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Abstract— Anticipating and adapting to potential failures is
a key capability that robots require to collaborate effectively
with humans in complex domains. This continues to be a
challenge despite the impressive performance of state of the
art AI planning systems and Large Language Models (LLMs)
because of the uncertainty associated with the tasks and their
outcomes. Toward addressing this challenge, we present a
hybrid framework that integrates the generic prediction capa-
bilities of an LLM with the relational probabilistic sequential
decision-making capability of Relational Dynamic Influence
Diagram Language (RDDL). For any given task, the robot
reasons about the task and the capabilities of the human
attempting to complete it; predicts potential failures due to
lack of ability (in the human) or relevant domain objects;
and executes actions that prevent such failures or help recover
from them. Experimental evaluation in the VirtualHome 3D
simulation environment demonstrates substantial improvement
in task completion, execution time, and collaboration.

Index Terms— Human-Robot Collaboration, Probabilistic
Planning, Task Adaptation, Assistive Robotics

1 INTRODUCTION

Consider a robot assisting an elderly human in a kitchen,
say with getting a glass of water from the sink to the
kitchen counter. Due to mobility and stability limitations,
there is uncertainty about whether the human can complete
the task successfully; they may end up dropping the water
glass. In such situations, we would expect the robot to
anticipate the potential for negative outcomes, e.g., the glass
being dropped, and either prevent the potential negative
outcome, e.g., by fetching the water glass, or prepare to
deal with the outcome, e.g., by making sure it has access
to the mop needed to clear the water spill; Figure 1 shows
some snapshots of these scenarios. State of the art methods
for robot planning and human-robot collaboration assume
deterministic environments (e.g., with classical planners [1],
[2]), or pre-compute and use reactive policies (e.g., with
probabilistic planners [3]), and do not fully support the
desired proactive decision-making behavior.

The hybrid framework* presented in this paper is inspired
by the observation that the desired adaptive behavior needs
the ability to anticipate tasks, identify potential failures while
trying to complete these tasks, and plan actions that prevent
these failures or help recover from them. Specifically, the
framework enables the robot to:

• Use a pre-trained Large Language Model (LLM) to
make statistical predictions about the upcoming abstract
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Fig. 1: Illustrative task of fetching a glass of water from
the sink to the kitchen counter. In the baseline scenario, the
human may end up dropping the water glass due to stability
issues. Our framework enables the robot to anticipate such
failures; the robot then either prevents failure by completing
the task, or prepares to recover from the failure by preparing
to clean the potential water spill and complete the task.

tasks to be implemented by the human-robot team;
• Use the Relational Dynamic Influence Diagram Lan-

guage (RDDL) to encode and reason with a probabilistic
relational description of prior domain knowledge, com-
puting a sequence of specific actions that jointly achieve
the current and upcoming task; and

• Encode and reason with a reward mechanism that auto-
matically trades-off potential for successfully complet-
ing the task(s) with the effort involved in preventing
failures and in preparing to recover from failures.

The novelty is in the combination of these capabilities, which
leverages their complementary strengths to support generic
task prediction, domain-specific probabilistic planning, and
failure anticipation and recovery. We experimentally evaluate
our framework in the context of household tasks in the real-
istic VirtualHome simulation environment. We demonstrate
an increase in task completion accuracy and a reduction in
the number of failures, leading to improved human-robot
collaboration compared with baselines that use just an LLM
or the probabilistic planner.

2 RELATED WORK

There is an extensive body of research in Human-robot
interaction (HRI), including recent advances in shared au-
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tonomy and collaborative task execution [4]–[6]. Despite
impressive advancements in perception, reasoning, and learn-
ing, adaptation to failures and collaboration between humans
and robots continue to be open problems [7], [8].

Reasoning problems such as planning and diagnostics
have often been addressed by encoding prior domain knowl-
edge as relational logic statements in an action language such
as Planning Domain Definition Language (PDDL) [9] and
using suitable solvers. Other languages such as RDDL [10]
help model a class problems that are difficult to model
with probabilistic extensions of PDDL (e.g, due to stochastic
effects and unrestricted concurrency). Its semantics are that
of a ground Dynamic Bayesian Network, and it can be
used for both classical planning and probabilistic sequential
decision making (e.g., Markov Decision Process, MDP; Par-
tially Observable MDP, POMDP). It supports both classical
tree search planners like PROST [11] and learning-based
approaches in RDDL-Gym.

In an attempt to reduce the effort involved in encoding
domain knowledge, recent research has explored the use
of data-driven frameworks such as LLMs to learn domain
models [12], [13]. The ability of LLMs to predict action
sequences to complete tasks has led to claims about their
ability to plan and reason [14], [15]. At the same time, the
increasing evidence disputing such claims and demonstrat-
ing their tendency to provide arbitrary responses in novel
situations [16] has led to their use in assisting planning
frameworks in auxiliary tasks such as goal translation [17],
task anticipation [18], and goal allocation [19].

Robust Human-Robot Collaboration (HRC) requires the
ability to deal with action failures. Existing methods monitor
and adapt to deviations in action plans [20] using behavior
models encoded in PDDL domains [21] or probabilistic
sequential decision making [22]. If task planning is modeled
as an MDP, existing methods support reasoning about envi-
ronment states [23], model learning [24], estimating human
intentions [25], and encoding human behavior models [26].

Despite existing work, the desired proactive behavior that
anticipates failures, and either prevents them or prepares to
recover from them, remains an open problem in HRC. We
seek to address this problem by leveraging the complemen-
tary strengths of knowledge-based and data-driven systems.
Specifically, our hybrid framework combines the generic task
prediction capability of LLMs, the probabilistic planning
capability of RDDL, and a reward mechanism to trade off
between task completion and failure recovery.

3 PROBLEM FORMULATION AND FRAMEWORK

Consider a home environment with a human H and an
assistive robot R collaborating to any given goal G. The se-
quence of high-level tasks {T1, T2, . . . , Tn} to be completed
is not known to the robot, and one task is normally assigned
as G at a time. Completing each task Ti, such as preparing
toast, requires the execution of plan of finer-granularity

actions such grab bread, put-in toaster, and switch appliance
by the robot and the human; completing a subset of these
actions is considered a subgoal. The execution of some
of these actions can result in failure, e.g., a heavy plate
with the bread may be dropped; without loss of generality,
we limit any such failure (in this paper) to the human’s
actions due to limitations in the human’s capabilities, e.g., not
always able to lift heavy objects. For effective collaboration,
the robot has to anticipate such failures based on prior
knowledge/experience of the human’s abilities, and prevent
this failure, e.g., by completing the action instead of the
human, or prepare to address this failure, e.g., fetch a broom
and dustpan to clear the broken plate.

Figure 2 provides an overview of our hybrid framework.
The robot equipped with this framework prompts an LLM
with user preferences and input, scene description, and some
example task sequences to output a predicted sequence of
upcoming tasks (Section 3.1). The current and next task
as assigned as a joint goal to the domain-specific planning
component (Section 3.2). Since the domain state is known
after each action’s execution in the VirtualHome simulation
environment, domain-specific planning is formulated as a re-
lational MDP, using RDDL to model domain-specific knowl-
edge in the form of fluents, axioms, and a suitable reward
structure. This outputs a plan of actions to be executed by the
robot and the human; the human’s action choices may not
match the robot’s expectation. This planning also anticipates
and accounts for failures (Section 3.4) to complete the tasks
reliably and efficiently. Specific components are described in
more detail below.

3.1 LLM-based Task Anticipation

We adapted the pretrained LLM llama-3.3-70b-
versatile [27] for task prediction; this choice was motivated
by the fact that this LLM has ben trained with a large
dataset and has been used extensively with prompts that
require is to make predictions over long(er) horizons.

We used two prompting strategies: (i) few-shot and (ii) chain-
of-thought [28]. Both approaches take as input a predefined
task space T and a structured JSON scene description that
represents the kitchen environment, including the locations
of objects and the positions of the agents. Here, T defines the
set of valid household tasks, comprising 11 different tasks
such as move and grab that can have many different ground
instantiations (e.g., moving to different locations, grabbing
different objects). The few-shot approach uses 2-3 prior
user task observations, while the chain-of-thought method
incorporates two in-context examples with explicit step-by-
step reasoning to infer user activity patterns. In both cases,
the model generates a sequence of predicted tasks, filtering
out tasks that are considered to be invalid (i.e., not similar
match found in T ) to maintain the reliability of planning. A
snapshot of such prompting and the corresponding output is
shown in the left part of Figure 2; the user asks for salmon
for dinner, and the LLM predicts subsequent tasks to involve
serving coffee and washing the dishes.
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Fig. 2: Framework’s pipeline: (a) LLM takes a prompt of task lists, user preferences, scene description, and user input, to predict a task sequence; (b) RDDL description of
domain model and joint goal comprising current and predicted tasks is fed to PROST planner; and (c) Plan of actions to be executed by robot (and human) to achieve the goal,
including steps to be taken by the robot to prevent or recover from potential failures (e.g., broken objects, spills, item unavailability) in human’s action execution.

3.2 Task Planning

The current and the next (predicted) task (from the LLM
output) are mapped to a joint goal state G. Recall that the
domain-specific planning to achieve G is formulated as a
relational MDP: ⟨V,A, P,R,H, s0⟩, where V is the domain
state, A is the set of finer-granularity actions (to be executed
by robot or human), P is the state transition function, R
is the reward specification, H is the planning horizon, and
s0 is the initial state. In our RDDL description of the
domain, each task Ti is automatically associated with an
instance file defining relevant objects and axioms, ensuring
that execution aligns with the intended task conditions. These
instance files are generated from a common domain file,
which encodes variables for states (e.g., capturing location of
objects, state of appliances) and actions, universal transition
dynamics, constraints, and reward structures that incorporate
auxiliary incentives to guide the robot through intermediate
steps necessary for task completion. This approach supports
modularity, with the domain file being invariant and instance
files adapting to different task specifications.

Subgoals are defined automatically based on causal de-
pendencies to ensure that tasks progress logically, respecting
necessary preconditions and dependencies between actions.
Simulated trials validate these subgoals before they are
encoded in the domain file. The dynamic nature of the
domain file allows the system to adapt task execution while
maintaining adherence to the relevant state and action con-
straints.The reward function is designed to promote efficient
and adaptive execution. Positive rewards are assigned for
achieving subgoals and goals (tasks from the LLM), while
redundant or unsafe actions incur penalties. The planner uses
these rewards to generate a fine-grained action sequence

by constructing a directed graph representation of possi-
ble states; it initializes Q-values to guide decision-making,
checks reward locks, ensures that subgoal completion aligns
with the overall goal, and prevents unnecessary delays.

For efficient action computation, the original RDDL de-
scription is factored to to obtain a relational MDP ⟨DR, DH⟩,
where DR = ⟨SR,MR⟩ represents the robot’s description
and DH = ⟨SH ,MH , BH⟩ the human’s description. Here, S
defines types, predicates, and pvariables, while M specifies
actions, preconditions, and effects. For instance, actions
like human_pick and robot_pick modify the state fluent
obj-loc. The model predicting human behavior BH is
derived from simulations with added noise impacting state
transitions (see Section 3.3 below). A task instance T =
⟨O, I,G⟩ consists of objects O, the initial state I , and the
goal state G. We use the PROST planner [11] to compute an
action sequence π = ⟨a1, . . . , aK⟩ that transitions the system
from I to G as a combination of actions to be executed by
the robot and the human. This plan computation is based
on heuristic tree search that integrates both decision and
chance nodes, with the action selected at each decision node
to maximize expected cumulative rewards.

3.3 Modeling Human Behavior as State Transitions

The model BH predicting human behavior is modeled
as probabilistic state transitions that capture uncertainty in
the human’s execution of specific actions. We first encode
such uncertainty in human action outcomes using empirical
probability distributions (that are not known to the robot).
The added noise governing human behavior is sampled
from a Gaussian distribution centered on expected execution
parameters. The magnitude of this noise is dynamically
adjusted based on task complexity and individual execution



patterns. This allows us to model execution failures as
threshold-based conditions, i.e., if an action does not meet
predefined criteria (e.g., insufficient force to lift an object),
the state transition is unsuccessful, prompting re-execution
or adaptation. These conditions ensure that the system real-
istically captures variability in human action execution. We
will discuss this further in Section 4.1.

We simulate 11 cooking and cleaning tasks over 10 trials
and use the observations to learn an initial model of the
state transition probabilities PH(s′|s, aH), the likelihood of
moving from state s to s′ given human action aH . As the
system collects more observations during action execution,
the probability estimates are refined, allowing the robot
agent to predict human action outcomes more accurately and
adjust accordingly. These learned transition probabilities are
explicitly encoded in the domain file, ensuring that human
uncertainty is accounted for during planning and execution.

3.4 Anticipation and Collaboration

When humans deviate from expected behavior, e.g.,
mishandle objects or skip steps, the reward function in
our framework is designed such that it drives the robot
towards goal completion and avoiding failures to achieve
smooth task progression in shared spaces. Figure 3 shows a
simplified version of our reward specification for a specific
task (prepare breakfast). It is based on intuitive subgoals
that guide the robot and human agents toward collaboration.
Each component of the reward function help to model and
decompose tasks into an appropriate sequence of actions.
Specifically, rewards are provided for different types of
interactions illustrated in the context of preparing breakfast:

• Appliance interaction: Rewards are given for open and
close actions performed on accessible appliances.

• Item collection: Picking up FOOD_ITEM or CONTAINER
early in the task, laying the groundwork for food
preparation, is rewarded.

• Container placement: Rewards are given for plac-
ing containers (e.g., plates, bowls) at designated
DESTINATION location.

• Intermediate food placement: Placing food items in
intermediate processing areas (e.g., stove, toaster) in
preparation for cooking is rewarded.

• Appliance usage: Actions such as robot_switch_on
and robot_switch_off accrue rewards when appli-
ance supports such actions.

• Food containment: Rewards are used to incentivize
put_in actions that place food items inside containers.

• Final delivery: Rewards are provided when container
with food is placed in the correct goal location.

• Goal fulfillment: Satisfying all conditions of the GOAL

predicate receives a high reward.
Similar reward functions are populated automatically for
other actions and tasks in the domain.

We also define a set of rewards that promote anticipatory
and cooperative behaviors by aligning action choices with

r ewar d:
" + 5 *  [ r obot _open( ?r ,  ?l )  ^  APPLI ANCE( ?l )  ^  HAS- SWI TCH( ?l )  ^  r obot - l oc( ?r ,  ?l ) ] " ,
" + 20 *  [ pi ck( ?r ,  ?f ,  ?l )  ^  FOOD_I TEM( ?f ) ] " ,
" + 20 *  [ pi ck( ?r ,  ?p,  ?l )  ^  CONTAI NER( ?p) ] " ,
" + 5 *  [ r obot _cl ose( ?r ,  ?l )  ^  APPLI ANCE( ?l )  ^  HAS- SWI TCH( ?l )  ^  r obot - l oc( ?r ,  ?l ) ] " ,
" + 40 *  [ pl ace( ?r ,  ?f ,  ?l )  ^  FOOD_I TEM( ?f )  ^  DESTI NATI ON_0( ?f ,  ?l ) ] " ,
" + 5 *  [ r obot _swi t ch_on( ?r ,  ?l )  ^  APPLI ANCE( ?l )  ^  HAS- SWI TCH( ?l )  ^  r obot - l oc( ?r ,  ?l ) ] " ,
" + 5 *  [ r obot _swi t ch_of f ( ?r ,  ?l )  ^  APPLI ANCE( ?l )  ^  HAS- SWI TCH( ?l )  ^  r obot - l oc( ?r ,  ?l )  ) ] " ,
" + 40 *  [ put _i n( ?r ,  ?f ,  ?p)  ^  FOOD_I TEM( ?f )  ^  CONTAI NER( ?p) ] " ,
" + 100 *  [ FOOD_I TEM( ?f )  ^  CONTAI NER( ?p)  ^  f ood- i n( ?f ,  ?p)  ^  GOAL_0( ?f ,  ?p,  ?l ) ] "

Fig. 3: Reward for PrepareBreakfast(Toast). Due to
space constraints, a partial version is shown.

capabilities. We illustrate this below in the context of humans
performing picking up actions that are likely to result in
failure in our experimental setup, and the corresponding
actions used to avoid or recover from these failures.

• Reward for the robot picking up fragile items.

R1 =
∑

r:robot,
i:item,

l:location

(
pick(r, i, l) ∧ fragile(i)

∧ ∃h : human (human-loc(h, l))
)

(1)

This term rewards the robot for correctly picking up
fragile items when a human is present, ensuring safer
handling and preventing potential breakage of the item.

• Reward for proper placement of cleaning mop.

R2 =
∑

r:robot,
m:item,
l:location

(
mop(m) ∧ obj-loc(m, l) ∧ robot-loc(r, l)

∧ ∃h : human (human-loc(h, l))

∧ ∃x : item (fragile(x) ∧ obj-loc(x, l))
)

(2)

This reward incentivizes robot to place mop items near
locations where a human and fragile items exist.

• Penalty for humans picking up fragile items without
a mop nearby.

R3 =
∑

l:location,
i:item

∃h : human
(
fragile(i) ∧ pick_human(h, i, l)

∧ ¬∃m : item (mop(m) ∧ obj-loc(m, l))
)

(3)

This term applies a penalty in cases when human picks
up a fragile item in a location where no mop item is
present, increasing the likelihood of accidents.

Other similar rewards can be automatically generated using
known or learned knowledge of states and actions likely to
result in failures or to help recover from failures. These
rewards shape behaviors that are proactive, assistive, and
responsive to human presence and task context, with the
robot anticipating human behavior, adapting its actions to
assist or compensate when needed.

4 EXPERIMENTAL SETUP AND RESULTS

We experimentally evaluated two hypotheses related to
the performance of our framework.
H1: Reasoning with learned/encoded models of human be-

havior improves performance and collaboration with a
human compared to not using such models.



H2: Anticipating failure enables the robot agent to execute
efficient recovery strategies, in contrast to scenarios
where the robot agent lacks failure anticipation.

The experimental setup used for evaluation and the corre-
sponding results are discussed below.

4.1 Experimental Setup

Our experimental setup involved three main components:
learning a stochastic human behavior model, encoding do-
main knowledge in RDDL, and selecting appropriate base-
lines and evaluation measures.

Learning the Human Behavior Model. Recall from Sec-
tion 3.3 that we learned a probabilistic state transition
model of human behavior in the VirtualHome simulator
by decomposing tasks into actions and introducing noise
sampled from a normal distribution (µ = 0, σ = 0.1)
filtered with a 0.5σ threshold. For each task, we ran 10
noisy simulations to compute conditional probabilities over
state transitions. These probabilities capture patterns such as
preferences (e.g., choosing fragile vs. non-fragile items) and
deviations (e.g., leaving a room mid-task). Figure 4 illustrates
example probabilities, such as a 0.8 likelihood of moving to
the kitchen from a random location and 0.6 likelihood of
placing bread in the toaster when in the kitchen.

Encoding Planning Models. We modeled the environment
using RDDL, representing states, actions, and rewards; see
Section 3.2. The domain includes 11 generic food-related
household tasks that involve nine food items, eight appli-
ances, nine cutlery items, and five cleaning items. Human ac-
tions were treated as exogenous stochastic transitions based
on the learned model, while robot actions were planned to
maximize expected cumulative reward.

We used the PROST Planner [11], with the Trial-based
Heuristic Tree Search (THTS) algorithm on a Factored
MDP, integrating Upper Confidence Bound (UCT) for action
selection, Unsolved Monte Carlo (UMC) for handling uncer-
tainty, Partial Bellman Backup (PB) for Q-value estimation,
and Iterative Deepening Search (IDS) for heuristic Q-value
initialization. To optimize planning efficiency, we combined
the IPC2011 and IPC2014 configurations. IPC2011 version
supports broad exploration via Monte Carlo backups, while
IPC2014 improves decision-making through UMC and PB,
prioritizing informative samples; the combination balances
exploration and exploitation. We set a maximum planning
horizon of 60 for the joint goal (two tasks), limiting excess
computation and action concurrency to prevent unnecessary
search depth expansion. Our reward function promotes goal-
directed behavior by rewarding task completion, penalizing
delays, offering intermediate rewards for progress, and dis-
couraging errors (Section 3.4). The planner generated joint-
action (human and robot actions) sequences that optimized:

• Distance to target: nearest agent handles the object.
• Action prioritization: robot preempts fragile or unavail-

able object interactions.
• Goal relevance: relevant objects types prioritized.

• Task efficiency: compute minimal plan.
We map natural language LLM outputs into RDDL specific
goals and rewards syntax using a predefined JSON file. The
reward function incentivizes successful sub-goal completion,
safe handling, anticipation of failures, and overall efficiency
and penalties discourage inefficiencies, such as random
movements, unnecessary toggling, or repeated actions. Robot
actions are explicitly rewarded or penalized; human actions
are modeled and observed but are not directly influenced.

Evaluation Measures and Baselines. To evaluate H1 and
H2, we performed 30 simulation rollouts, each with five
collaborative tasks in our household domain. We use the
following evaluation measures:

• Average number of actions: computed as the mean
number of actions for completing entire task(s).

• Number of failures: count of critical failures (e.g.,
unsafe handling); fewer unresolved failures (no preven-
tion/recovery) indicates better performance.

• Number of failures prevented: count of instances
in which robot’s proactive actions reduced failures in
human action outcomes.

• Recovery through anticipation: count of instances in
which robot recovered from failure by anticipating it.

• Task completion rate: fraction of tasks completed
successfully; higher indicate better performance.

• Goal completion percentage: fraction of subgoals
achieved, measuring adherence to overall task(s).

Each simulation included robot and human actions such
as pick, place, move, switch, open, and put_in. The
robot evaluated multiple trajectories rather than committing
to a single plan, optimizing for expected reward under
uncertainty. The environment includes fragile and non-fragile
objects (e.g., fruits, cereal, mop, bread, milk) and dynamic
constraints like path obstructions or unavailable items. As
described later (Table II), we assessed the robot’s ability to:
(a) Anticipate human delays or mistakes; (b) recover from
missteps such as tool misuse or incorrect object selection;
and (c) adapt to constraints via rewards which consider
length of plans, safety violations, and failed subgoals. As
baselines for comparison, we consider just the LLM (L)
and just the RDDL-based planner (R). The LLM baseline
directly computes a sequence of actions for the joint goal
(current and predicted next task). The RDDL-based baseline
does not incorporate any model of human behavior of
the corresponding anticipatory rewards. It follows a fixed
goal-conditioned plan derived from an LLM-predicted task
description. It lacks anticipatory and recovery strategies,
which results in brittle execution when the human diverges
from expected behaviors.

4.2 Experimental Results

Recall that we evaluated our framework and baselines
using five collaborative household tasks in simulation envi-
ronment. Each simulation of these tasks involved multiple
potential failures in the form of undesired human action
outcomes, and the robot adapted through anticipation and



Task SubGoals Completion % Task Completion %
(LLM) (RDDL) (Ours) (LLM) (RDDL) (Ours)

Prepare and Serve Salmon + Water 46.67% 63.3% 85% 30% 55% 80%
Prepare and Serve Coffee + Wash Dish 47.5% 75% 86.7% 20% 55% 87.5%
Prepare and Serve Cereal + Coffee 52.5% 70% 88.3% 25% 60% 85%
Prepare and Serve Toast + Coffee 42.5% 68.3% 83.3% 15% 58.3% 84%
Prepare and Serve Pizza + Wash Dish 35.56% 66.7% 84.2% 10% 57% 83.4%

Average% 44.55% 68.26% 85.5% 20% 57.06% 84.78%

TABLE I: Evaluation measures for selected composite tasks (Prepare + Serve) between LLM-only planner, RDDL/PROST
without anticipatory rewards, and our framework. Percentages reflect subgoal and task completion rates over 30 simulations.

Task Failures Prevention Recovery Avg. Actions Time Taken
L R O L R O L R O L R O R O

Prepare and Serve Salmon + Water 18/30 17/30 14/30 12/30 13/30 16/30 6/18 0 11/14 – – 38 – 28s
Prepare and Serve Coffee + Wash Dish 9/30 11/30 8/30 21/30 19/30 22/30 0 2/11 6/8 24 – 26 – 22s
Prepare and Serve Cereal + Coffee 25/30 13/30 10/30 5/30 17/30 20/30 9/25 0 8/10 – – 42 – 32s
Prepare and Serve Toast + Coffee 27/30 9/30 12/30 3/30 21/30 18/30 6/27 0 9/12 – – 48 – 34s
Prepare and Serve Pizza + Wash Dish 18/30 11/30 9/30 12/30 19/30 21/30 3/18 0 7/9 – – 30 – 24s

Average 20.0 12.2 10.6 10.6 17.8 19.4 4.8 – 8.2 – – 36.8 – 28s

TABLE II: Failure prevention and recovery statistics across 30 simulations for selected composite (Prepare + Serve) tasks.
Prevention indicates proactive avoidance of likely human failures, while Recovery refers to corrective intervention after
failure has occurred. Avg. Actions and Time Taken represent the average number of steps and time required to complete
the tasks. We compare LLM-only plans (L), the RDDL/PROST without considering human behavior models or anticipatory
rewards (R), and our framework (O). In most scenarios, both baseline methods fail to complete the composite tasks, making
Avg. Actions and Time Taken not applicable, denoted as ‘–’. Our framework consistently completes tasks through anticipation
and recovery.

Task:  pr epar e_br eakf ast  ( t oast )   
P( wal k_t o_ki t chen)  = 0. 800                    
P( i n_hand |  k i t chen)  = 0. 625                      
P( put _i n |  i n_hand,  k i t chen)  = 0. 600     
P( swi t ch_on |  k i t chen)  = 0. 625

Fig. 4: For any given task, we monitor the simulation agent over ten simulations, each
with added noise in the sub-goals. The probability of the human agent walking to the
kitchen when starting from a random location is 0.8. The probability of grabbing a
bread slice while in the kitchen is 0.625. The probability of the human agent placing
the bread slice in the toaster after grabbing it in the kitchen is 0.6. The probability of
the human switching on the toaster while in the kitchen is 0.625.

planning. The evaluation used the measures described in
Section 4.1. Recall that each task is a high-level goal, such
as "Prepare and Serve Toast and Coffee." This task can be
split into subgoals, like "Toast the Bread," and "Place items
on the table." Each subgoal is carried out through a series
of actions, such as "Open Toaster," "Put in Toaster," "Switch
on Toaster," "Pick up Cup," and "Pour Liquid."

Evaluating H1. We first evaluated the impact of reasoning
with human behavior models across the different task and
computed the values of the six measures, with the results
summarized in Table I and Table II for an illustrative set
of tasks. The results show notable differences between our
framework, denoted by (O) compared with two baselines:
RDDL/PROST without anticipatory rewards, denoted by (R),
and LLM-only plans, denoted by (L).

As seen in Table I, our framework consistently outper-
forms both baselines in subgoal and task completion. For
instance, in the task Prepare and Serve Salmon + Water,
our method achieves 85% subgoal completion, while the
RDDL baseline without anticipation reaches 63.3% and the
LLM achieves only 46.67%. Similarly, in Prepare and Serve
Pizza + Wash Dish, our framework attains 84.2% subgoal
completion, compared to the RDDL baseline’s 66.7% and
the LLM baseline’s 35.56%. The average subgoal completion
rate across all tasks is 85.5% for our framework, compared
to 68.26% for the RDDL baseline and 44.55% for the
LLM-only baseline. These results highlight our system’s
effectiveness in decomposing complex tasks (vis-à-vis the
LLM only plans) and executing them reliably using the
human behavior model (vis-à-vis the RDDL baseline).

Table II presents failure rates, prevention statistics, and
recovery times across tasks. Our framework shows a signifi-
cant advantage in proactive failure prevention and recovery.
For example, in Prepare and Serve Cereal + Coffee, our
method prevents 20 out of 30 failures, while the RDDL
baseline prevents 17 failures, and LLM baseline prevent only
5 failures. Furthermore, our framework averages 28 seconds
per task, while the RDDL baseline fails to complete the
composite tasks in most scenarios. In tasks like Prepare and
Serve Toast + Coffee, the baseline suffers from high failure
rates with limited recovery, while our framework reduces



Fig. 5: Task failures across varying reward-driven Human-Robot Collaboration (HRC)
multipliers. Tasks such as Serve Water, Serve Coffee, and Serve Cereal show stable
failure rates near baseline, while Prepare Toast, Prepare Lunch Salmon, Serve Eggs, and
Wash Dishes exhibit clear minima, highlighting improved task robustness at optimal
collaboration sensitivity.

failure occurrences and improves recovery efficiency.

Evaluating H2. Next, we evaluated the role of failure antic-
ipation and recovery strategies. The comparison between our
framework and the baseline(s), as shown in Table I, reveals
that our method consistently achieves higher task completion
rates. Tasks like Prepare and Serve Coffee + Wash Dish
(87.5%) and Prepare and Serve Pizza + Wash Dish (83.4%)
show significant improvements over the RDDL baseline’s
(R) completion rates (75% and 66.7%, respectively). This
suggests that the integration of human behavior modeling
and failure anticipation in our framework played a key role
in ensuring higher task success.

In contrast, the baseline(s) struggled with achieving
high task completion, often leaving subgoals incomplete.
For example, in Prepare and Serve Salmon + Water, the
RDDL baseline without anticipatory behavior achieved only
55% task completion; LLM-only baseline managed 30%
task completion, while our framework reached 80%. The
baselines’ lack of anticipatory planning and recovery results
in more frequent task interruptions and failures.

The statistics from Table II emphasize the advantages
of our approach in recovery and failure prevention. For
instance, in Prepare and Serve Toast + Coffee, our method
demonstrated more effective recovery (9/12) by using antic-
ipatory behavior models as compared to LLM-only baseline
(6/27) and the RDDL baseline without anticipatory behavior
(0/9). Our proactive strategies, such as adjusting actions and
preventing incorrect tool usage, resulted in fewer failures
overall. Overall, our framework resulted in a more reliable
solution for human-robot collaboration. They also highlight
the significance of integrating human-aware reasoning and
anticipatory reasoning in robotic planning, thus supporting
both H1 and H2.

Effect of collaboration sensitivity on task failures. To
further understand the robustness of our framework under
different collaboration scenarios, we analyze task failures as
a function of changes to the extent to which the reward-
base strategy prioritizes task completion or failure recovery,

e.g., preparing for recovering from likely failure takes time
away from completing the task(s). Figure 5 presents the
number of failures observed across several tasks under dif-
ferent reward multipliers. Tasks such as Serve Water, Serve
Coffee, and Serve Cereal demonstrated stable failure rates
close to the baseline, indicating low sensitivity to changes
in collaborative incentive structure. In contrast, tasks like
Prepare Toast, Prepare Lunch Salmon, Serve Eggs, and
Wash Dishes exhibited pronounced minima in failure rates
at specific multipliers. This behavior highlighted that tuning
of reward mechanism significantly enhances robust task
completion. These results suggest that our reward structure
can be adapted dynamically based on task complexity to
maximize the benefits of proactive assistance.

5 CONCLUSION

In this work, we have introduced a hybrid framework
for a Human-Robot Collaboration, where the robot provides
anticipatory assistance to the potential failures in the actions
executed by the human participant, enabling task planning
which is adaptive to changes in the environment. The initial
part of framework uses an LLM to predict upcoming tasks
based on user preferences and current environment descrip-
tion. These tasks serve as joint high-level goals for relational
MDP planner based on RDDL domain description, using the
PROST planner to generate action plans that achieve these
goals. This planning also consider a simple learned model
predicting probabilistic state transitions caused by human
actions, and a reward function designed to smoothly and au-
tomatically trade-off task completion and failure anticipation
(and recovery). Experimental results show the benefits of our
framework, demonstrating a 27.72% and 17.24% increase
in task completion and sub-goals completion (respectively)
compared with the RDDL baseline that does not include
a failure anticipation or recovery strategies. Future work
will explore more complicated tasks and consider teams of
multiple robots (and AI agents) collaborating with humans
in complex domains.
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