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Abstract

Al agents in practical domains often have to cooperate with other
agents without prior coordination. State of the art approaches for
such ad hoc teamwork pose this task as a learning problem, using a
large dataset to model the action choices of other agents (or agent
types) and determine the actions of the ad hoc agent. These meth-
ods lack transparency and make it difficult to rapidly revise existing
knowledge in response to changes. We present an architecture for
ad hoc teamwork that leverages the complementary strengths of
knowledge-based and data-driven methods for reasoning and learn-
ing. For any given goal, the ad hoc agent determines its actions
through non-monotonic logical reasoning with: (a) prior domain-
specific commonsense knowledge; (b) models learned and revised
rapidly to predict the behavior of other agents; and (c) anticipated
abstract future goals based on generic knowledge of similar situ-
ations in an existing foundation model. The agent also processes
natural language descriptions and observations of other agents’
behavior, incrementally acquiring and revising knowledge in the
form of objects, actions, and axioms that govern domain dynam-
ics. We experimentally evaluate our architecture’s capabilities in
VirtualHome, a realistic simulation environment.
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1 Introduction

Consider an assistive Al agent deployed to complete household
tasks in collaboration with a human it has not worked with before.
Figure 1 shows snapshots of a motivating scenario in which the AI
agent and a human agent are preparing breakfast and setting up a
workstation. The agents have a limited view of the environment
and do not communicate with each other. Each agent is aware
of the state of the domain, including the location of teammates
and the outcomes of their actions (e.g., change in location of an
object moved by a teammate). The agents have to reason with
different descriptions of domain knowledge and uncertainty that
include qualitative statements (“eggs are usually in the fridge") and
quantitative measures of uncertainty (“I am 90% sure I saw the eggs
on the table"), adapting their actions to changes in the domain and
teammates’ behavior. These characteristics correspond to Ad hoc
Teamwork (AHT), that requires cooperation “on the fly" without
prior coordination [26]; and arises in many practical applications
in robotics, like disaster rescue and exploration.
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Figure 1: Screenshots from VirtualHome [21] showing a hu-

man (female in green top) and an assistive Al agent (male in
blue shirt) collaborating.

Research in AHT has evolved from using predefined protocols
that encoded specific actions for the ad hoc agent in specific situa-
tions, to methods that learn probabilistic or deep network models
to estimate the behavior of other agents (or agent “types") and
optimize the ad hoc agent’s actions based on a long history of prior
interactions with these agents. It is often difficult to gather such
datasets of different situations and computationally expensive to
build the necessary models. Moreover, these models lack trans-
parency, making it difficult to understand the agent’s decisions.

In a departure from existing work, our prior work developed an
AHT architecture that enabled an ad hoc agent to make decisions
based on non-monotonic logical reasoning with prior knowledge
and simple predictive models of other agents’ behavior [6]. This
paper extends our prior work to enable each ad hoc agent to:

(1) Leverage a Large Language Model (LLM) to anticipate fu-
ture tasks to be completed, adapting the LLM’s output to
domain-specific knowledge and experience;

(2) Compute and execute plans for completing current task
and preparing for upcoming tasks through non-monotonic
logical reasoning with prior knowledge and rapidly-learned
predictive models of other agents’ behavior;

(3) Incrementally revise prior knowledge using LLM-based
processing of natural language descriptions of actions and
outcomes, and decision tree induction from observations.

We use Answer Set Programming (ASP) [11] for non-monotonic
logical reasoning, GPT40 mini [20] as the LLM. We explored de-
cision making at different abstractions in household scenarios in
VirtualHome, a realistic physics-based 3D simulation environment
for multiagent collaboration [21].

2 Related Work

Researchers have explored AHT for more than two decades under
different names [18]. Initial work used predefined protocols or plays
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that encoded specific actions for the ad hoc agent in specific sce-
narios [4]. Subsequent work used probabilistic and sampling-based
methods such as Upper Confidence bounds for Trees to determine
the ad hoc agent’s actions [1, 3, 23]. Recent approaches consid-
ered state of the art for AHT have posed it primarily as a learning
problem; a key component predicts behavior of other agents and
determines the ad hoc agent’s behavior using a long history of
prior interactions with similar agents or agent types. This includes
the use of Fitted Q Iteration to learn action selection policies from
offline data of each teammate type [2]; attention-based recurrent
neural networks for real-time adaptation [5]; graph neural net-
works to simulate interactions with other agents (agent types) and
determine the ad hoc agent’s behavior [22]; self-play to learn a
cooperation policy and candidate teammate policies [9]; sequential
and hierarchical variational auto encoders to model teammates’
changing behaviors [28]; and model-based RL methods to learn
separate models of the environment and teammates [27]. These
methods are resource-hungry, requiring substantial computation
and training examples to learn the models that are often opaque,
limiting interpretability of the system.

Frameworks based on “foundation” models are considered state
of the art for various problems in robotics and Al, and an LLM-
based framework has been developed to compute the ad hoc agent’s
actions [16]. At the same time, it is known that such models can
make arbitrary decisions in novel situations, do not plan, and are
more effective when used to generate abstract guidance that is
validated before use [14].

This paper builds on our proof-of-concept work [6] that enabled
an ad hoc agent to reason with domain knowledge and predictive
models of other agents in simple domains (e.g., soccer). Here we
consider a more complex household domain, enabling the agent to
leverage an LLM to anticipate high-level future tasks, use logics to
jointly plan for current and future tasks, and use decision-tree in-
duction and an LLM for acquiring previously unknown knowledge
from observations and natural language descriptions.

3 Architecture Description

Figure 2 outlines KAT, our architecture for an ad hoc agent collabo-
rating with other agents (human, AI). An external task generator
is used to generate a realistic, evolving routine of tasks for any
given day (e.g., “make breakfast", “set up workstation"), dispatch-
ing tasks one at a time to all agents. Each agent is unaware of the
task generation strategy and starts with no prior knowledge of the
preferences, capabilities, and strategies of other agents, although it
expects teammates to collaborate to complete assigned tasks. Each
agent receives information about the current state, and computes
and executes actions to complete task(s). The ad hoc agent deter-
mines its action by reasoning with prior knowledge (Section 3.1)
and the actions of other agents predicted by models learned from
runtime observations (Section 3.2). It also prompts an LLM with
recent observations and completed tasks to anticipate future tasks
(Section 3.3). It validates and adapts the LLM’s output based on
domain-specific knowledge, and jointly plans actions to achieve
the current and anticipated task(s). In addition, a human (agent) oc-
casionally describes an agent’s actions (e.g.,’Agent 1 cannot put the
cake in the microwave since its door is closed"). The ad hoc agent
uses these descriptions to learn previously unknown knowledge in

Dodampegama et al.

the form of objects, actions, and axioms. It also uses observations
obtained during plan execution to learn missing axioms based on
decision tree induction (Section 3.4). We use the example scenario
given below to describe KAT’s components for one ad hoc agent
and a human; we consider additional agents during evaluation.

ExamrLE 1. [Human-AI agent collaboration scenario]
Consider an Al agent and a human agent collaborating to complete
daily household tasks such as preparing breakfast or setting up the
home work-station (see Figure 1). The agents can interact with the
environment through actions that involve moving to places, picking
up or placing objects, switching appliances on or off, and open-
ing or closing appliances. Completing a task requires a sequence
of such actions to be computed and executed by members of the
team without any direct communication between them. The ad
hoc agent assumes that any teammate will have access to the same
information about domain state, predicts the actions the teammate
will execute over the next few steps, and computes its plan to com-
plete the current task and prepare for the upcoming task(s). Each
ad hoc agent’s prior commonsense knowledge includes relational
descriptions of some attributes of the domain, objects, and human.
It also includes axioms governing actions and changes, e.g., each
agent is aware that it cannot hold more than two objects at a time.

3.1 Knowledge Representation and Reasoning
In KAT, any given domain’s transition diagram is described using
an extension of action language AL ; [10]. Action languages are
formal models of parts of natural language for describing tran-
sition diagrams of dynamic systems. The domain representation
comprises a system description D, a collection of statements of
ALy, and a history H. D has a sorted signature ¥ with basic
sorts, and domain attributes (statics, fluents) and actions described
in terms of these sorts. Basic sorts in our example scenario in-
clude object, appliance, ad_hoc_agent, human, and step (for tem-
poral reasoning), and are arranged hierarchically, e.g., apple is
a sub-sort of food, a sub-sort of graspable, a sub-sort of object.
Actions can be agent_actions such as grab(ad_hoc_agent, object),
move(ad_hoc_agent, loactionl, location2) that are performed by
ad hoc agent; or exo_actions (exogenous actions) such as exo_grab
(other_agent, object), and exo_switch_on(other_agent, appliance)
which are performed by other agents, e.g., human or another Al
agent. Statics (fluents) are domain attributes whose values cannot
change. Fluents can be inertial, which obey inertia laws and are
changed by the ad hoc agent’s actions, e.g., at (ad_hoc_agent, location)
is the ad hoc agent’s location; or defined, which do not obey inertia
laws and are not directly changed the by ad hoc agent’s actions,
e.g., agent_at(other_agent, location) is a teammate’s location com-
puted by (say) external sensors. Given a specific %, the domain’s
dynamics are described using axioms such as:

open(A, E) causes opened(E) (1a)
-at(A,L1) if at(A,L2), L1 # L2 (1b)
impossible grab(A, O) if on(O, E), —opened(E) (1¢)

where Statement 1(a), a causal law, implies that an agent executing

the open(A, E) action causes an appliance E to be opened; State-
ment 1(b), a state constraint, implies that an agent (A) cannot be
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Figure 2: KAT leverage the complementary strengths of knowledge-based and data-driven reasoning and learning.

in two places (L1, L2) at the same time; and Statement 1(c), an exe-
cutability condition, prevents the ad hoc agent(A) from trying to grab
an object (O) from an appliance (E) that is not open. The history,
H, is a record of statements of the form obs(fluent, boolean, step),
which represent observations, and hpd(action, step), which rep-
resent executed actions, at specific steps. H also includes default
statements that are true in the initial state.

To reason with knowledge, a script automatically constructs
program II(D, H) in CR-Prolog, an extension to ASP that supports
consistency restoring (CR) rules. II(D, H) contains statements
from D and H, inertia axioms, reality check axioms, closed world
assumptions for defined fluents and actions, helper relations such
as holds(fluent, step) and occurs(action, step) that imply (respec-
tively) that a fluent is true and an action is part of a plan at a
particular time step, and helper axioms that define goals and guide
planning and diagnosis. ASP is based on stable model semantics,
and encodes default negation and epistemic disjunction, i.e., unlike
“=a” that states a is believed to be false, “not a” only implies a is not
believed to be true, and unlike “p V —p”, “p or =p” is not tautologous.

Each literal is true, false, or unknown, and the agent only believes
that which it is forced to believe. ASP supports non-monotonic log-
ical reasoning, i.e., the ability to revise previous conclusions, which
is essential for agents operating in complex, practical domains. The
CR rules allow the agent to make assumptions under exceptional
circumstances to recover from inconsistencies. All reasoning tasks,
i.e., planning, diagnostics, and inference are reduced to computing
answer sets of I subject to some criteria (e.g., minimize costs) and
extracting the action sequence.

Our example scenario is complex, with many objects, contain-
ers, and locations, e.g., there can be ~ 1023 states with just one ad
hoc agent and one human, making it computationally expensive to
compute plans comprising multiple steps. To support scalability, we
build on prior work on a refinement-based architecture [25]. Specifi-
cally, we enable the ad hoc agent to formally define a fine-resolution
description of the domain (e.g., with regions and object parts) as a
refinement of a coarse-resolution description (e.g., with rooms and
objects), with the agent now able to reason about different aspects
of the domain as needed.



Table 1: Attributes used to create the behavior models of the
other agents in VirtualHome.

Description of the attribute

Immediate two previous actions of the agent
Position and orientation of the agent (x,y,z)
Objects associated with the goal

Any objects in the hand of the agent

Any objects in the hand of the remaining agents
Current and previous tasks

Flags (weekday, going to office, guests expected)

action # ‘grab

(" book
NO
plzjsr{t]iao?qﬁ —% action # ‘grab
0.177726 (" book'
YES human 'y No . ’
L orientation <= r_ actlgln)oxk?rab
6.92606e-07

YES current task =

‘prepare

workstation’ YES

(__ action = ‘grab
book’

NO

Figure 3: FF tree model of human behavior for the grab_book
action in the example scenario from the VirtualHome.

3.2 Agent Behavior Models

Since reasoning with prior domain knowledge that is incomplete
or inconsistent will lead to poor performance, KAT enables the ad
hoc agent to reason with models that predict the action choices
of other agents that are learned (and revised) rapidly. This capa-
bility is achieved by embedding the Ecological Rationality (ER)
principle [13], which is based on Herb Simon’s original definition
of Bounded Rationality [24] and the algorithmic theory of decision
heuristics [12]. ER explores decision making “in the wild", i.e., un-
der open world uncertainty with the space of possibilities not fully
known, and characterizes behavior as a joint function of internal
cognitive processes and the environment. In the absence of compre-
hensive knowledge, optimal decisions may be unknowable and not
just hard to compute. ER advocates the use of adaptive satisficing
and decision heuristics (e.g., tallying, sequencing, fast and frugal
methods) to ignore part of the information and make decisions more
quickly, frugally, and accurately than methods with many more free
parameters. This has been shown to provide better performance
than more sophisticated methods in practical applications [12].
KAT enables the ad hoc agent to select relevant attributes and
rapidly learn (and revise) an ensemble of Fast and Frugal (FF) trees
from limited data to predict the behavior of each teammate (or team-
mate type). Each FF tree provides a binary choice for a particular
action, and the number of leaves in a tree is limited by the number
of attributes [15]. Each level of the tree contains an exit, allowing
the agent to make quick decisions. Also, these models enable the ad
hoc agents to consider the more informative attributes and stop as
soon as a rational option is found. Figure 3 shows an FF tree learned
for a human, and Table 1 shows the attributes used. The initial ver-
sion of these trees were constructed from only 1000 traces of other
agents’ actions (guided by simple hand-crafted policies) and domain
states. Consistent agreement (or disagreement) between observed
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outcomes and the predictions provided by these behavior models
triggers the use of a particular model for subsequent steps, or leads
to the revision of existing model(s), allowing the ad hoc agent to
quickly adapt to changes in the domain or an agent’s behavior.

3.3 Task Anticipation

As stated earlier, there is increasing evidence that LLMs make arbi-
trary decisions in novel situations. They are more effective when
used as translators between natural and domain-specific languages,
and to generate high-level (generic) guidance that is validated ex-
ternally before being implemented by planning subroutines [14].
Building on these findings, KAT enables an ad hoc agent to use an
LLM to anticipate the high-level future task (e.g., prepare dinner)
likely to be assigned once the current task is done. In the absence
of the LLM, the agents are informed about the target tasks one at
a time. We experimentally demonstrate later that jointly planning
to complete the current task and anticipated task, e.g., fetch some
ingredients from the fridge for making lunch while fetching eggs
for cooking breakfast, improves team performance. The agent uses
a combination of prompting strategies to interact with the LLM:
o Adopting persona: A specific role or character is assigned to
guide the LLM’s responses to be more (contextually) consistent
with the assigned role.

o Few-shot prompting: The prompt includes a few examples
of the expected output in specific situations, guiding the use of
pretrained knowledge.

e Chain-of-thought (CoT): The prompt includes a step-by-step
reasoning process that can be followed to arrive at an answer,
leading to more accurate responses.

A ‘system message’ guides the LLM to adopt the persona of a house-

hold assistant and complete the partially completed task routine by

selecting potential future tasks from the available list of tasks in the
example scenario within the VirtualHome domain. With ‘few-shot’
prompting, the prompt includes two task routines randomly chosen
from previous days. Next, CoT prompting is used to explain the
reasoning behind each task in these example task routines. Such
explanations can be provided by the system designer or generated
by the LLM. The system message, few-shot examples with CoT ex-
planation, and the current query (i.e., partially completed or empty

task routine for the day) are provided as input to the LLM.

The LLM’s output to a prompt is parsed by an external validator
to check whether the tasks are feasible and in a reasonable order.
Specifically, the validator compares the LLM’s output with domain-
and task-specific contextual features extracted from existing knowl-
edge and recent observations to eliminate tasks that are invalid or
irrelevant, and reorder tasks according to the human preferences.
For example, the ad hoc agent will prioritize preparation of the
workstation over packing a lunch box when the human is working
from home. Since the list of validated tasks can change over time,
KAT enables the ad hoc agent to consider one anticipated task and
the current task as the joint goal for which a plan is to be computed.

3.4 Knowledge Acquisition

Since decisions based on incomplete or inconsistent knowledge can
lead to ineffective collaboration, KAT enables the ad hoc agent to
incrementally acquire domain knowledge and reduce ambiguity.
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The agent acquires knowledge in the form of objects, actions, and
axioms using two strategies: (i) it learns from cues provided by a
human during task execution; and (ii) it explores actions in different
states, identifying and correcting inconsistencies.

Learning from human cues: When an ad hoc agent receives a
cue from the human, e.g., “Agent 1 cannot put the cake inside the
microwave since the microwave’s door is closed", it automatically
generates and sends a prompt to the LLM by combining a predefined
system message (see Figure 2) with two examples of input and
expected output, the structure of the axioms (e.g., “a causes f if
p"), and the query based on the cue (Line 1, Algorithm 1). The LLM
maps this cue into candidate axioms using their known structure.
From the LLM’s output, the agent extracts actions (verbs), objects,
and action preconditions and effects (Line 2). It then checks whether
the new objects are already defined in II(D, H) (Line 3). Any new
objects are sent to the LLM with a second prompt (Figure 2) based
on a predefined message template, existing sorts in II(D, H), and
the new objects (Lines 4-6). The LLM then categorizes each new
object into one or more known basic sorts. If multiple basic sort
labels are returned for an object, the lowest category in the sort
hierarchy is used to add the new object to II(D, H) (Lines 7-8).

Next, the agent examines I1(D, H) to check whether the action
verb (e.g., grab) from the LLM’s output is already defined (Line
10). If an action that semantically matches this action verb exists
in II(D, H), the agent retrieves it; this action may exhibit the
same behavior as the one in the cue but have a different name,
e.g., pick(A,0) instead of grab(A,O). The agent performs strictly
controlled verb synthesis with WordNet [17] to retrieve synonyms
for the action verb from the cue and checks the synonyms with the
3 of II(D, H). If a match is found, the action verb from the LLM
output is replaced by the existing action in X. Also, the sorts of the
arguments of the action extracted from the human cue may differ
from those of the action in II(D, H), e.g., they may be subsorts or
parent sorts. If the sorts of arguments of the action in II(D, H) are
parent sorts of those in the cue, the agent uses the existing action as
is; if not, the agent lifts the sort of the existing action’s arguments to
the new sorts and updates I1(D, H) (Lines 11-13). If the extracted
action (or its equivalent) does not exist in II(D, H), the agent
adds it with the lowest (ie., most specific) sort labels for arguments
(Lines 14-17). This process ensures that we do not introduce the
same action multiple times with different sorts. This procedure is
also repeated for literals (Lines 18-25), and the actions and literals
are used to convert the extracted axioms to the appropriate format,
e.g., ‘a causes I’ converted to ‘holds(f,I+1) :- occurs(a,I)’), replacing
the ground sorts with variables and ensuring consistency between
head and body (Line 26). The axiom is then added to II(D, H) if it
does not exist (Lines 27-28).

Learning from observations. The second strategy enables the ad
hoc agent to refine its knowledge based on observations obtained

while using the existing knowledge for planning and execution.

It extends and adapts existing ideas on combining decision tree
induction with knowledge-based reasoning [19].

1. The agent selects an action ay from the newly learned
set of actions A, and an initial state of the environment Sj.
It simulates the execution of aj in Sy in its current domain

-switchon(R1,E1)

on(E1,L1)?
False True
Inconsistent opened(E1)?
False True
at(R1,L1)? at(R1,L7)?
False True
Inconsistent Consistent

Figure 4: Part of the decision tree created to learn missing
executability conditions.

to collect information about the outcomes (e.g., end state, an
inconsistent outcome).

2. An expected outcome’s absence indicates the absence of an
executability condition; any additional effects indicate missing
causal law(s). If all observations match expectations for differ-
ent actions and states, the current knowledge is considered to
be comprehensive.

3. The agent responds to an inconsistency by simulating the
execution of ay in different states, extracting from the answer
set and initial state all those fluent literals that have an object
constant that is also in ay. These collected literals form part of
the training examples.

4. In the training examples, the ground terms in literals are
replaced by variables, and the dataset is reformatted with the
fluent literals as features and the presence of absence of incon-
sistency as the class label. Each training example then records
the presence or absence of a fluent literal, and the presence or
absence of an inconsistency, as a binary value.

5. Separate decision trees are constructed for causal laws and
executability conditions, with the action as the root node, and
nodes are split using features that have not been used before
and are likely to result in the highest reduction in entropy.

6. Candidate axioms are generated by traversing the learned
trees from the root to the leaves using only those nodes that
agree with their class label up to a threshold level (90%) and
contain at least a minimum percentage (2%) of the dataset.

7. Only candidate axioms that have sufficient support among
the training examples (90%) are retained. The decision tree
induction process is repeated to explore different subsets of the
training data. Only axioms retained over multiple repetitions
are lifted to the general form and added to II(D, H).



Figure 4 shows part of a decision tree generated by this process,
with the agent learning the following two executability conditions:

—occurs(switchon(R, E),I) «holds(on(E, L), I), (2a)
not holds(at(R,L),I).
—occurs(switchon(R, E), I) «holds(opened(E),I). (2b)

which imply that an agent cannot switch on an appliance if it is not
in the same location or if the appliance’s door is open. Although the
strategy described above focuses on learning new objects, actions
and axioms, it can be used to learn new literals (relations) too.

4 Experimental Setup and Results

We experimentally evaluated the following hypotheses regarding
our architecture’s capabilities:

H1 Reasoning with prior knowledge and rapidly-learned behav-
ior models improves performance and promotes scalability;

H2 Using LLM-based anticipated tasks as joint goals improves
performance compared with planning for one task at a time;

H3 Incrementally-updated prompts and validators improve
task anticipation and team performance;

H4 Using LLM to directly output a sequence of low-level ac-
tions to complete tasks results in poor performance;

H5 KAT enables the ad hoc agent to accurately learn unknown
objects, actions, and axioms; and

H6 Reasoning with incrementally learned knowledge improves
the performance of the team.

We evaluated these hypotheses in the VirtualHome domain and
recorded the number of steps (plan length) and the total time taken
to complete the task(s) as the performance measures.

4.1 Experimental Setup

In our experiments, the human was modeled as a simulated entity
whose action choices were based on an ASP program that con-
sidered the human’s prior knowledge and runtime observations;
human did not reason with models predicting teammates’ actions.
Also, the human’s ASP program encodes certain preferences, pri-
orities, and capabilities that are not initially known to the ad hoc
agents but may be captured over time in the models they learn
in order to predict the behavior of the human. The sequence of
tasks generated by the task generator were assigned to the agents
over time; the agents were not aware of the complete sequence and
received one task at a time. The human was assigned the same goal
as the ad hoc agent(s). All agents received the same observations of
the domain at each step, which they used to plan their respective
actions. There was no direct communication between them.
When an ad hoc agent equipped with KAT received a task, it
prompted the LLM (Section 3.3). The anticipated tasks were vali-
dated and mapped to ASP literals, with the next anticipated task
and current task set as joint goals for this agent. During planning,
the ad hoc agent also used the learned behavior prediction model to
predict each teammate’s actions for a few steps (Section 3.2). These
predictive models were built using only 1000 examples of prior
traces of actions and domain state. The agent initially assigns one
learned model to each teammate but uses information from subse-
quent steps to incrementally revise models for each teammate based
on their observed behavior. The ASP program of the ad hoc agent
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included additional axioms for reasoning about these predicted ac-
tions of each teammate, which were mapped to exogenous actions.
As a result, the ad hoc agent’s plan anticipated preconditions of
some intermediate steps to be satisfied by a teammate’s actions,
even though the teammate did not always execute that action. The
ad hoc agent hence had to respond to unexpected action outcomes.

To evaluate H1 and H2, in Exp1, we randomly selected 100
task routines sampled from predefined sequences and measured the
ability of a team (human and an ad hoc agent) to complete these
tasks. Performance measures were the number of steps and time
taken. We used three baselines: Base1: LLM for anticipating future
tasks, but no behavior models to predict human’s actions; Base2: no
LLM to anticipate future tasks, but behavior models to predict the
human’s actions; and Base3: did not use LLM for task anticipation
or behavior models to predict human’s actions. In the absence of a
framework that supports all (or most) of KAT’s capabilities, these
baselines allowed us to conduct ablation studies and evaluate the
contribution of KAT’s key components. Since the time taken and the
number of actions in a plan can vary substantially based on the task,
the average of these values across trials may not be meaningful. We
instead ran paired trials and computed performance measure values
for baselines as a fraction of these values for KAT in each trial. We
then reported the average of these ratios.

For evaluating scalability in H1, we increased the team size by
introducing additional ad hoc agents, with three agents (one human,
two ad hoc agents) and four agents (one human, three ad hoc agents)
collaborating to complete tasks (in Exp1). These configurations
would normally make collaboration increasingly challenging, e.g.,
with just two agents the domain has ~ 1023 possible states, and this
number increases exponentially with the number of agents. We
then measured the number of steps and time taken by the agent
teams to complete the tasks.

To evaluate H3, in Exp2, we computed the precision and recall
of the tasks anticipated by the LLM, before and after applying the
validator, over the 100 task routines. Further, we randomly selected
20 task routines and recorded the performance when the LLM was
used with and without prompting methods. Baselines were: Base4:
no prompting strategy or validator; Base5: few-shot prompting
but no external validator; Base6: CoT prompting but no external
validator; and Base7: external validator but no prompt-engineering.

For evaluating H4, we conducted experiment Exp3, in which
we created an architecture that used the LLM to directly output
sequences of actions for specific tasks (Base8). Specifically, our
prompt included details of actions available in our example scenario
in VirtualHome, their intended purpose (from ASP program, e.g.,
move(agent, location): move the agent to an adjacent location). We
also supplied the LLM some Action Feasibility Rules:

e Movement Limitation (critical): must only move to adjacent lo-
cations defined by the next_to relationships.

o Object Location: must be in the same location as an object to act
on it (e.g., grab, put).

e Carrying Limit: cannot hold more than two objects. When hold-
ing two objects, actions like open, close, switch-on, or switch-off
require you to put at least one object down first.

o Appliance Safety: for safety, you should not open appliance
doors when they are switched on.
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o Avoid Conflict: if a human is holding an object, they will handle
all actions with the object. Do not attempt to grab or interact
with this object. Instead, focus on other parts of the goal.

The LLM also had access to the current world state, including the
location of the agents, objects, and appliances, and each appliance’s
state. The problem specification also described the task to be per-
formed; the immediate previous actions of the human and the ad hoc
agent; and any specific information to be considered (e.g., human
working from home). Additionally, the prompt included a detailed
example of selecting an action, and asked the LLM to generate an
action sequence for achieving the assigned goal.

The LLM’s action choice was assigned as the ad hoc agent’ action.
As a recovery mechanism, we corrected errors in the LLM output
up to three times per trial. For example, if the LLM’s action involves
grabbing an object without moving to the appropriate location,
we provided feedback explaining why this choice was incorrect
and allowed the LLM to predict another action for that step. We
measured the number of steps and time taken by the agent team to
complete the previously selected 100 task routines.

In Exp4, we introduced another ad hoc agent with an incomplete
knowledge base to the two agent team (ad hoc agent and human).
The new agent’s ASP program included only a subset of the objects
(17/31), actions (4/7), and axioms (6/9 causal laws, 16/26 executabil-
ity conditions). This corresponded to the absence of around 40—-45%
knowledge. We made sure that this agent had enough initial knowl-
edge to perform some basic activities, while also withholding key
knowledge to create gaps that limited the agent’s ability to com-
plete tasks. During task execution, the human agent periodically
describe actions of the knowledgeable ad hoc agent to the ad hoc
agent with missing knowledge. This agent then used the procedure
described in Section 3.4 to process these descriptions into ASP sorts,
actions and axioms with the help of an LLM and added the validated
information to its knowledge base. At the end of each episode, it
also used decision tree induction to learn new axioms. We then
evaluated the agent’s ability to learn missing knowledge across 10
episodes, with each episode randomly selecting from five different
task sequences and each sequence consisting of four tasks. Similar
to previous experiments, task sequences were generated by the
task generator and provided to the agent one at a time. However,
we intentionally omitted the future task anticipation algorithm to
prevent its influence on knowledge acquisition capabilities. We
recorded the number of objects, actions, and axioms learned in
each trial, and the precision and recall of learning these axioms
compared with a complete ASP program (ground truth).

In Exp5, we extended each episode from Exp4 to include three
runs. The first run in an episode had the same initial knowledge as
in Exp4, but the subsequent two runs built on the knowledge for a
potentially different sequence of tasks. This process was repeated
for the 10 episodes; we recorded the objects, actions, and axioms
learned after each run and episode, and computed precision and
recall as the performance measures. To evaluate H6 in Exp6, we
ran 20 trials with and without the learned axioms, recording the
number of steps and the time taken to complete the assigned task(s).

4.2 Experimental Results

Table 2 summarizes the results of Exp1. When the ad hoc agent
reasoned with anticipated tasks and predicted actions, it provided

Table 2: Average number of steps and time taken to complete
task routines; values for baselines computed as a fraction of
these values for KAT in each trial; for comparison, average
absolute values for KAT are 26.8 steps and 361 seconds.

Architecture Steps  Time(s)
KAT (anticipate tasks, predict actions) 1.0 1.0
Basel (anticipate tasks) 1.1 1.1
Base2 (predict actions) 1.3 1.2
Base3 1.4 1.4

Base8 (LLM predict low-level actions) 1.5 1.5

Table 3: Average number of steps and time taken by the teams
to complete the task routines; performance measure values
for Teams 2-3 computed as a fraction of these for Team 1.

Team  Steps Time(s)

Teaml 1.0 1.0
Team2 0.8 0.9
Team3 0.7 0.8

the best performance with lowest number of action steps and least
amount of time taken to complete tasks. The accuracy of the human
behavior prediction model learned by the ad hoc agent was 85%, i.e.,
it makes errors, but it supports rapid learning and revision. Also,
reasoning with prior knowledge and the output of these predictive
models significantly improves performance. When the agent used
task anticipation but not the behavior prediction models (Base1),
the number of steps and time taken increased; not considering
the teammates’ actions lead the agent to waste time in executing
redundant actions. These results emphasize the importance of the
behavior prediction models, supporting hypothesis H1.

When the ad hoc agent used the behavior prediction models
but did not anticipate future tasks (Base2), performance worsened,
with a further increase in the number of steps and the time taken
to complete tasks. Planning jointly for the current and anticipated
tasks saved time and effort. These results support H2. Also, when
the ad hoc agent did not use task anticipation or the behavior pre-
diction models (Base3), the performance worsened further. These
results support H1 and H2. Finally, using the LLM to directly com-
pute a sequence of low-level actions (Base8) resulted in the worst
observed performance. All results were statistically significant with
p < 0.0001. These results support H4.

Next, Table 3 summarizes the performance of Team1 (human,
one ad hoc agent), Team2 (human, two ad hoc agents) and Team3
(human, three ad hoc agents) in completing the same set of 100 task
routines. As the number of ad hoc agents increases, task completion
becomes more efficient: Team2 outperformed Team1 by requiring
fewer steps and less time to complete the tasks, while Team3 showed
further improvements over Team2. These results emphasize the
importance of efficient collaboration and demonstrate the scalability
of the architecture to multiple agents, supporting H1. Once again
all the results were statistically significant with p < 0.0001. The
observed performance was primarily due to design choices in KAT
to enable each ad hoc agent to reason independently and efficiently
using domain knowledge and learned models.



Table 4: Precision and recall values of the anticipated tasks
before and after applying the validator.

Architecture Precision  Recall

Before validation (LLM output)  0.78 0.76
After validation (with validator) 0.99 0.78
— Objects Objects correctly classified
— Actions Causal laws
— Executability conditions
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Figure 5: Average number of objects, actions, axioms learned
in three consecutive runs, averaged over 10 episodes.

Table 4 and 5 shows the results from Exp2. We observed a
marked improvement in precision after applying the validator to
adapt the LLM’s anticipate future tasks. The recall values do not
change substantially as the validator did not introduce new tasks;
it only reordered the tasks that are out of order and removed ir-
relevant tasks. Table 5 summarizes the performance when differ-
ent prompting strategies and the validator are used with the LLM
output (Section 3.3). We observed a significant improvement in
performance, e.g., fewer steps and less time to complete tasks with
the external validator and a combination of prompting methods. In
particular, the use of the validator to adapt the LLM’s output to the
domain had a significant impact on performance, supporting H3.

Results of Exp4 are summarized in Table 6. We observed high
precision and recall for learning the missing axioms. Figure 5 sum-
marized the results of Exp5 with three consecutive runs in each
of 10 episodes. By the end of the first run, the agent successfully
learned 4-5 of 14 missing objects, all three missing actions, 1-2
of three causal laws, and 6-7 of 10 executability conditions. After
three runs, these increased to 8-9 objects, 2-3 causal laws, and 9-10
executability conditions. The steady increase in number of objects,
actions, and axioms, along with high precision and recall, indicated
the agent’s ability to reliably learn new knowledge, supporting H5.

Table 7 summarizes the results of Exp6, which evaluated the
impact of the learned knowledge on the team’s ability to complete
tasks. We ran paired trials with and without the learned axioms and
computed performance measure values for the former as a fraction
of the values for the latter. Reasoning with the learned knowledge
substantially improved performance. In the absence of this knowl-
edge, at least one ad hoc agent often could not compute valid plans
to complete the tasks, and could not contribute to the team’s perfor-
mance. The significant low number of steps and time (p < 0.0001)
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Table 5: Average number of steps and time taken by the team
(human, ad hoc agent) to complete tasks with prompting
strategies and/or validator; values for baselines computed
as a fraction of these values for KAT in each trial, average
absolute values for KAT are 27.5 steps and 372.7 seconds.

Architecture Steps  Time(s)

KAT (all prompting, with validator) ~ 1.00  1.00
Base4 (no prompting, no validator) 121 1.15
Base5 (few-shot, no validator) 1.17 1.18
Base6 (CoT, no validator) 1.16 1.16
Base7 (no prompting, with validator) 1.05 1.04

Table 6: Average precision and recall of learned axioms in 30
runs over 10 episodes; accurately learned unknown axioms.

Axiom type Precision  Recall
Causal laws 0.96 1.0
Executability conditions 1.0 1.0

Table 7: Average number of steps and time taken by the team
(human, ad hoc agent) to complete task sequences repre-
sented as a fraction of these values for baseline.

Architecture Steps  Time(s)

With learned axioms 0.76  0.84
Without learned axioms 1.00  1.00

emphasize the importance of learning previously unknown knowl-
edge, and support H6. Source code, execution traces and additional
results for KAT are in our open-source repository [8] and [7].

5 Conclusions

This paper described KAT, an architecture for Ad Hoc Teamwork
(AHT) that enables an Al agent to collaborate with other agents (hu-
man, Al) without prior coordination. KAT embeds the principles of
refinement, ecological rationality, and interactive learning, enabling
the agent to: automatically identify and reason with information
relevant to tasks at hand; leverage the generic knowledge encoded
in an LLM for high-level task anticipation; rapidly learn models
predicting the behavior of other agents; perform non-monotonic
logical reasoning with prior knowledge and behavior models to
jointly plan and execute actions to achieve the current and antici-
pated tasks; leverage a LLM to map natural language descriptions
of action outcomes to ASP representations of previously unknown
objects, actions, and axioms; and use decision tree induction to
incrementally learn axioms from observations. We evaluated KAT’s
capabilities along with various baselines in a physics-based sim-
ulation environment, highlighting the impact of each component
of KAT. Future work will explore larger teams and physical robots
collaborating with humans in AHT settings.
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A Execution Traces

We provide some additional execution traces as a qualitative evalu-
ation of H3.

A.1 Examplel

Figure 6 shows an execution example where the ad hoc agent used
the LLM to anticipate future tasks, with and without the prompting
strategies and validator. The example was set on a weekday where
the human was working from home and no guests were expected.
The correct task routine in this context was: Prepare breakfast,
Prepare home work-station, Prepare coffee, Prepare lunch. When the

LLM prompt without using p! p i ing

Anticipate the remaining tasks in a household day’s routine by completing the partially executed
task sequence, using only the tasks provided in the task list and the given information.

Task List: [Prepare breakfast weekday, Prepare coffee, Clean dishes, ... ]

Complete the following routine on a weekday the human is working from home:
[Prepare breakfast weekday]

Output A - Incorrect Output B - Expected

Task Outputs 1. Prepare breakfast weekday 1. Prepare breakfast weekday
from LLM 2. Prepare coffee A 2. Prepare home work-station /1
A
L. Disorder 3. Prepare home work-station /! 3. Prepare coffee A
4. Pack bag 4. Pack lunch
Task: Prepare home work-station Task: Pack bag
0 Conflict:
b°“1 tasks grab(ah_agent, cellphone) open(ah_agent, bag)
manipulate

move(ah_agent, desk) putin(ah_agent, apple)

the same object putdown(ah_agent, cellphone, desk)| | putin(ah_agent, cellphone, bag)

Figure 6: Execution example: using LLM without prompting
strategies or external validator causes conflicts during exe-
cution, having a negative impact on performance.

ad hoc agent queried the LLM without the prompt engineering
techniques or validator (Section 3.3), the anticipated task list was
different from the expected output. The prompt to the LLM without
using the prompt engineering strategies is shown in Figure 6. The
LLM output was [Prepare breakfast, Prepare coffee, Prepare home
work-station, Pack bag]. This output failed to align with the human
preferences and priorities as:

e Higher priority was assigned to making coffee than setting
up the workstation. This would delay the human for work
and lead to coffee not being hot when needed.

e Packing the bag was an unnecessary task as the human was
not leaving the house, and would have been filtered out by
the validator.

On the other hand, when the ad hoc agent used the prompt engi-
neering strategies and the validation strategy, the prompt to the
LLM was automatically generated while incorporating context, as
described in Section 3.3. The LLM’s output was [Prepare break-
fast, Prepare home work-station, Prepare coffee, Prepare lunch]. This
matched the expected routine. i.e., making breakfast and setting
up the workstation were considered high priority tasks, and ir-
relevant tasks such as pack bag were filtered out by the validator.
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These results demonstrate the importance of using a combination
of prompting techniques and the external validator, supporting H3.

A.2 Example2

We observed similar situations when extending the setup to three
agents, one human and two ad hoc agents, collaborating on a week-
end when guests were expected. The correct task routine in this
context was: Prepare breakfast, Prepare table for guests, Prepare lunch,
Clean dishes.

When the first ad hoc agent queried the LLM with the prompting
strategies but without the validator, the anticipated task list by
the LLM was Prepare breakfast, Prepare table for guests, Prepare
lunch, Serve snacks. For the second ad hoc agent the LLM output
was Prepare breakfast, Prepare table for guests, Prepare lunch, Serve
snacks, Clean dishes.

When the validator was used, the outputs to both the agents
were refined by incorporating context. Since the human usually did
not require snacks after lunch, the task Serve snacks was removed.
For the first agent the refined task list was Prepare breakfast, Prepare
table for guests, Prepare lunch. For the second agent the task list
was Prepare breakfast, Prepare table for guests, Prepare lunch, Clean
dishes; since the Clean dishes task was a defined task in this domain,
it was retained by the validator.

This example further demonstrates the importance of using the
validator and support H3.

A.3 Example3

With predictive behaviour models - Steps: 28 Without predictive behaviour models - Steps: 34

Hl.xman [grab] cupcake | agent [grab) boardgame hu man [grab] cupcake |agent [grab] cupcake

hu man [move] coffeetable |agent [move_to] coffeetable
human [grab] candybar |agent [grab] candybar

i\‘l‘Aman [move_to] coffeetable | agent [move_to] desk2
human [grab] candybar | agent [move_to] tustand

Hl.xman [move_to] kitchentable | agent [grab] cutlets hu man [grab] cutlets |agent [grab) cutlets

human [move._to] tvstand | agent [put] milk on microwave || agent [put] cutlets on desk1
human [move_to] desk2 | agent [move_to] desk1 agent [move_to] desk2
human [put] cereal on desk2| agent [put] cutlets on desk1 agent [put] cereal on desk2

Figure 7: Execution trace for task routine: [Prepare breakfast,
Prepare activities, Serve snacks, Clean kitchen]. When an ad
hoc agent is not allowed to predict and reason about the
human’s actions, it may choose to execute same action(s) as
the human, leading to longer plans.

Figure 7 compares two plans executed by a team comprising a
human and an ad hoc agent for completing a different set of tasks:
[Prepare breakfast, Prepare activities, Serve snacks, Clean kitchen],
with and without the behavior prediction models (Section 3.2). In
the first plan, when the ad hoc agent used the behavior prediction
model to predict the future actions of the human, the team success-
fully completed all tasks for the given day in just 28 steps. On the
other hand, when the ad hoc agent did not use behavior predic-
tion models, it often selected the same actions as the human for
any particular task, leading to unnecessary delays in completing
the tasks. For example, in the second plan the agent frequently
selected the same action as the human—simultaneously picking
up the cupcake, candy bar, and cutlets, introducing redundant be-
havior and prolonging task execution. As a result, the overall plan
was extended to 34 steps. These results demonstrate that using the
behavior prediction models enables the ad hoc agent to coordinate
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efficiently by avoiding action conflicts with the human. This further
supports H1.

A.4 Example4

In the current state, the human is holding both cereal and bananas, which
means they cannot handle any additional objects. Since the goal involves
switching on the computer and placing the note book and cellphone on the
living room desk, | need to focus on actions that can help achieve this goal.
The computer is located at the living room desk, and | cannot carry any items
for the human while the human is holding items.

Since there’s no action feasible for me to grab or put anything while the
human is busy, one action | can perform immediately is to move to the living
room desk to prepare for placing the items once the human is free.

| will predict the next action based on this reasoning.

Next action: move(agent, living room desk)

Figure 8: Example output when ad hoc agent uses the LLM
for computing sequences of actions for specific tasks (Base8).

When the ad hoc agent used the LLM for directly computing
sequences of actions for specific tasks Base8, the prompt was au-
tomatically constructed following the procedure described in Sec-
tion 4.1. Specifically, it consisted of:

e a system message;

o details of the available actions in VirtualHome and their in-
tended purposes (e.g., move(agent,location): move the agent
to an adjacent location; put(agent,object,surface): place an
object on a surface; open(agent,appliance): open an appli-
ance; switchon(agent,appliance): switch on an appliance);

e action feasibility rules—see Section 4.1;

e adjacency information about locations in the domain;

e current world state (human location: living room desk,
agent location: kitchen table, human holds bananas in hand,
human holds cereal in hand, milk on kitchen table, apple
on living room coffee table, plum on living room coffee ta-
ble, mug on living room coffee table, cupcake on bedroom
coffee table, candy bar on bedroom coffee table, wine on
bedroom coffee table, board game on bedroom coffee ta-
ble, water glass on living room desk, computer on living
room desk, juice on bedroom desk, plate on counter one,
cutlets on counter one, coffeemaker on counter three, cof-
feepot placed inside coffeemaker, book on kitchen small
table, chips on kitchen small table, bread slice on kitchen
table, dishwasher under counter three, cellphone on living
room coffee table, dishwasher door closed, dishwasher not
switched on, computer not switched on, coffeemaker not
switched on);

e description on task to be performed. For example, if the
team’s current goal is to prepare the work-station, it has
three subtasks: switch on the computer, placing the note
book on the living room desk, and placing the cellphone
on the living room desk;

e immediate past actions of the human and the ad hoc agent;

e contextual information about the day (weekday, and the
human is working from home);

e an illustrative example of action selection;
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Algorithm 1: Acquire knowledge from human cues.
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Input: Human cue; I1(D, H); pretrained LLM;

systems_msg1, system_msgy (predefined); few shot

prompting examples.

Output: Updated ASP program II(D, H)
axiom < LLM(system_msgi, examples, cue)
action, literals, objects « parse_axiom(axiom)
new_objects < check_exists(objects, II(D, H))
if new_objects then
sorts « extract_sorts(II(D, H))
sort_categories «—

LLM(system_msga, sorts, new_ob jects)
obj_categories «—

lowest(new_objects, sort_categories, sorts)
(D, H) «

update_core_ASP(new_objects, obj_categories)

end
act_exists, action « check_exists(action, II(D, H))
if act_exists with low level sorts then
action « update_action_sorts(action, II(D, H))
(D, H) « update_core_ASP(action)
else if —action_exists then
action «—
get_action_with_lowest_sorts(action, II(D, H))
(D, H) «— update_core_ASP(action)
end
lit_exists, existing_literals «—
check_exists(literals, I1(D, H))
for literal € literals do
if literal ¢ existing_literals then
literal « revise_literal(literal, I1(D, H)
(D, H) < update_core_ASP(literal)
existing_literals = existing_literals + literal
end
end

axiom <« create_axiom(axiom, action, existing_literals)

if axiom ¢ I(D, H) then
‘ (D, H) « update_core_ASP(axiom)
end

e a query asking the LLM to predict the next action required
to achieve the task.

Figure 8 shows the resulting output from the LLM. The selected
action move(agent, living room desk) violated the ‘Movement Limi-
tation (Critical)’ rule in ‘Action Feasibility Rules’, which required
the agent to verify the adjacency of locations before attempting to
move. This example demonstrates that the LLM may not respect
constraints even when they are provided as input, and highlights
that an LLM is not designed for computing plans for non-trivial
tasks; using an LLM to directly output a sequence of low-level
actions to complete tasks can lead to poor performance, which
supports hypothesis H4.

B Algorithm for Learning from Human Cues

We provide the algorithm referenced in Section 3.4, which the ad
hoc agent used to learn new objects, actions, and axioms from cues
provided by a human during task execution.
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