Adaptive Sampling-based View Planning under Time Constraints

Lars Kunze! and Mohan Sridharan? and Christos Dimitrakakis® and Jeremy Wyatt?

Abstract— Planning for object search requires the generation
and sequencing of views in a continuous space. These plans
need to consider the effect of overlapping views and a limit
imposed on the time taken to compute and execute the plans.
We formulate the problem of view planning in the presence of
overlapping views and time constraints as an Orienteering Prob-
lem with history-dependent rewards. We consider two variants
of this problem—in variant (I) only the plan execution time is
constrained, whereas in variant (II) both planning and execution
time are constrained. We abstract away the unreliability of
perception, and present a sampling-based view planner that
simultaneously selects a set of views and a route through them,
and incorporates a prior over object locations. We show that
our approach outperforms the state of the art methods for
the orienteering problem by evaluating all algorithms in four
environments that vary in size and complexity.

I. INTRODUCTION

Planning of visual search for objects in large continuous
spaces is an open problem with many aspects that make
existing solutions inadequate. A set of views must be selected
from an infinite number of possible views. To provide any
preference ordering over this infinite set, it is necessary to
have prior information about where objects might be found,
and for that prior to be non-uniform. This formulation of
the task of finding the best set of views is a sub-modular
problem, and greedy solutions can be shown to have bounded
sub-optimality. However, it does not take into account the
costs of sequencing those views—the best set of views may,
for instance, be time consuming to visit, and there may be
another set of views that is slightly worse in terms of the
information provided but vastly quicker for a robot to traverse.

The view planning problem is further complicated by four
issues. First, some views will overlap and the value of a
view, at any point in a sequence of views, will depend
on the sequence of views taken so far. Since the values
of views are history dependent, the problem ceases to be
sub-modular. Second, the sensing process should ideally be
modeled as being unreliable, transforming the problem from
one of planning in a physical space, to one of planning
in belief space. Third, in many practical applications, the
time available to execute the planned trajectory of views
is constrained. Fourth, existing view planning approaches
have not considered the length of time used to plan, which

1Oxford Robotics Institute, Dept. of Engineering Science, University of
Oxford, United Kingdom, lars@robots.ox.ac.uk

2Department of Electrical and Computer Engineering, The University of
Auckland, New Zealand, m.sridharanQauckland.ac.nz

3Computer Science and Engineering, Chalmers University of Technology,
Goteborg, Sweden, chrdimi@chalmers.se

4Intelligent Robotics Lab, School of Computer Science, University of
Birmingham, United Kingdom, jlw@cs.bham.ac.uk

vl v3
v2 v2

Fig. 1: View planning with overlapping views and time limit.
Imagine three possible views onto a table, of which a robot
can only observe two in the time available. If view v1 is taken
first (A), then the robot can next take v2 or v3 (B or C). The
reward for each of these two views depends on its overlap
with v1. The robot must account for both history-dependent
rewards and navigation costs.

will determine how much of the plan (i.e., solution) can be
executed in the time available.

We propose a solution to the first, third, and fourth of the
issues identified above related to the challenging problem of
view planning with overlapping views and time constraints.
We do not consider unreliable perception, which transforms
view planning into a yet worse class of problems—we leave
this for future consideration. In this paper, we refer to the
problem of bounded execution time as variant (I), and to the
problem of bounded planning and execution time as variant
(1I). We assume the ability to use sensor inputs to generate 2D
and 3D maps of the environment, for navigation and object
recognition; and assume prior knowledge about the locations
of objects, which can be related to the 3D map. We make
the following key contributions:

o We show that the view selection and view sequencing
problem can be posed as an orienteering problem (OP)
with redundant views and history-dependent rewards.

e We present a Gibbs sampling-based view planning
algorithm (GVP) that produces approximate solutions,
but will provably converge in the limit to an optimal
sequence given a finite set of views.

o We extend our algorithm (GVP) to learn, from a batch
of example problems, how to divide the available time
between thinking and acting.

« We evaluate our approaches on a range of environments
under different time constraints and compare them to
the state of the art.

To locate any given object, our algorithm (GVP) first generates
a much larger number of candidate views than can possibly be
searched in the available time, orders them by the probability
of providing a view of the object, and selects the m best
views for subsequent analysis. A sampler incrementally selects
a sequence of views that simultaneously maximizes the
likelihood of finding the object, considering the field of view
overlap and the viewing history, and minimizes the time taken

to do so—see Fig. 1. Many such sampling processes are run,
each of which is terminated when the time limit is reached,
and the robot chooses the best sequence of views.

For variant (I), we compare GVP to a randomized OP
solver, and to two solvers for the traveling salesperson
problem (TSP) (1) a fast but sub-optimal greedy TSP
solver (TSP-G); and (2) an optimal but slow TSP solver
based on dynamic programming (TSP-DP). We show that
GVP typically outperforms other algorithms for problems
of different sizes and different bounds on execution time.
On small problems, TSP-DP produces better solutions, but
it is challenging to terminate in reasonable time for larger
problems—GVP is thus an effective, if sub-optimal, solution.
For variant (II), we evaluate the performance of our algorithm
in simulated environments, for object search tasks. We show
that our adaptive algorithm outperforms fixed policies.

The remainder of the paper is organized as follows. We
discuss related work in Sec. II, and the problem formulation in
Sec. III. Sec. IV describes our sampling-based view planning
algorithm and implementation details. Sec. V discusses
experimental results, and we conclude in Sec. VL.

II. RELATED WORK

Early work on object search discussed its intractability in
a continuous space, even under some simplifying assump-
tions [1]. Subsequent approaches have employed different
strategies to address the complexity, e.g., visual saliency [2];
planning at the level of rooms and views with associative
knowledge [3], [4]; and search with qualitative spatial
relations [5]. Some approaches assume reliable observations,
whereas others reason under partial observability using a mix
of qualitative and probabilistic reasoning for efficient search,
e.g., for estimating target location at the level of rooms [6]
or locations in rooms [7], [8].

The fundamental problem of planning a sequence of views
to find an object can be viewed as a generalization of
the art gallery problem and the watchman problem. The
art gallery problem is NP-hard, and is a generalization of
the guarding problem where sensors have infinite range,
bounded only by obstacles [9]. A randomized algorithm
developed for this problem provides a high probability of
bounded error between its coverage and the optimal solu-
tion [10]. Approximate algorithms have been proposed for art
gallery problem sequenced by a traveling salesman problem
(TSP) [11]. With unreliable sensing, the joint art-gallery and
watchman problem is a continuous space, continuous action
POMDP, but even discrete state, discrete action POMDPs
can become computationallu intractable. Researchers have
partially addressed this intractability through hierarchical
decompositions [4].

Our view planning problem is related to planning in belief
space, e.g., for task and motion planning [12], although
we do not plan in belief spacee. Also, unlike probabilistic
roadmaps [13], we do not restrict the solution space too
much, since we consider time constraints. There is also some
relation to work in temporal logic planning [14], although

existing approaches do not address the issues of interest and
do not scale like our approach.

Our view planning problem is most related to the orien-
teering problem (OP) [15]. In an OP, a rewarding sequence
of locations must be visited, where each location can have
(in general) a different associated reward. We use a sampling-
based algorithm for the OP as one of the baselines for
comparison [16]. OPs, are however, typically stationary
reward problems, whereas we must solve a varying-reward
OP, also called general OP [17].

We assume reliable perception and work with a continuous
state, continuous action MDP with a history-dependent reward
function. Our novel contribution is an algorithm for the joint
problem of selecting views (art-gallery) and planning a route
in continuous space. We present a randomized algorithm
that interleaves the selection of views with the selection
of the route. Unlike previous work, including those that
used stochastic branch and bound [18] or Monte-Carlo tree
search [19], our method has very low space complexity.

III. PROBLEM FORMULATION

We decompose the problem of view planning for object
search with time constraints in a continuous environment into
two parts: (i) transforming the continuous problem into a
discrete problem; and (ii) solving the discrete problem using a
sampling-based approach. We consider the discrete problem as
an Orienteering Problem (OP) with history-dependent rewards,
i.e., given a fully connected graph of locations s € S, a cost
function C(s, s’), and a time limit 7', maximize the expected
reward R(s, $1,...) obtained from a sequence of visited
locations—the reward of a location in the sequence depends
on the locations that have been visited before. We investigate
two variants of this problem formulation. Variant (I) considers
only the execution time (7’z) when solving the view planning
problem within a time limit, i.e., Ty < T. Variant (II)
considers both planning time (7») and execution time (Tg),
ie., (Tp + TE) <T.

IV. SAMPLING-BASED VIEW PLANNING

This section provides an overview of our algorithm,
followed by a detailed description (Sec. IV-A), an adaptive
extension (Sec. IV-B), and the implementation (Sec. IV-C).
We assume that we are given a: (1) 2D environment map
(Ms3p); (2) 3D environment map (Msp); (3) probability
distribution P of a robot at location s observing an object
of a certain type; and (4) function C(s, s’) that provides the
temporal cost of moving between locations s and s’. Sec. IV-C
describes how P and C' are computed.

To search for objects within time limit 7', the robot
generates a trajectory s = Sg,S1,...,S¢ composed of a
sequence of locations s; (t = 0,...,t"). Here, t indexes
waypoints in the trajectory—the time from the ¢-th to the
t+1-th location is not fixed, and ¢’ denotes the index of the last
feasible waypoint given time limit 7. We use ¢ : s — {0,1}
to denote whether or not we can observe the object at location
s. Then P(¢y = 1 | ¢y.4_1,81:4), With ¢y = &(s;), is the
probability of a positive observation at the next time step

Algorithm 1: View planning (phase one): OP construction

Algorithm 2: View planning (phase two): OP solving

1 Function GVP-OP-CONST (Masp, P, tc)
Input :2D map Msp; prob. dist. of perceiving an object P (based
on M3p), target coverage tc (0 < tc < 1)
Output : Set of locations S; cost function C'

2 begin

3 S+« 0

4 coverage < 0

5 while coverage < tc do

6 s < sampleLocation(Map)

7 S+ SN s

8 coverage < coverage + P(s)

9 /* Filter redundant locations s € S with zero/low probability (P)
such that the coverage constraint holds*/

10 S « filter RedundantLocations(S)

1 /* Calculate the cost C(s, s”) for all location pairs */

12 for s€ S,s’ € S do

13 | C(s,s") « computeCost(Map,s,s")

14 return S,C

given the trajectory history—Sec. IV-C describes how we
compute these probabilities. Given T', P and C, the objective
is to find a trajectory s t}g/at maximizes expected reward R:

Ryp(s) = Rr(s1) = > P(¢r = 1A¢ = 0k < t); (1)
t=1

with total cost not exceeding tlitme limit T

C(S) = C(Slzt’) = ZC(Stflv St) <T.)
t=1

Instead of exhaustively exploring all possible trajectories
s, we generate them from a distribution, which prefers
trajectories that look the best myopically, and puts a non-zero
probability on every path.

A. The Sampling-based Algorithm

The core idea of our algorithm is a two-phase anytime
sampling-based optimization of the reward function. The
first phase (Algorithm 1) transforms the continuous problem
into an OP, and samples a set of possible locations S until
the search area is covered to a certain degree (based on
P) (Lines 3-8). Locations with zero or low probability are
filtered out to satisfy coverage constraint (Line 9), and the
cost C(s, s') for all location pairs is calculated (Lines 12-13).

The second phase (Algorithm 2), which solves the OP, first
selects the m best locations from S (Line 4), and updates
and normalizes P by taking view dependencies into account
(Line 6). Next, it generates a series of trajectories defined as
an ordered sequence of locations, i.e., sk = (s’g, s’f7 R sfk),
within time limit 7" (Lines 8-20). All trajectories start from the
current robot pose, i.e., Vk, slg = sg. The tth location of the
kth trajectory (s¥) is sampled from the following distribution
without replacement (Line 14):

*90(55—1»5?)
Kk Kk k kA€
si ~ P(gf =1 P14_1,874)——F——

Z

where t = 1,...,t* and ¢, , = 0 if we have not found
the object yet. The exponential expression is the transition
distribution of choosing the next location based on costs, and
Z is a normalizing constant. The sampling procedure only

3)

1 Function GVP-OP-SOLVE (S, P,C, T, ns,m, p)

Input :Set of locations S; prob. dist. of perceiving an object P; cost
function C; time limit 7"; number of trajectories ng; number
of locations to be considered m (0 < m < |S]);
regularization parameter g

Output : Sequence of locations s

2 begin

3 /*Select the m best locations form S according to P */

4 S’ «+ select M BestLocations(S, m, P)

5 /* Update and normalize P according to S’ */
6

7

8

9

P «+ updateAndNormalize(P, S")
/* Generate a set of trajectories S (of size ns) */

S« 0

for k£ < 1 to ns do
10 /* Initialize sequence with current robot location*/
11 sk (sk)
12 t+1
13 while C(s*) < T do
14 sF + sampleNextLocation(P, C, s*, 0)
15 s* < append(s*, sf)
16 S!S\ sk
17 /* Update and normalize P according to new S’ */
18 P + updateAndNormalize(P, S")
19 t—t+1
20 S+ 8n sk, ,
21 s* < arg max Rp(s")

skes

22 return s*

stops when time limit 7" is exceeded, and discards the last
location, i.e., all sampled trajectories account for the time
constraint in Equation 2. However, the trajectories can be of
different length. Finally, ¢ > 0 is a parameter used to adjust
the influence of the cost function. If p = 0, e_gc(sffl’sf)/Z
is a uniform distribution, and reward is only based on location
and not costs—higher the value of p, greater the preference
for locations with lower costs, leading to more cost-effective
trajectories. When a decision must be made, the trajectory
with the highest reward (so far) is chosen for execution
(Equation 1) (Lines 21-22). If there is a tie, the trajectory
with the smallest expected cost is chosen. We experimentally
analyzed the effect of the parameters in both algorithms.
However, finding an optimal setting for the parameters is
beyond the scope of this paper.

B. Adaptive View Planning

The algorithm(s) for Variant (I) do not include planning
time within the time constraint'. To account for the plan-
ning time 7T'p in variant (II), we revised the constraint as
Tp +Tg < T, resulting in a trade-off between planning
time and execution time. To maximize the expected reward
Ry acquired during execution, the robot is required to
minimize its planning time. As an algorithm’s planning time
is influenced by parameters 7', ns, and m, their optimal
values need to be determined. Since they depend on 7" and
on the problem size |S|, we determine them experimentally.

Let us assume a robot is given a new search problem with
time limit 7" and size |S’|. For an optimal solution, the robot

'We assume a complete plan should be produced before execution. This
assumption can be relaxed by allowing concurrent planning and execution.

need to determine values of the parameters that maximize the
reward function Rp. Since the planning time Pr is included
in the time limit, the robot cannot search the parameter space
exhaustively. We propose to approximate the surface of the
reward function from known problems. We assume that the
robot has computed the reward functions over the parameter
space (T, ns, and m) for some (but not all) search problems,
and uses this information to interpolate (or extrapolate) the
reward function for new search problems. We index pre-
computed reward functions by 7" and |S|, i.e. 7(7, |S]). To
determine the parameters (7, ns, m) that maximize the reward
for a new problem (T”,|S’|), adaptive extension sampling
performs the following steps:

1) Select two known problems (74, |S:|) and (T3, |S2|)

2) Interpolate (or extrapolate) r(7”,]S’|) from the pre-
computed functions (71, |S1|) and r(Tz,|Sa|).

3) Find the maximum in (7", |S’|) and return the corre-
sponding T', ng, and m. If this m is lower than the
expected plan length for a given T’ (determined from
known problems), we set m to be the expected plan
length plus three times its standard deviation to ensure
that the available time 7" is used by the robot.

In this work we have used a linear interpolation method.

C. Implementation

This section describes the integration of our algorithm with
other components, and our algorithm’s implementation.

a) Integration on a robot: We integrated our view
planner with the perception and action components of a
simulated SCITOS AS5 robot (http://metralabs.com)
equipped with a 2D laser range finder, a depth camera, and a
semantic camera. The range finder is used to create Msp and
for robot localization. The cameras are mounted on a pan-tilt
unit (PTU) and have the same field of view. The depth camera
is used to generate Ms3p. The semantic camera is used for
object recognition—it returns true (false) when an object of
a given type is (is not) in the field of view. Recall that we
assume perfect perception as we are primarily interested in
evaluating the planning algorithm—a more realistic sensor
model can be included if needed. We also use the motion
planning and navigation routines from the Robot Operating
System (ROS). The robot can thus be controlled by specifying
a target pose, and the cameras can be controlled by specifying
the PTU’s angles.

b) Sampling of locations (S): Step 1 of Algorithm 1
samples locations s € S until a predefined area of Msp is
covered (based on P). Each location s is composed of robot
pose (z € X) and view pose v € V variables, i.e., s = (z,v).
We first sample a robot pose x from Msp and verify that
the robot can reach it. We then generate a number (n,) of
random pan and tilt angles for the PTU (can use fixed angles
too), and use the SCITOS robot model’s forward kinematics
to compute the poses of the cameras on the PTU. At each
pose x € X, the robot takes several views v € V. We repeat
this process until the predefined space is covered.

¢) Probability distribution P(¢; = 1|s1.¢): The proba-
bility distribution P is based on the assumption that objects
rest on surfaces. From a given Msp, we first extract the
supporting surfaces based on the estimated normal of each
voxel. Then, we identify the supporting surfaces’ voxels that
would be observed at each generated pose, by counting the
number of voxels that lie within a frustum projected to the
pose s. This provides the initial distribution over views, i.e.,
P(¢o = 1). Since we sample views without replacement,
we remove any selected views, update the probabilities of
dependent views, and normalize the distribution. We treat
overlapping views as mutually dependent; once a view is
chosen, we update the probabilities of all dependent views.
We do this until we reach a plan length t*.

d) Cost function C(s,s’): The cost, represented as time
in seconds, of moving between locations s and s’ is the
maximum of two sub-costs (1) navigation cost C,q,; and (2)
pan-tilt unit cost Cps,,—we assume the robot can navigate
and operate its PTU concurrently:

C(S, S/) = C((CC, v), (33/7 U/)) 4)

= maz(Chaw(x, 2"), Cptu(v,0")).

To compute the navigation cost for a pair of robot poses
(z, "), we call the motion planner in ROS, retrieve a trajectory
of waypoints, calculate the linear and angular distances
between all consecutive waypoints, multiply them by their
respective velocities, take the maximum of the linear and
angular durations, and sum them up. The PTU cost is
calculated by multiplying the differences between the current
and the target pan-tilt angles by their respective velocities,
and computing the maximum of these values.

V. EXPERIMENTAL EVALUATION

We evaluated our view planning algorithm in simulation.
For variant (I), we compared our algorithm with baseline
algorithms in four simulated office environments that vary
in size and complexity (Tab. I). The hypothesis was that our
algorithm would scale better than the baseline algorithms,
especially in larger environments. We used the expected
reward as the performance measure. For variant (I), we
demonstrate the selection of our algorithm’s parameters as
a function of problem size (|S]) and time limit (7"), thus
supporting scaling by adapting to spatio-temporal constraints.
The hypothesis was that our adaptive approach would outper-
form fixed strategies in novel environments. We measured
the (a) expected rewards from the generated plans; and (b)
performance when the plans were executed in a simulated
environment—for the latter, performance was measured by
the number of objects found.

A. Experimental Results: Simulation

Simulation trials were conducted in the robot simulator
MORSE [20]. For each environment in Tab. I, we generated
2D and 3D maps, and sampled locations such that 95% of
the space was covered. In all environments, the robot had a
predefined starting location.

TABLE I: Experimental Environments

Environment El E2 E3 E4
Small Medium Large Huge

. 2 g g
Size (m*) @32m2) (96m2) (168m2) (240m?)
Coverage 95% 95% 95% 95%
(%)
Locations
(s 91 (322) 139 (402) 134192 1399
(unfiltered) (1462) (1533)
3D occ.
grid size 2362 4519 8775 12950
(#voxels)
3D B IV—I | E i FI‘
occupancy E s j & paiaiss
grid maps — | ["— | e sji

1) Variant (I): For different time limits 7', we compared
our algorithm (GVP) with a stochastic algorithm for the
OP [16] (OP-S), and two sequential approaches that greedily
select m best views and sequence them using a TSP solver—
one sequences greedily (TSP-G) and the other uses dynamic
programming (TSP-DP). We expect our approach to scale
better in larger environments as it chooses locations freely
from the initial distribution—TSP-based methods compute a
solution for a fixed set. Tab. II summarizes the results.

Since the sampled locations cover 95% of the space, 0.95
is the maximum reward possible. All approaches degrade in
performance as the environments grow larger. Among the two
sampling-based approaches, GVP is superior to OP-S in all
environments, except in E2 with 7" = 120. Although OP-S
achieves a comparable performance in smaller environments,
performance is much worse in larger environments. Similarly,
TSP-G performs well for the small environments, but the
results for the larger environments are poor, as hypothesized.
TSP-DP provided good results in multiple trials, but it could
not compute a solution in environments E1-E3 for longer
intervals, e.g., although planning time is not considered, a
solution could not be computed on a standard laptop in
< 10 minutes—TSP-DP was able to sequence no more than
21 locations. The performance of the TSP-based approaches
depends on the spatial distribution of the best m views. Hence,
their performance cannot be predicted easily. Overall, our
algorithm provides effective, if sub-optimal, solutions for a
range of environments and time limits.

2) Variant (II): The planning time of the algorithms would
have had a considerable effect on the results reported above
if it were included in the time limits, e.g., Tp (in seconds)
of algorithms in Tab. II were: OP-S (5-7); TSP-G (4-6);
TSP-DP (4-584); and GVP (102-321). We performed an
additional set of over 55k trials that evaluated the expected
reward by considering both Tp and Tr (for E1 and E3).
In Fig. 2, we illustrate the expected reward in environment
E3 corresponding to two conditions: (a) Tg < T, and (b)
Tp +Tg < T. The expected reward in (b) was calculated
based on partial trajectories—only locations visited within T’
contributed to the reward. The reward function in (a) shows a
rapid increase with respect to m; most of the configurations in

TABLE II: Comparison with baseline algorithms. Configura-
tion for OP-S and GVP: ng = 250; m = 80; o = 1.0.
OP-S TSP-G TSP-DP GVP
T Ry Tg Ry Tg Ry Tg Ry Tg
Environment E1

120 081 119 0.59 67 095 116 089 113
240 093 234 092 131 095 136 095 237
360 0.94 359 095 216 - - 095 358
480 094 471 095 235 - - 095 429
600 095 597 095 272 - - 095 479
Environment E2
120 051 119 035 116 0.25 45 036 110
240 054 239 070 233 090 239 057 239
360 0.64 341 083 328 092 265 0.68 358
480 091 479 0.89 450 - - 095 477
600 091 597 091 587 - - 095 530
Environment E3
120 0.17 118 0.17 135 0.08 64 0.28 118
240 028 226 030 220 036 207 039 237
360 0.35 334 046 332 0.61 358 057 324
480 050 477 057 458 0.87 459 0.60 478
600 0.56 597 0.66 552 - - 076 59
Environment E4
120 0.08 118 0.10 96 = 0.05 59 017 117
240 0.12 233 020 217 015 230 030 239
360 026 356 029 337 024 317 042 353
480 032 470 037 437 045 479 054 479
600 036 597 052 583 072 575 0.67 597

T=600

50
0 0
300
n, 600 900

300, 600 g0

@Te <T O Tp+Te <T
Fig. 2: Reward function for E3 (I" = 600) considering
(a) only execution time, and (b) both planning time and
execution time. The range of parameter values explored
ns € {5,...,1000},m € {5, ..., S|}, T € {30,...,600} (only
maximal reward with respect to 7" is shown).

(a) lead to a high reward (mainly dependent on m). However,
in (b), configurations with large ns and m lead to low or
even zero rewards as planning with an increasing number of
views and trajectories becomes more expensive. The selection
of appropriate values for parameters is thus critical.

Our adaptive view planning algorithm determines values of
parameters ng and m for a given time limit 7" and problem
size |S| based on planning results of known environments
(cf. Sec. IV-B). For instance, consider environments E1 and
E3 to have been explored—Fig. 2 shows some of the reward
functions for these environments. Based on these reward
functions we derive parameters for a novel, medium-sized
environment (E2) through interpolation, and a large-sized
environment (E4) through extrapolation. We hypothesize that
our adaptive approach, can outperform fixed strategies in novel
environments because it can better adjust to the problem size.

Fig. 3 shows the average performance of our adaptive
approach and two fixed strategies (f1 and f2) in 3900
simulations of object search tasks in all environments (E1-E4).

1 (n, =500,m=|8|,7=T)
0 -2 (n, =100,m =S| T=1)

= adapive poiicy I !

=
8

2
3

: I I I

1 (n, =500,m =S|, T=T)

s
&

Average % of successful runs

Average % of successful runs

2 . 2 (n, =100,m =|S|,T=T) 2
= adaptive policy
0 4 O I o o
T (in seconds) T (in seconds)
(a) E1 (b) E2
100 100
o 1 (n, =500,m =|8|,T=T) o 1 (n, =500.m =S|, T=T)
12 (n, =100.m =|S|.T=T) 12 (n, =100,m =|S|,T=T)

2
8

60 mmm adaptive policy W adaptive policy

40 o
20 20 ‘
) ' um W
4 4 120 240 360 480 600

7 (in seconds) 7 (in seconds)

&
&

Average % of successful runs
Average % of successful runs

(c) E3 (d) E4
Fig. 3: Average performance per time 7'. Average fraction
of successful trials for single-object search tasks in E1-E4,
considering Tp and T’r. For each time limit 7', each strategy
was executed multiple times, proportional to the surface area
of an environment (E1: 20x, E2: 40x, E3: 80x, E4: 120x;
with a total of 3900 searches).

Each trial is successful if a single object (whose location
is unknown) is perceived. Performance is measured as the
percentage of successful trials. The adaptive policy performs
at least as well as the fixed strategies in all cases but one. The
performance improvement is statistically significant in E2,
E3, E4 when our adaptive approach is compared with fixed
strategy f1. Similarly, the results are statistically significant in
E3 and E4 when our approach is compared with f2. The fixed
strategies use the full set of views (|.S]), whereas the adaptive
strategy only uses a subset of views according to the problem
size and time limit, thus reducing planning time and leaving
more time for execution. The performance improvement is
particularly pronounced in the larger environments (E3, E4)
where the fixed strategies perform poorly.

Results in Fig. 3 indicate that adaptive parameter selection
generalizes to unknown environments (E2 and E4), and thgt it
outperforms the best fixed strategy (ns = 100, m = |S|,T =
T). This is not entirely surprising, as any fixed strategy
will eventually fail as problem size and/or time limit are
changed. The adaptive strategy performs worse than one of
the fixed strategies in E2 (7" = 240). Although our adaptive
strategy chose the optimal set of plan parameters based on the
reward function, the actual performance was sub-optimal. If
robot encounters a significant mismatch between the expected
reward and its actual performance, this could be an indication
that its prior knowledge (here P) is incorrect. In such
situations, a robot can optimize its parameters from its actual
performance, e.g., through reinforcement learning. These
results encourage us to further explore adaptive planning.

VI. CONCLUSIONS

This paper has presented a sampling-based algorithm for
the challenging open problem of view planning for object
search under time constraints. We posed this problem as an

OP with history-dependent rewards, and imposed a time limit.

Experimental results indicate that our approach outperforms
state of the art methods. Furthermore, our adaptive strategy

generalizes well in comparison with fixed sampling strategies
for object search in different (new) environments.

Although the proposed approach has been integrated with
the components of a mobile robot, the algorithm itself does
not depend on any kinematic structure, e.g., it can be used to
plan views of a camera on a manipulator arm or a quadcopter.
Future work will further explore view planning with time
constraints, under partial observability.

REFERENCES

[1] J. Tsotsos, “On the relative complexity of active vs. passive visual
search,” International Journal of Computer Vision, vol. 7, no. 2, pp.
127-141, 1992.

[2] S. Frintrop, VOCUS: A visual attention system for object detection
and goal-directed search. Springer, 2006, vol. 3899.

[3] M. Lorbach, S. Hofer, and O. Brock, “Prior-assisted propagation

of spatial information for object search,” in IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2014.

S. Zhang, M. Sridharan, and C. Washington, “Active visual planning

for mobile robot teams using hierarchical POMDPs,” Robotics, IEEE

Trans. on, vol. 29, no. 4, pp. 975-985, 2013.

[5] L. Kunze, K. Doreswamy, and N. Hawes, “Using qualitative spatial

relations for indirect object search,” in IEEE International Conference

on Robotics and Automation), Hong Kong, China, 2014.

J. Wyatt, A. Aydemir, M. Brenner, M. Hanheide, N. Hawes, P. Jensfelt,

M. Kristan, G. Kruijff, P. Lison, A. Pronobis et al., “Self-understanding

and self-extension: A systems and representational approach,” Au-

tonomous Mental Development, IEEE Trans. on, vol. 2, no. 4, pp.

282-303, 2010.

[71 M. Hanheide, M. Gobelbecker, G. Horn, A. Pronobis, K. Sjoo,

P. Jensfelt, C. Gretton, R. Dearden, M. Janicek, H. Zender, G.-J. Kruijff,

N. Hawes, and J. Wyatt, “Robot Task Planning and Explanation in

Open and Uncertain Worlds,” Artificial Intelligence, 2015.

S. Zhang, M. Sridharan, and J. Wyatt, “Mixed Logical Inference

and Probabilistic Planning for Robots in Unreliable Worlds,” /IEEE

Transactions on Robotics, vol. 31, no. 3, pp. 699-713, 2015.

[9] B. Nilsson, “Guarding art galleries: Methods for mobile guards,” Ph.D.
dissertation, Lund University, 1995.

[10] H. Gonzilez-Bafios, “A randomized art-gallery algorithm for sensor
placement,” in Proceedings of the Seventeenth Annual Symposium on
Computational Geometry. ACM, 2001, pp. 232-240.

[11] A. Sarmientoy, R. Murrieta-Cid, and S. Hutchinson, “A sample-based
convex cover for rapidly finding an object in a 3-d environment,” in
Proceedings of the 2005 IEEE International Conference on Robotics
and Automation. 1EEE, 2005, pp. 3486-3491.

[12] D. Hadfield-Menell and E. Groshev and R. Chitnis and P. Abbeel,
“Modular Task and Motion Planning in Belief Space,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
Hamburg, Germany, September 28—October 2, 2015.

[13] Roland Geraerts and Mark H. Overras, “A Comparative Study of
Probabilistic Roadmap Planners,” in Workshop on the Algorithmic
Foundations of Robotics (WAFR), Nice, France, December 15-17, 2002.

[14] C. Vasile and C. Belta, “An Automata-Theoretic Approach to the
Vehicle Routing Problem,” in Proceedings of Robotics: Science and
Systems, Berkeley, USA, July 2014.

[15] P. Vansteenwegen, W. Souffriau, and D. V. Oudheusden, “The orien-
teering problem: A survey,” Eur. J. Oper. Res., vol. 209, no. 1, pp. 1 —
10, 2011.

[16] T. Tsiligirides, “Heuristic methods applied to orienteering,” The Journal
of the Operational Research Society, vol. 35, no. 9, pp. 797-809, 1984.

[17] Q. Wang, X. Sun, B. L. Golden, and J. Jia, “Using artificial neural
networks to solve the orienteering problem,” Ann. Oper. Res., vol. 61,
no. 1, pp. 111-120, 1995.

[18] C. Dimitrakakis, “Complexity of stochastic branch and bound for belief
tree search in Bayesian reinforcement learning,” in 2nd International
Conference on Agents and Artificial Intelligence, 2009, pp. 259-264.

[19] A. Guez, D. Silver, and P. Dayan, “Efficient Bayes-adaptive reinforce-
ment learning using sample-based search,” in Advances in Neural
Information Processing Systems, 2012, pp. 1025-1033.

[20] G. Echeverria, N. Lassabe, A. Degroote, and S. Lemaignan, “Modular
openrobots simulation engine: Morse,” in Proceedings of the 2011
IEEFE International Conference on Robotics and Automation, 2011.

[4

=

[6

=

[8

[t}

