, contain-

ers, and locations, e.g., there can be ≈ 10
25

states with just one ad

hoc agent and one human, making it computationally expensive to

compute plans comprising multiple steps. To support scalability, we

build on prior work on a refinement-based architecture [25]. Specifi-

cally, we enable the ad hoc agent to formally define a fine-resolution

description of the domain (e.g., with regions and object parts) as a

refinement of a coarse-resolution description (e.g., with rooms and

objects), with the agent now able to reason about different aspects

of the domain as needed.



Dodampegama et al.

Table 1: Attributes used to create the behavior models of the
other agents in VirtualHome.

Description of the attribute

Immediate two previous actions of the agent

Position and orientation of the agent (x,y,z)

Objects associated with the goal

Any objects in the hand of the agent

Any objects in the hand of the remaining agents

Current and previous tasks

Flags (weekday, going to office, guests expected)

Figure 3: FF tree model of human behavior for the grab_book
action in the example scenario from the VirtualHome.

3.2 Agent Behavior Models
Since reasoning with prior domain knowledge that is incomplete

or inconsistent will lead to poor performance, KAT enables the ad

hoc agent to reason with models that predict the action choices

of other agents that are learned (and revised) rapidly. This capa-

bility is achieved by embedding the Ecological Rationality (ER)

principle [13], which is based on Herb Simon’s original definition

of Bounded Rationality [24] and the algorithmic theory of decision

heuristics [12]. ER explores decision making “in the wild", i.e., un-

der open world uncertainty with the space of possibilities not fully

known, and characterizes behavior as a joint function of internal

cognitive processes and the environment. In the absence of compre-

hensive knowledge, optimal decisions may be unknowable and not

just hard to compute. ER advocates the use of adaptive satisficing
and decision heuristics (e.g., tallying, sequencing, fast and frugal

methods) to ignore part of the information andmake decisions more

quickly, frugally, and accurately than methods with many more free

parameters. This has been shown to provide better performance

than more sophisticated methods in practical applications [12].

KAT enables the ad hoc agent to select relevant attributes and

rapidly learn (and revise) an ensemble of Fast and Frugal (FF) trees
from limited data to predict the behavior of each teammate (or team-

mate type). Each FF tree provides a binary choice for a particular

action, and the number of leaves in a tree is limited by the number

of attributes [15]. Each level of the tree contains an exit, allowing

the agent to make quick decisions. Also, these models enable the ad

hoc agents to consider the more informative attributes and stop as

soon as a rational option is found. Figure 3 shows an FF tree learned

for a human, and Table 1 shows the attributes used. The initial ver-

sion of these trees were constructed from only 1000 traces of other

agents’ actions (guided by simple hand-crafted policies) and domain

states. Consistent agreement (or disagreement) between observed

outcomes and the predictions provided by these behavior models

triggers the use of a particular model for subsequent steps, or leads

to the revision of existing model(s), allowing the ad hoc agent to

quickly adapt to changes in the domain or an agent’s behavior.

3.3 Task Anticipation
As stated earlier, there is increasing evidence that LLMs make arbi-

trary decisions in novel situations. They are more effective when

used as translators between natural and domain-specific languages,

and to generate high-level (generic) guidance that is validated ex-

ternally before being implemented by planning subroutines [14].

Building on these findings, KAT enables an ad hoc agent to use an

LLM to anticipate the high-level future task (e.g., prepare dinner)
likely to be assigned once the current task is done. In the absence

of the LLM, the agents are informed about the target tasks one at

a time. We experimentally demonstrate later that jointly planning

to complete the current task and anticipated task, e.g., fetch some

ingredients from the fridge for making lunch while fetching eggs

for cooking breakfast, improves team performance. The agent uses

a combination of prompting strategies to interact with the LLM:

• Adopting persona: A specific role or character is assigned to

guide the LLM’s responses to be more (contextually) consistent

with the assigned role.

• Few-shot prompting: The prompt includes a few examples

of the expected output in specific situations, guiding the use of

pretrained knowledge.

• Chain-of-thought (CoT): The prompt includes a step-by-step

reasoning process that can be followed to arrive at an answer,

leading to more accurate responses.

A ‘system message’ guides the LLM to adopt the persona of a house-

hold assistant and complete the partially completed task routine by

selecting potential future tasks from the available list of tasks in the

example scenario within the VirtualHome domain. With ‘few-shot’

prompting, the prompt includes two task routines randomly chosen

from previous days. Next, CoT prompting is used to explain the

reasoning behind each task in these example task routines. Such

explanations can be provided by the system designer or generated

by the LLM. The system message, few-shot examples with CoT ex-

planation, and the current query (i.e., partially completed or empty

task routine for the day) are provided as input to the LLM.

The LLM’s output to a prompt is parsed by an external validator
to check whether the tasks are feasible and in a reasonable order.

Specifically, the validator compares the LLM’s output with domain-

and task-specific contextual features extracted from existing knowl-

edge and recent observations to eliminate tasks that are invalid or

irrelevant, and reorder tasks according to the human preferences.

For example, the ad hoc agent will prioritize preparation of the

workstation over packing a lunch box when the human is working

from home. Since the list of validated tasks can change over time,

KAT enables the ad hoc agent to consider one anticipated task and

the current task as the joint goal for which a plan is to be computed.

3.4 Knowledge Acquisition
Since decisions based on incomplete or inconsistent knowledge can

lead to ineffective collaboration, KAT enables the ad hoc agent to

incrementally acquire domain knowledge and reduce ambiguity.



Reasoning with Commonsense Knowledge and Decision Heuristics for Scalable Ad hoc Human-Agent Collaboration

The agent acquires knowledge in the form of objects, actions, and

axioms using two strategies: (i) it learns from cues provided by a

human during task execution; and (ii) it explores actions in different

states, identifying and correcting inconsistencies.

Learning from human cues: When an ad hoc agent receives a

cue from the human, e.g., “Agent 1 cannot put the cake inside the

microwave since the microwave’s door is closed", it automatically

generates and sends a prompt to the LLM by combining a predefined

system message (see Figure 2) with two examples of input and

expected output, the structure of the axioms (e.g., “𝑎 causes 𝑓 if

𝑝"), and the query based on the cue (Line 1, Algorithm 1). The LLM

maps this cue into candidate axioms using their known structure.

From the LLM’s output, the agent extracts actions (verbs), objects,

and action preconditions and effects (Line 2). It then checks whether

the new objects are already defined in Π(D,H) (Line 3). Any new

objects are sent to the LLM with a second prompt (Figure 2) based

on a predefined message template, existing sorts in Π(D,H), and
the new objects (Lines 4-6). The LLM then categorizes each new

object into one or more known basic sorts. If multiple basic sort

labels are returned for an object, the lowest category in the sort

hierarchy is used to add the new object to Π(D,H) (Lines 7-8).
Next, the agent examines Π(D,H) to check whether the action

verb (e.g., grab) from the LLM’s output is already defined (Line

10). If an action that semantically matches this action verb exists

in Π(D,H), the agent retrieves it; this action may exhibit the

same behavior as the one in the cue but have a different name,

e.g., pick(A,O) instead of grab(A,O). The agent performs strictly

controlled verb synthesis with WordNet [17] to retrieve synonyms

for the action verb from the cue and checks the synonyms with the

Σ of Π(D,H). If a match is found, the action verb from the LLM

output is replaced by the existing action in Σ. Also, the sorts of the
arguments of the action extracted from the human cue may differ

from those of the action in Π(D,H), e.g., they may be subsorts or

parent sorts. If the sorts of arguments of the action in Π(D,H) are
parent sorts of those in the cue, the agent uses the existing action as

is; if not, the agent lifts the sort of the existing action’s arguments to

the new sorts and updates Π(D,H) (Lines 11-13). If the extracted
action (or its equivalent) does not exist in Π(D,H), the agent

adds it with the lowest (ie., most specific) sort labels for arguments

(Lines 14-17). This process ensures that we do not introduce the

same action multiple times with different sorts. This procedure is

also repeated for literals (Lines 18-25), and the actions and literals

are used to convert the extracted axioms to the appropriate format,

e.g., ‘𝑎 causes 𝑙 ’ converted to ‘holds(f,I+1) :- occurs(a,I)’), replacing
the ground sorts with variables and ensuring consistency between

head and body (Line 26). The axiom is then added to Π(D,H) if it
does not exist (Lines 27-28).

Learning from observations. The second strategy enables the ad

hoc agent to refine its knowledge based on observations obtained

while using the existing knowledge for planning and execution.

It extends and adapts existing ideas on combining decision tree
induction with knowledge-based reasoning [19].

1. The agent selects an action 𝑎𝐼 from the newly learned

set of actions 𝐴, and an initial state of the environment 𝑆𝐼 .

It simulates the execution of 𝑎𝐼 in 𝑆𝐼 in its current domain

Figure 4: Part of the decision tree created to learn missing
executability conditions.

to collect information about the outcomes (e.g., end state, an

inconsistent outcome).

2. An expected outcome’s absence indicates the absence of an

executability condition; any additional effects indicate missing

causal law(s). If all observations match expectations for differ-

ent actions and states, the current knowledge is considered to

be comprehensive.

3. The agent responds to an inconsistency by simulating the

execution of 𝑎𝐼 in different states, extracting from the answer

set and initial state all those fluent literals that have an object

constant that is also in 𝑎𝐼 . These collected literals form part of

the training examples.

4. In the training examples, the ground terms in literals are

replaced by variables, and the dataset is reformatted with the

fluent literals as features and the presence of absence of incon-

sistency as the class label. Each training example then records

the presence or absence of a fluent literal, and the presence or

absence of an inconsistency, as a binary value.

5. Separate decision trees are constructed for causal laws and

executability conditions, with the action as the root node, and

nodes are split using features that have not been used before

and are likely to result in the highest reduction in entropy.

6. Candidate axioms are generated by traversing the learned

trees from the root to the leaves using only those nodes that

agree with their class label up to a threshold level (90%) and

contain at least a minimum percentage (2%) of the dataset.

7. Only candidate axioms that have sufficient support among

the training examples (90%) are retained. The decision tree

induction process is repeated to explore different subsets of the

training data. Only axioms retained over multiple repetitions

are lifted to the general form and added to Π(D,H).



Dodampegama et al.

Figure 4 shows part of a decision tree generated by this process,

with the agent learning the following two executability conditions:

−𝑜𝑐𝑐𝑢𝑟𝑠 (𝑠𝑤𝑖𝑡𝑐ℎ𝑜𝑛(𝑅, 𝐸), 𝐼 ) ←ℎ𝑜𝑙𝑑𝑠 (𝑜𝑛(𝐸, 𝐿), 𝐼 ), (2a)

𝑛𝑜𝑡 ℎ𝑜𝑙𝑑𝑠 (𝑎𝑡 (𝑅, 𝐿), 𝐼 ).
−𝑜𝑐𝑐𝑢𝑟𝑠 (𝑠𝑤𝑖𝑡𝑐ℎ𝑜𝑛(𝑅, 𝐸), 𝐼 ) ←ℎ𝑜𝑙𝑑𝑠 (𝑜𝑝𝑒𝑛𝑒𝑑 (𝐸), 𝐼 ) . (2b)

which imply that an agent cannot switch on an appliance if it is not

in the same location or if the appliance’s door is open. Although the

strategy described above focuses on learning new objects, actions

and axioms, it can be used to learn new literals (relations) too.

4 Experimental Setup and Results
We experimentally evaluated the following hypotheses regarding

our architecture’s capabilities:

H1 Reasoningwith prior knowledge and rapidly-learned behav-

ior models improves performance and promotes scalability;

H2 Using LLM-based anticipated tasks as joint goals improves

performance compared with planning for one task at a time;

H3 Incrementally-updated prompts and validators improve

task anticipation and team performance;

H4 Using LLM to directly output a sequence of low-level ac-

tions to complete tasks results in poor performance;

H5 KAT enables the ad hoc agent to accurately learn unknown

objects, actions, and axioms; and

H6 Reasoning with incrementally learned knowledge improves

the performance of the team.

We evaluated these hypotheses in the VirtualHome domain and

recorded the number of steps (plan length) and the total time taken

to complete the task(s) as the performance measures.

4.1 Experimental Setup
In our experiments, the human was modeled as a simulated entity

whose action choices were based on an ASP program that con-

sidered the human’s prior knowledge and runtime observations;

human did not reason with models predicting teammates’ actions.

Also, the human’s ASP program encodes certain preferences, pri-

orities, and capabilities that are not initially known to the ad hoc

agents but may be captured over time in the models they learn

in order to predict the behavior of the human. The sequence of

tasks generated by the task generator were assigned to the agents

over time; the agents were not aware of the complete sequence and

received one task at a time. The human was assigned the same goal

as the ad hoc agent(s). All agents received the same observations of

the domain at each step, which they used to plan their respective

actions. There was no direct communication between them.

When an ad hoc agent equipped with KAT received a task, it

prompted the LLM (Section 3.3). The anticipated tasks were vali-

dated and mapped to ASP literals, with the next anticipated task

and current task set as joint goals for this agent. During planning,

the ad hoc agent also used the learned behavior prediction model to

predict each teammate’s actions for a few steps (Section 3.2). These

predictive models were built using only 1000 examples of prior

traces of actions and domain state. The agent initially assigns one

learned model to each teammate but uses information from subse-

quent steps to incrementally revise models for each teammate based

on their observed behavior. The ASP program of the ad hoc agent

included additional axioms for reasoning about these predicted ac-

tions of each teammate, which were mapped to exogenous actions.

As a result, the ad hoc agent’s plan anticipated preconditions of

some intermediate steps to be satisfied by a teammate’s actions,

even though the teammate did not always execute that action. The

ad hoc agent hence had to respond to unexpected action outcomes.

To evaluate H1 and H2, in Exp1, we randomly selected 100

task routines sampled from predefined sequences and measured the

ability of a team (human and an ad hoc agent) to complete these

tasks. Performance measures were the number of steps and time

taken. We used three baselines: Base1: LLM for anticipating future

tasks, but no behavior models to predict human’s actions; Base2: no
LLM to anticipate future tasks, but behavior models to predict the

human’s actions; and Base3: did not use LLM for task anticipation

or behavior models to predict human’s actions. In the absence of a

framework that supports all (or most) of KAT’s capabilities, these

baselines allowed us to conduct ablation studies and evaluate the

contribution of KAT’s key components. Since the time taken and the

number of actions in a plan can vary substantially based on the task,

the average of these values across trials may not be meaningful. We

instead ran paired trials and computed performance measure values
for baselines as a fraction of these values for KAT in each trial. We

then reported the average of these ratios.

For evaluating scalability in H1, we increased the team size by

introducing additional ad hoc agents, with three agents (one human,

two ad hoc agents) and four agents (one human, three ad hoc agents)

collaborating to complete tasks (in Exp1). These configurations
would normally make collaboration increasingly challenging, e.g.,

with just two agents the domain has ≈ 10
25

possible states, and this

number increases exponentially with the number of agents. We

then measured the number of steps and time taken by the agent

teams to complete the tasks.

To evaluate H3, in Exp2, we computed the precision and recall

of the tasks anticipated by the LLM, before and after applying the

validator, over the 100 task routines. Further, we randomly selected

20 task routines and recorded the performance when the LLM was

used with and without prompting methods. Baselines were: Base4:
no prompting strategy or validator; Base5: few-shot prompting

but no external validator; Base6: CoT prompting but no external

validator; and Base7: external validator but no prompt-engineering.

For evaluating H4, we conducted experiment Exp3, in which

we created an architecture that used the LLM to directly output

sequences of actions for specific tasks (Base8). Specifically, our
prompt included details of actions available in our example scenario

in VirtualHome, their intended purpose (from ASP program, e.g.,

move(agent, location): move the agent to an adjacent location). We

also supplied the LLM some Action Feasibility Rules:
• Movement Limitation (critical): must only move to adjacent lo-

cations defined by the next_to relationships.

• Object Location: must be in the same location as an object to act

on it (e.g., grab, put).

• Carrying Limit: cannot hold more than two objects. When hold-

ing two objects, actions like open, close, switch-on, or switch-off

require you to put at least one object down first.

• Appliance Safety: for safety, you should not open appliance

doors when they are switched on.



Reasoning with Commonsense Knowledge and Decision Heuristics for Scalable Ad hoc Human-Agent Collaboration

• Avoid Conflict: if a human is holding an object, they will handle

all actions with the object. Do not attempt to grab or interact

with this object. Instead, focus on other parts of the goal.

The LLM also had access to the current world state, including the

location of the agents, objects, and appliances, and each appliance’s

state. The problem specification also described the task to be per-

formed; the immediate previous actions of the human and the ad hoc

agent; and any specific information to be considered (e.g., human

working from home). Additionally, the prompt included a detailed

example of selecting an action, and asked the LLM to generate an

action sequence for achieving the assigned goal.

The LLM’s action choice was assigned as the ad hoc agent’ action.

As a recovery mechanism, we corrected errors in the LLM output

up to three times per trial. For example, if the LLM’s action involves

grabbing an object without moving to the appropriate location,

we provided feedback explaining why this choice was incorrect

and allowed the LLM to predict another action for that step. We

measured the number of steps and time taken by the agent team to

complete the previously selected 100 task routines.

In Exp4, we introduced another ad hoc agent with an incomplete

knowledge base to the two agent team (ad hoc agent and human).

The new agent’s ASP program included only a subset of the objects

(17/31), actions (4/7), and axioms (6/9 causal laws, 16/26 executabil-

ity conditions). This corresponded to the absence of around 40−45%
knowledge. We made sure that this agent had enough initial knowl-

edge to perform some basic activities, while also withholding key

knowledge to create gaps that limited the agent’s ability to com-

plete tasks. During task execution, the human agent periodically

describe actions of the knowledgeable ad hoc agent to the ad hoc

agent with missing knowledge. This agent then used the procedure

described in Section 3.4 to process these descriptions into ASP sorts,

actions and axioms with the help of an LLM and added the validated

information to its knowledge base. At the end of each episode, it

also used decision tree induction to learn new axioms. We then

evaluated the agent’s ability to learn missing knowledge across 10

episodes, with each episode randomly selecting from five different

task sequences and each sequence consisting of four tasks. Similar

to previous experiments, task sequences were generated by the

task generator and provided to the agent one at a time. However,

we intentionally omitted the future task anticipation algorithm to

prevent its influence on knowledge acquisition capabilities. We

recorded the number of objects, actions, and axioms learned in

each trial, and the precision and recall of learning these axioms

compared with a complete ASP program (ground truth).

In Exp5, we extended each episode from Exp4 to include three

runs. The first run in an episode had the same initial knowledge as

in Exp4, but the subsequent two runs built on the knowledge for a

potentially different sequence of tasks. This process was repeated

for the 10 episodes; we recorded the objects, actions, and axioms

learned after each run and episode, and computed precision and

recall as the performance measures. To evaluate H6 in Exp6, we
ran 20 trials with and without the learned axioms, recording the

number of steps and the time taken to complete the assigned task(s).

4.2 Experimental Results
Table 2 summarizes the results of Exp1. When the ad hoc agent

reasoned with anticipated tasks and predicted actions, it provided

Table 2: Average number of steps and time taken to complete
task routines; values for baselines computed as a fraction of
these values for KAT in each trial; for comparison, average
absolute values for KAT are 26.8 steps and 361 seconds.

Architecture Steps Time(s)

KAT (anticipate tasks, predict actions) 1.0 1.0

Base1 (anticipate tasks) 1.1 1.1

Base2 (predict actions) 1.3 1.2

Base3 1.4 1.4

Base8 (LLM predict low-level actions) 1.5 1.5

Table 3: Average number of steps and time taken by the teams
to complete the task routines; performance measure values
for Teams 2-3 computed as a fraction of these for Team 1.

Team Steps Time(s)

Team1 1.0 1.0

Team2 0.8 0.9

Team3 0.7 0.8

the best performance with lowest number of action steps and least

amount of time taken to complete tasks. The accuracy of the human

behavior prediction model learned by the ad hoc agent was 85%, i.e.,

it makes errors, but it supports rapid learning and revision. Also,

reasoning with prior knowledge and the output of these predictive

models significantly improves performance. When the agent used

task anticipation but not the behavior prediction models (Base1),
the number of steps and time taken increased; not considering

the teammates’ actions lead the agent to waste time in executing

redundant actions. These results emphasize the importance of the

behavior prediction models, supporting hypothesis H1.
When the ad hoc agent used the behavior prediction models

but did not anticipate future tasks (Base2), performance worsened,

with a further increase in the number of steps and the time taken

to complete tasks. Planning jointly for the current and anticipated

tasks saved time and effort. These results support H2. Also, when
the ad hoc agent did not use task anticipation or the behavior pre-

diction models (Base3), the performance worsened further. These

results support H1 and H2. Finally, using the LLM to directly com-

pute a sequence of low-level actions (Base8) resulted in the worst

observed performance. All results were statistically significant with

𝑝 < 0.0001. These results support H4.
Next, Table 3 summarizes the performance of Team1 (human,

one ad hoc agent), Team2 (human, two ad hoc agents) and Team3
(human, three ad hoc agents) in completing the same set of 100 task

routines. As the number of ad hoc agents increases, task completion

becomes more efficient: Team2 outperformed Team1 by requiring

fewer steps and less time to complete the tasks, while Team3 showed

further improvements over Team2. These results emphasize the

importance of efficient collaboration and demonstrate the scalability

of the architecture to multiple agents, supporting H1. Once again
all the results were statistically significant with 𝑝 < 0.0001. The

observed performance was primarily due to design choices in KAT

to enable each ad hoc agent to reason independently and efficiently

using domain knowledge and learned models.



Dodampegama et al.

Table 4: Precision and recall values of the anticipated tasks
before and after applying the validator.

Architecture Precision Recall

Before validation (LLM output) 0.78 0.76

After validation (with validator) 0.99 0.78

Figure 5: Average number of objects, actions, axioms learned
in three consecutive runs, averaged over 10 episodes.

Table 4 and 5 shows the results from Exp2. We observed a

marked improvement in precision after applying the validator to

adapt the LLM’s anticipate future tasks. The recall values do not

change substantially as the validator did not introduce new tasks;

it only reordered the tasks that are out of order and removed ir-

relevant tasks. Table 5 summarizes the performance when differ-

ent prompting strategies and the validator are used with the LLM

output (Section 3.3). We observed a significant improvement in

performance, e.g., fewer steps and less time to complete tasks with

the external validator and a combination of prompting methods. In

particular, the use of the validator to adapt the LLM’s output to the

domain had a significant impact on performance, supporting H3.
Results of Exp4 are summarized in Table 6. We observed high

precision and recall for learning the missing axioms. Figure 5 sum-

marized the results of Exp5 with three consecutive runs in each

of 10 episodes. By the end of the first run, the agent successfully

learned 4-5 of 14 missing objects, all three missing actions, 1-2

of three causal laws, and 6–7 of 10 executability conditions. After

three runs, these increased to 8–9 objects, 2–3 causal laws, and 9–10

executability conditions. The steady increase in number of objects,

actions, and axioms, along with high precision and recall, indicated

the agent’s ability to reliably learn new knowledge, supporting H5.
Table 7 summarizes the results of Exp6, which evaluated the

impact of the learned knowledge on the team’s ability to complete

tasks. We ran paired trials with and without the learned axioms and

computed performance measure values for the former as a fraction

of the values for the latter. Reasoning with the learned knowledge

substantially improved performance. In the absence of this knowl-

edge, at least one ad hoc agent often could not compute valid plans

to complete the tasks, and could not contribute to the team’s perfor-

mance. The significant low number of steps and time (𝑝 < 0.0001)

Table 5: Average number of steps and time taken by the team
(human, ad hoc agent) to complete tasks with prompting
strategies and/or validator; values for baselines computed
as a fraction of these values for KAT in each trial, average
absolute values for KAT are 27.5 steps and 372.7 seconds.

Architecture Steps Time(s)

KAT (all prompting, with validator) 1.00 1.00

Base4 (no prompting, no validator) 1.21 1.15

Base5 (few-shot, no validator) 1.17 1.18

Base6 (CoT, no validator) 1.16 1.16

Base7 (no prompting, with validator) 1.05 1.04

Table 6: Average precision and recall of learned axioms in 30

runs over 10 episodes; accurately learned unknown axioms.

Axiom type Precision Recall

Causal laws 0.96 1.0

Executability conditions 1.0 1.0

Table 7: Average number of steps and time taken by the team
(human, ad hoc agent) to complete task sequences repre-
sented as a fraction of these values for baseline.

Architecture Steps Time(s)

With learned axioms 0.76 0.84

Without learned axioms 1.00 1.00

emphasize the importance of learning previously unknown knowl-

edge, and supportH6. Source code, execution traces and additional

results for KAT are in our open-source repository [8] and [7].

5 Conclusions
This paper described KAT, an architecture for Ad Hoc Teamwork

(AHT) that enables an AI agent to collaborate with other agents (hu-

man, AI) without prior coordination. KAT embeds the principles of

refinement, ecological rationality, and interactive learning, enabling

the agent to: automatically identify and reason with information

relevant to tasks at hand; leverage the generic knowledge encoded

in an LLM for high-level task anticipation; rapidly learn models

predicting the behavior of other agents; perform non-monotonic

logical reasoning with prior knowledge and behavior models to

jointly plan and execute actions to achieve the current and antici-

pated tasks; leverage a LLM to map natural language descriptions

of action outcomes to ASP representations of previously unknown

objects, actions, and axioms; and use decision tree induction to

incrementally learn axioms from observations. We evaluated KAT’s

capabilities along with various baselines in a physics-based sim-

ulation environment, highlighting the impact of each component

of KAT. Future work will explore larger teams and physical robots

collaborating with humans in AHT settings.

Acknowledgments
This workwas supported in part by the U.S. Office of Naval Research

Award N00014-20-1-2390. All conclusions described in this paper

are those of the authors alone.



Reasoning with Commonsense Knowledge and Decision Heuristics for Scalable Ad hoc Human-Agent Collaboration

References
[1] Stefano V. Albrecht and Peter Stone. 2019. Reasoning about Hypothetical Agent

Behaviours and their Parameters. CoRR abs/1906.11064 (2019). arXiv:1906.11064

http://arxiv.org/abs/1906.11064

[2] Samuel Barrett, Avi Rosenfeld, Sarit Kraus, and Peter Stone. 2017. Making friends

on the fly: Cooperating with new teammates. Artificial Intelligence 242 (2017),
132–171.

[3] Samuel Barrett, Peter Stone, Sarit Kraus, and Avi Rosenfeld. 2013. Teamwork with

Limited Knowledge of Teammates. In AAAI Conference on Artificial Intelligence,
Vol. 27.

[4] Michael Bowling and Peter McCracken. 2005. Coordination and Adaptation in

Impromptu Teams. In National Conference on Artificial Intelligence. 53–58.
[5] Shuo Chen, Ewa Andrejczuk, Zhiguang Cao, and Jie Zhang. 2020. AATEAM:

Achieving the Ad Hoc Teamwork by Employing the Attention Mechanism. In

AAAI.
[6] Hasra Dodampegama and Mohan Sridharan. 2023. Knowledge-based Reasoning

and Learning under Partial Observability in Ad Hoc Teamwork. Theory and
Practice of Logic Programming 23, 4 (2023), 696–714.

[7] Hasra Dodampegama andMohan Sridharan. 2025. https://github.com/hharithaki/

Knowledge-Acquisition.

[8] Hasra Dodampegama andMohan Sridharan. 2025. https://github.com/hharithaki/

Task-Anticipation.

[9] Qi Fang, Junjie Zeng, Haotian Xu, Yue Hu, and Quanjun Yin. 2024. Learning Ad

Hoc Cooperation Policies from Limited Priors via Meta-Reinforcement Learning.

Applied Sciences 14, 8 (2024). https://www.mdpi.com/2076-3417/14/8/3209

[10] Michael Gelfond and Daniela Inclezan. 2013. Some Properties of System Descrip-

tions of 𝐴𝐿𝑑 . Applied Non-Classical Logics, Special Issue on Equilibrium Logic
and ASP 23, 1-2 (2013).

[11] Michael Gelfond and Yulia Kahl. 2014. Knowledge Representation, Reasoning and
the Design of Intelligent Agents. Cambridge University Press.

[12] Gerd Gigerenzer. 2016. Towards a Rational Theory of Heuristics. Palgrave Macmil-

lan UK, London, 34–59.

[13] Gerd Gigerenzer. 2020. What is Bounded Rationality? In Routledge Handbook of
Bounded Rationality. Routledge.

[14] Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Mudit Verma, Kaya

Stechly, Siddhant Bhambri, Lucas Saldyt, and Anil Murthy. 2024. LLMs Can’t Plan,

But Can Help Planning in LLM-Modulo Frameworks. arXiv:2402.01817 [cs.AI]

https://arxiv.org/abs/2402.01817

[15] Konstantinos Katsikopoulos, Ozgur Simsek, Marcus Buckmann, and Gerd

Gigerenzer. 2021. Classification in the Wild: The Science and Art of Transparent
Decision Making. MIT Press.

[16] Xinzhu Liu, Peiyan Li, Wenju Yang, Di Guo, and Huaping Liu. 2024. Leveraging

Large Language Model for Heterogeneous Ad Hoc Teamwork Collaboration.

arXiv:2406.12224 [cs.RO] https://arxiv.org/abs/2406.12224

[17] George A. Miller. 1995. WordNet: a lexical database for English. Commun. ACM
38, 11 (Nov. 1995), 39–41.

[18] Reuth Mirsky, Ignacio Carlucho, Arrasy Rahman, Elliot Fosong, William Macke,

Mohan Sridharan, Peter Stone, and Stefano Albrecht. 2022. A Survey of Ad Hoc

Teamwork: Definitions, Methods, and Open Problems. In European Conference
on Multiagent Systems.

[19] Tiago Mota, Mohan Sridharan, and Ales Leonardis. 2021. Integrated Common-

sense Reasoning andDeep Learning for Transparent DecisionMaking in Robotics.

Springer Nature CS 2, 242 (2021).
[20] OpenAI et al. 2024. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL] https:

//arxiv.org/abs/2303.08774

[21] Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu Wang, Sanja Fidler,

and Antonio Torralba. 2018. Virtualhome: Simulating household activities via

programs. In International Conference on Computer Vision and Pattern Recognition.
8494–8502.

[22] Muhammad A Rahman, Niklas Hopner, Filippos Christianos, and Stefano V

Albrecht. 2021. Towards Open Ad Hoc Teamwork Using Graph-based Policy

Learning. In International Conference on Machine Learning. 8776–8786.
[23] João G. Ribeiro, Gonçalo Rodrigues, Alberto Sardinha, and Francisco S. Melo.

2023. TEAMSTER: Model-based reinforcement learning for ad hoc teamwork.

Artificial Intelligence 324 (2023), 104013. doi:10.1016/j.artint.2023.104013
[24] Herbert A. Simon. 1956. Rational Choice and the Structure of the Environment.

Psychological Review 63 (1956), 129–138.

[25] Mohan Sridharan, Michael Gelfond, Shiqi Zhang, and JeremyWyatt. 2019. REBA:

A Refinement-Based Architecture for Knowledge Representation and Reasoning

in Robotics. Journal of Artificial Intelligence Research 65 (May 2019), 87–180.

[26] Peter Stone, Gal Kaminka, Sarit Kraus, and Jeffrey Rosenschein. 2010. Ad Hoc

Autonomous Agent Teams: Collaboration without Pre-Coordination. In AAAI
Conference on Artificial Intelligence. 1504–1509.

[27] Penghui Xu, Yu Zhang, Le Hao, and Qilin Yan. 2025. DETEAMSK: A Model-

Based Reinforcement Learning Approach to Intelligent Top-Level Planning and

Decisions for Multi-Drone Ad Hoc Teamwork by Decoupling the Identification

of Teammate and Task. Aerospace 12, 7 (2025). https://www.mdpi.com/2226-

4310/12/7/635

[28] Luisa Zintgraf, Sam Devlin, Kamil Ciosek, ShimonWhiteson, and Katja Hofmann.

2021. Deep Interactive Bayesian Reinforcement Learning via Meta-Learning. In

International Conference on Autonomous Agents and Multiagent Systems.

A Execution Traces
We provide some additional execution traces as a qualitative evalu-

ation of H3.

A.1 Example1
Figure 6 shows an execution example where the ad hoc agent used

the LLM to anticipate future tasks, with and without the prompting

strategies and validator. The example was set on a weekday where

the human was working from home and no guests were expected.

The correct task routine in this context was: Prepare breakfast,
Prepare home work-station, Prepare coffee, Prepare lunch. When the

Figure 6: Execution example: using LLM without prompting
strategies or external validator causes conflicts during exe-
cution, having a negative impact on performance.

ad hoc agent queried the LLM without the prompt engineering

techniques or validator (Section 3.3), the anticipated task list was

different from the expected output. The prompt to the LLM without

using the prompt engineering strategies is shown in Figure 6. The

LLM output was [Prepare breakfast, Prepare coffee, Prepare home
work-station, Pack bag]. This output failed to align with the human

preferences and priorities as:

• Higher priority was assigned to making coffee than setting

up the workstation. This would delay the human for work

and lead to coffee not being hot when needed.

• Packing the bag was an unnecessary task as the human was

not leaving the house, and would have been filtered out by

the validator.

On the other hand, when the ad hoc agent used the prompt engi-

neering strategies and the validation strategy, the prompt to the

LLM was automatically generated while incorporating context, as

described in Section 3.3. The LLM’s output was [Prepare break-
fast, Prepare home work-station, Prepare coffee, Prepare lunch]. This
matched the expected routine. i.e., making breakfast and setting

up the workstation were considered high priority tasks, and ir-

relevant tasks such as pack bag were filtered out by the validator.

https://arxiv.org/abs/1906.11064
http://arxiv.org/abs/1906.11064
https://github.com/hharithaki/Knowledge-Acquisition
https://github.com/hharithaki/Knowledge-Acquisition
https://github.com/hharithaki/Task-Anticipation
https://github.com/hharithaki/Task-Anticipation
https://www.mdpi.com/2076-3417/14/8/3209
https://arxiv.org/abs/2402.01817
https://arxiv.org/abs/2402.01817
https://arxiv.org/abs/2406.12224
https://arxiv.org/abs/2406.12224
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.1016/j.artint.2023.104013
https://www.mdpi.com/2226-4310/12/7/635
https://www.mdpi.com/2226-4310/12/7/635


Dodampegama et al.

These results demonstrate the importance of using a combination

of prompting techniques and the external validator, supporting H3.

A.2 Example2
We observed similar situations when extending the setup to three

agents, one human and two ad hoc agents, collaborating on a week-

end when guests were expected. The correct task routine in this

context was: Prepare breakfast, Prepare table for guests, Prepare lunch,
Clean dishes.

When the first ad hoc agent queried the LLMwith the prompting

strategies but without the validator, the anticipated task list by

the LLM was Prepare breakfast, Prepare table for guests, Prepare
lunch, Serve snacks. For the second ad hoc agent the LLM output

was Prepare breakfast, Prepare table for guests, Prepare lunch, Serve
snacks, Clean dishes.

When the validator was used, the outputs to both the agents

were refined by incorporating context. Since the human usually did

not require snacks after lunch, the task Serve snacks was removed.

For the first agent the refined task list was Prepare breakfast, Prepare
table for guests, Prepare lunch. For the second agent the task list

was Prepare breakfast, Prepare table for guests, Prepare lunch, Clean
dishes; since the Clean dishes task was a defined task in this domain,

it was retained by the validator.

This example further demonstrates the importance of using the

validator and support H3.

A.3 Example3

Figure 7: Execution trace for task routine: [Prepare breakfast,
Prepare activities, Serve snacks, Clean kitchen]. When an ad
hoc agent is not allowed to predict and reason about the
human’s actions, it may choose to execute same action(s) as
the human, leading to longer plans.

Figure 7 compares two plans executed by a team comprising a

human and an ad hoc agent for completing a different set of tasks:

[Prepare breakfast, Prepare activities, Serve snacks, Clean kitchen],
with and without the behavior prediction models (Section 3.2). In

the first plan, when the ad hoc agent used the behavior prediction

model to predict the future actions of the human, the team success-

fully completed all tasks for the given day in just 28 steps. On the

other hand, when the ad hoc agent did not use behavior predic-

tion models, it often selected the same actions as the human for

any particular task, leading to unnecessary delays in completing

the tasks. For example, in the second plan the agent frequently

selected the same action as the human—simultaneously picking

up the cupcake, candy bar, and cutlets, introducing redundant be-

havior and prolonging task execution. As a result, the overall plan

was extended to 34 steps. These results demonstrate that using the

behavior prediction models enables the ad hoc agent to coordinate

efficiently by avoiding action conflicts with the human. This further

supports H1.

A.4 Example4

Figure 8: Example output when ad hoc agent uses the LLM
for computing sequences of actions for specific tasks (Base8).

When the ad hoc agent used the LLM for directly computing

sequences of actions for specific tasks Base8, the prompt was au-

tomatically constructed following the procedure described in Sec-

tion 4.1. Specifically, it consisted of:

• a system message;

• details of the available actions in VirtualHome and their in-

tended purposes (e.g., move(agent,location): move the agent

to an adjacent location; put(agent,object,surface): place an

object on a surface; open(agent,appliance): open an appli-

ance; switchon(agent,appliance): switch on an appliance);

• action feasibility rules–see Section 4.1;

• adjacency information about locations in the domain;

• current world state (human location: living room desk,

agent location: kitchen table, human holds bananas in hand,

human holds cereal in hand, milk on kitchen table, apple

on living room coffee table, plum on living room coffee ta-

ble, mug on living room coffee table, cupcake on bedroom

coffee table, candy bar on bedroom coffee table, wine on

bedroom coffee table, board game on bedroom coffee ta-

ble, water glass on living room desk, computer on living

room desk, juice on bedroom desk, plate on counter one,

cutlets on counter one, coffeemaker on counter three, cof-

feepot placed inside coffeemaker, book on kitchen small

table, chips on kitchen small table, bread slice on kitchen

table, dishwasher under counter three, cellphone on living

room coffee table, dishwasher door closed, dishwasher not

switched on, computer not switched on, coffeemaker not

switched on);

• description on task to be performed. For example, if the

team’s current goal is to prepare the work-station, it has

three subtasks: switch on the computer, placing the note

book on the living room desk, and placing the cellphone

on the living room desk;

• immediate past actions of the human and the ad hoc agent;

• contextual information about the day (weekday, and the

human is working from home);

• an illustrative example of action selection;



Reasoning with Commonsense Knowledge and Decision Heuristics for Scalable Ad hoc Human-Agent Collaboration

Algorithm 1: Acquire knowledge from human cues.
Input: Human 𝑐𝑢𝑒; Π(D,H); pretrained LLM;

𝑠𝑦𝑠𝑡𝑒𝑚𝑠_𝑚𝑠𝑔1, 𝑠𝑦𝑠𝑡𝑒𝑚_𝑚𝑠𝑔2 (predefined); few shot

prompting 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 .

Output: Updated ASP program Π(D,H)
1 𝑎𝑥𝑖𝑜𝑚 ← LLM(𝑠𝑦𝑠𝑡𝑒𝑚_𝑚𝑠𝑔1, 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠, 𝑐𝑢𝑒)

2 𝑎𝑐𝑡𝑖𝑜𝑛, 𝑙𝑖𝑡𝑒𝑟𝑎𝑙𝑠, 𝑜𝑏 𝑗𝑒𝑐𝑡𝑠 ← parse_axiom(𝑎𝑥𝑖𝑜𝑚)

3 𝑛𝑒𝑤_𝑜𝑏 𝑗𝑒𝑐𝑡𝑠 ← check_exists(𝑜𝑏 𝑗𝑒𝑐𝑡𝑠,Π(D,H))
4 if 𝑛𝑒𝑤_𝑜𝑏 𝑗𝑒𝑐𝑡𝑠 then
5 𝑠𝑜𝑟𝑡𝑠 ← extract_sorts(Π(D,H))
6 𝑠𝑜𝑟𝑡_𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠 ←

LLM(𝑠𝑦𝑠𝑡𝑒𝑚_𝑚𝑠𝑔2, 𝑠𝑜𝑟𝑡𝑠, 𝑛𝑒𝑤_𝑜𝑏 𝑗𝑒𝑐𝑡𝑠)

7 𝑜𝑏 𝑗_𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠 ←
lowest(𝑛𝑒𝑤_𝑜𝑏 𝑗𝑒𝑐𝑡𝑠, 𝑠𝑜𝑟𝑡_𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠, 𝑠𝑜𝑟𝑡𝑠)

8 Π(D,H) ←
update_core_ASP(𝑛𝑒𝑤_𝑜𝑏 𝑗𝑒𝑐𝑡𝑠, 𝑜𝑏 𝑗_𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠)

9 end
10 𝑎𝑐𝑡_𝑒𝑥𝑖𝑠𝑡𝑠, 𝑎𝑐𝑡𝑖𝑜𝑛 ← check_exists(𝑎𝑐𝑡𝑖𝑜𝑛,Π(D,H))
11 if 𝑎𝑐𝑡_𝑒𝑥𝑖𝑠𝑡𝑠 with low level sorts then
12 𝑎𝑐𝑡𝑖𝑜𝑛 ← update_action_sorts(𝑎𝑐𝑡𝑖𝑜𝑛,Π(D,H))
13 Π(D,H) ← update_core_ASP(𝑎𝑐𝑡𝑖𝑜𝑛)

14 else if ¬𝑎𝑐𝑡𝑖𝑜𝑛_𝑒𝑥𝑖𝑠𝑡𝑠 then
15 𝑎𝑐𝑡𝑖𝑜𝑛 ←

get_action_with_lowest_sorts(𝑎𝑐𝑡𝑖𝑜𝑛,Π(D,H))
16 Π(D,H) ← update_core_ASP(𝑎𝑐𝑡𝑖𝑜𝑛)

17 end
18 𝑙𝑖𝑡_𝑒𝑥𝑖𝑠𝑡𝑠, 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔_𝑙𝑖𝑡𝑒𝑟𝑎𝑙𝑠 ←

check_exists(𝑙𝑖𝑡𝑒𝑟𝑎𝑙𝑠,Π(D,H ))

19 for 𝑙𝑖𝑡𝑒𝑟𝑎𝑙 ∈ 𝑙𝑖𝑡𝑒𝑟𝑎𝑙𝑠 do
20 if 𝑙𝑖𝑡𝑒𝑟𝑎𝑙 ∉ 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔_𝑙𝑖𝑡𝑒𝑟𝑎𝑙𝑠 then
21 𝑙𝑖𝑡𝑒𝑟𝑎𝑙 ← revise_literal(𝑙𝑖𝑡𝑒𝑟𝑎𝑙,Π(D,H )

22 Π(D,H) ← update_core_ASP(𝑙𝑖𝑡𝑒𝑟𝑎𝑙 )

23 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔_𝑙𝑖𝑡𝑒𝑟𝑎𝑙𝑠 = 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔_𝑙𝑖𝑡𝑒𝑟𝑎𝑙𝑠 + 𝑙𝑖𝑡𝑒𝑟𝑎𝑙
24 end
25 end
26 𝑎𝑥𝑖𝑜𝑚 ← create_axiom(𝑎𝑥𝑖𝑜𝑚, 𝑎𝑐𝑡𝑖𝑜𝑛, 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔_𝑙𝑖𝑡𝑒𝑟𝑎𝑙𝑠)
27 if axiom ∉ Π(D,H) then
28 Π(D,H) ← update_core_ASP(𝑎𝑥𝑖𝑜𝑚)

29 end

• a query asking the LLM to predict the next action required

to achieve the task.

Figure 8 shows the resulting output from the LLM. The selected

action move(agent, living room desk) violated the ‘Movement Limi-

tation (Critical)’ rule in ‘Action Feasibility Rules’, which required

the agent to verify the adjacency of locations before attempting to

move. This example demonstrates that the LLM may not respect

constraints even when they are provided as input, and highlights

that an LLM is not designed for computing plans for non-trivial

tasks; using an LLM to directly output a sequence of low-level

actions to complete tasks can lead to poor performance, which

supports hypothesis H4.

B Algorithm for Learning from Human Cues
We provide the algorithm referenced in Section 3.4, which the ad

hoc agent used to learn new objects, actions, and axioms from cues

provided by a human during task execution.


	Abstract
	1 Introduction
	2 Related Work
	3 Architecture Description
	3.1 Knowledge Representation and Reasoning
	3.2 Agent Behavior Models
	3.3 Task Anticipation
	3.4 Knowledge Acquisition

	4 Experimental Setup and Results
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Conclusions
	References
	A Execution Traces
	A.1 Example1
	A.2 Example2
	A.3 Example3
	A.4 Example4

	B Algorithm for Learning from Human Cues

