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Abstract. The architecture described in this paper encodes a theory of intentions
based on the principles of non-procrastination, persistence, and relevance. The ar-
chitecture reasons with transition diagrams at two different resolutions, with the
fine-resolution description defined as a refinement of, and hence tightly-coupled
with, a coarse-resolution description. For any given goal, non-monotonic logical
reasoning with the coarse-resolution description computes an activity, i.e., a plan,
comprising a sequence of abstract actions to be executed to achieve the goal. Each
abstract action is implemented as a sequence of concrete actions by automatically
zooming to and reasoning with the part of the fine-resolution transition diagram
relevant to the coarse-resolution transition and the goal. Each concrete action is
executed using probabilistic models of the uncertainty in sensing and actuation,
and the corresponding coarse-resolution observations are added to the coarse-
resolution history. Experimental results in the context of simulated and physical
robots indicate improvements in reliability and efficiency compared with an ar-
chitecture that does not include the theory of intentions, and an architecture that
does not include zooming for fine-resolution reasoning.

1 Introduction

Consider a robot3 assisting humans in dynamic domains, e.g., a robot helping a human
arrange objects in different configurations on a tabletop, or a robot delivering objects to
particular places or people—see Figure 1. These robots often have to reason with dif-
ferent descriptions of uncertainty and incomplete domain knowledge. This information
about the domain often includes commonsense knowledge, especially default knowl-
edge that holds in all but a few exceptional circumstances, e.g., “books are usually in
the library but cookbooks may be in the kitchen”. The robot also receives a lot more
sensor data than it can process, and it is equipped with many algorithms that compute
and use a probabilistic quantification of the uncertainty in sensing and actuation, e.g.,
“I am 90% certain the robotics book is on the table”. Furthermore, while it is difficult to
provide robots comprehensive domain knowledge or elaborate supervision, reasoning
with incomplete or incorrect information can provide incorrect or suboptimal outcomes.

3 A journal article based on this work has been accepted for publication in the Annals of Math-
ematics and Artificial Intelligence [11].
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This loss in performance is more pronounced in scenarios corresponding to unexpected
success or failure, which are common in dynamic domains. For instance, consider a
robot trying to move two books from an office to a library. After moving the first book
to the library, if the robot observes the second book in the library, or if it observes the
second book in the kitchen on the way back to the office, it should stop executing its
plan, reason about what may have happened, and compute a new plan if necessary. One
way to achieve this behavior is to augment a traditional planning approach with the
ability to reason about observations of all domain objects and events during plan exe-
cution, but this approach is computationally intractable in complex domains. Instead,
the architecture described in this paper seeks to enable a robot pursuing a particular
goal to automatically reason about the underlying intention and related observations
of its domain during planning and execution. It does so by building on an architecture
that uses declarative programming to reason about intended actions to achieve a given
goal [5], and on an architecture that reasons with tightly-coupled transition diagrams at
different levels of abstraction [18]. This work has been described in detail in a recently
published journal article [11]. Here, we describe the following key characteristics of the
architecture:

– An action language is used to describe the tightly-coupled transition diagrams of
the domain at two different resolutions. At the coarse resolution, non-monotonic
logical reasoning with commonsense knowledge, including default knowledge, pro-
duces a sequence of intentional abstract actions for any given goal.

– Each intended abstract action is implemented as a sequence of concrete actions by
automatically zooming to and reasoning with the relevant part of the fine-resolution
system description defined as a refinement of the coarse-resolution system descrip-
tion. The outcomes of executing the concrete actions using probabilistic models or
uncertainty are added to the coarse-resolution history.

In this paper, the coarse-resolution and fine-resolution action language descriptions are
translated to programs in CR-Prolog, an extension of Answer Set Prolog (ASP) [9],
for commonsense reasoning. The execution of each concrete action using probabilistic
models of uncertainty in sensing and actuation is achieved using existing algorithms.
The architecture thus reasons about intentions and beliefs at two resolutions. We demon-
strate the capabilities of our architecture in the context of (i) a simulated robot assisting
humans in an office domain; (ii) a physical robot (Baxter) manipulating objects on a
tabletop; and (iii) a wheeled robot (Turtlebot) moving objects in an office domain. Ex-
perimental results indicate that the proposed architecture improves reliability and com-
putational efficiency of planning and execution in dynamic domains in comparison with
an architecture that does not support reasoning about intentional actions.

2 Related Work

There is much work in the modeling and recognition of intentions. Belief-desire-intention
(BDI) architectures model the intentions of reasoning agents and guide reasoning by
eliminating choices inconsistent with current intentions [6,14]. However, such architec-
tures do not learn from past behavior, adapt to new situations, or include an explicit
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(a) Baxter robot. (b) Turtlebot.

Fig. 1: (a) Baxter robot manipulating objects on a tabletop; and (b) Turtlebot moving
objects to particular locations in a lab.

representation of (or reasoning about) goals. Other work has reasoned with domain
knowledge or used models learned from training samples to recognize intentions [13].

An architecture formalizing intentions based on declarative programming was de-
scribed in [3]. It introduced an action language that can represent intentions based on
two principles: (i) non-procrastination, i.e., intended actions are executed as soon as
possible; and (ii) persistence, i.e., unfulfilled intentions persist. This architecture was
also used to enable an external observer to recognize the activity of an observed agent,
i.e., for determining what has happened and what the agent intends to do [8]. How-
ever, this architecture did not support the modeling of agents that desire to achieve
specific goals. The Theory of Intentions (T I) [5,4] builds on [3] to model the inten-
tions of goal-driven agents. T I expanded transition diagrams that have physical states
and physically executable actions to include mental fluents and mental actions. It as-
sociated a sequence of agent actions (called an “activity”) with the goal it intended to
achieve, and introduced an intentional agent that only performs actions that are intended
to achieve a desired goal and does so without delay. This theory has been used to create
a methodology for understanding of narratives of typical and exceptional restaurant sce-
narios [20], and goal-driven agents in dynamic domains have been modeled using such
activities [15]. A common requirement of such theories and their use is that all the do-
main knowledge, including the preconditions and effects of actions and potential goals,
be known and encoded in the knowledge base, which is difficult to do in robot domains.
Also, the set of states (and actions, observations) to be considered can be large in robot
domains, which makes efficient reasoning a challenging task. In recent work [20], the
authors attempt to address this problem by clustering indistinguishable states [16] but
these clusters need to be encoded in advance. Furthermore, these approaches do not
consider the uncertainty in sensing and actuation.

Logic-based methods have been used widely in robotics, including those that also
support probabilistic reasoning [12,21]. Methods based on first-order logic do not sup-
port non-monotonic logical reasoning or the desired expressiveness for capabilities such
as default reasoning, e.g., it is not always meaningful to express degrees of belief by at-
taching probabilities to logic statements. Non-monotonic logics such as ASP address
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Fig. 2: Architecture combines the complementary strengths of declarative programming
and probabilistic reasoning, representing intentions and beliefs as coupled transition di-
agrams at two resolutions; may be viewed as interactions between a controller, logician,
and executor.

some of these limitations, and they have been used in cognitive robotics applications by
an international research community [7]. However, classical ASP formulations do not
support the probabilistic models of uncertainty that are used by algorithms for sensing
and actuation in robotics. Approaches based on logic programming also do not support
one or more of the capabilities such as incremental addition of probabilistic informa-
tion or variables to reason about open worlds. Towards addressing these limitations,
prior work in our group developed a refinement-based architecture that reasoned with
tightly-coupled transition diagrams at two resolutions; each abstract action in a coarse-
resolution plan computed using ASP was executed as a sequence of concrete actions
computed by probabilistic reasoning over the relevant part of the fine-resolution dia-
gram [18]. This paper explores the combination of these ideas with those drawn from
T I; specific differences from prior work are described in the relevant sections below.

3 Cognitive Architecture

Figure 2 presents a block diagram of the overall architecture. Similar to prior work [18],
this architecture may be viewed as consisting of three components: a controller, a logi-
cian, and an executor. In this paper, the controller is responsible for holding the overall
beliefs regarding domain state, and for the transfer of control and information between
all components. For any given goal, the logician performs non-monotonic logical rea-
soning with the coarse-resolution representation of commonsense knowledge to gen-
erate an activity, i.e., a sequence of intentional abstract actions. Each abstract action
is implemented as a sequence of concrete actions by zooming to and reasoning with
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a fine-resolution representation defined as a refinement of the coarse-resolution rep-
resentation. The executor uses probabilistic models of the uncertainty in sensing and
actuation to execute each concrete action, with the outcomes being communicated to
the controller and added to the coarse-resolution history of the logician. These compo-
nents of the architecture are described below, along with differences from prior work,
using variants of the following illustrative domain.

Example Domain 1 [Robot Assistant (RA) Domain] Consider a robot assisting hu-
mans in moving particular objects to desired locations in an indoor office domain with:

– Sorts such as place, thing, robot, object, and book, arranged hierarchically, e.g.,
object and robot are subsorts of thing.

– Places: {office1, office2, kitchen, library} with a door between neighboring
places—see Figure 3; only the door between kitchen and library can be locked.

– Instances of sorts, e.g., rob1, book1, book2.
– Static attributes such as color, size and parts (e.g., base and handle) of objects.

Other agents that may change the domain are not modeled.

Office 2Office 1 Kitchen Library

Fig. 3: Four rooms considered in Example 1, with a human in the kitchen and two
books in office1. Only the library’s door can be locked; all other rooms remain open.

3.1 Action Language and Domain Representation

We first describe the action language encoding of domain dynamics, and its translation
to CR-Prolog programs for knowledge representation and reasoning.
Action Language: Action languages are formal models of parts of natural language
used for describing transition diagrams of dynamic systems. We use action language
ALd [10] to describe the transition diagrams at different resolutions. ALd has a sorted
signature with statics, fluents and actions. Statics are domain attributes whose truth
values cannot be changed by actions, whereas fluents are domain attributes whose truth
values can be changed by actions. Fluents can be basic or defined. Basic fluents obey
the laws of inertia and can be changed by actions. Defined fluents do not obey the
laws of inertia and are not changed directly by actions—their values depend on other
fluents. Actions are defined as a set of elementary operations. A domain attribute p
or its negation ¬p is a literal. ALd allows three types of statements: causal law, state
constraint, and executability condition.
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Coarse-Resolution Knowledge Representation: The coarse-resolution domain rep-
resentation consists of system description Dc, a collection of statements of ALd, and
history Hc. System description Dc has a sorted signature Σc and axioms that describe
the transition diagram τc. Σc defines the basic sorts, domain attributes and actions. Ex-
ample 1 introduced some basic sorts and ground instances of the RA domain. Σc also
includes the sort step for temporal reasoning. Domain attributes (i.e., statics and fluents)
and actions are described in terms of their arguments’ sorts. In the RA domain, statics
include relations such as next to(place, place), which describes the relative location
of places in the domain; and relations representing object attributes such as color and
size, e.g., obj color(object, color). Fluents include loc(thing, place), the location of
the robot or domain objects; in hand(robot, object), which denotes a particular object
is in the robot’s hand; and locked(place), which implies a particular place is locked.
The locations of other agents, if any, are not changed by the robot’s actions; these
locations are inferred from observations obtained from other sensors. The domain’s
actions include move(robot, place), pickup(robot, object), putdown(robot, object),
and unlock(robot, place); we also consider exogenous actions exo move(object, place)
and exo lock(place), which are used for diagnostic reasoning. Σc also includes the re-
lation holds(fluent, step) to imply that a particular fluent holds true at a particular
time step. Axioms for the RA domain include causal laws, state constraints and exe-
cutability conditions such as:

move(rob1, P ) causes loc(rob1, P )

loc(O,P ) if loc(rob1, P ), in hand(rob1, O)

impossible pickup(rob1, O) if loc(rob1, L1), loc(O,L2), L1 6= L2

The history Hc of the domain contains the usual record of fluents observed to be true
or false at a particular time step, i.e., obs(fluent, boolean, step), and the execution of
an action at a particular time step, i.e., occurs(action, step). In [18] this notion was
expanded to represent defaults describing the values of fluents in the initial state, e.g.,
“books are usually in the library and if it not there, they are normally in the office”. We
can also encode exceptions to these defaults, e.g., “cookbooks are in the kitchen”. This
representation, which does not quantitatively model beliefs in these defaults, supports
elegant reasoning with generic defaults and their specific exceptions.
Reasoning: The coarse-resolution domain representation is translated into a program
Π(Dc,Hc) in CR-Prolog4, a variant of ASP that incorporates consistency restoring
(CR) rules [2]. ASP is based on stable model semantics and supports concepts such as
default negation and epistemic disjunction, e.g., unlike “¬a” that states a is believed to
be false, “not a” only implies a is not believed to be true. ASP can represent recursive
definitions and constructs that are difficult to express in classical logic formalisms, and
it supports non-monotonic logical reasoning, i.e., it is able to revise previously held
conclusions based on new evidence. An ASP program Π includes the signature and ax-
ioms of Dc, inertia axioms, reality checks, and observations, actions, and defaults from
Hc. Every default also has a CR rule that allows the robot to assume the default’s con-
clusion is false to restore consistency under exceptional circumstances. Each answer

4 We use the terms “ASP” and “CR-Prolog” interchangeably.
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set of an ASP program represents the set of beliefs of an agent associated with the pro-
gram. Algorithms for computing entailment, and for planning and diagnostics, reduce
these tasks to computing answer sets of CR-Prolog programs. We compute answer sets
of CR-Prolog programs using the system called SPARC [1].

3.2 Adapted Theory of Intention

For any given goal, a robot using ASP-based reasoning will compute a plan and execute
it until the goal is achieved or a planned action has an unexpected outcome; in the latter
case, the robot will try to explain the outcome (i.e., diagnostics) and compute a new
plan if necessary. To motivate the need for a different approach in dynamic domains,
consider the following scenarios in which the goal is to move book1 and book2 to the
library; these scenarios have been adapted from scenarios in [5]:

– Scenario 1 (planning): Robot rob1 is in the kitchen holding book1, and believes
book2 is in the kitchen and the library is unlocked. The plan is:move(rob1, library),
put down(rob1, book1), move(rob1, kitchen), pickup(rob1, book2), followed by
move(rob1, library) and put down(rob1, book2).

– Scenario 2 (unexpected success): Assume that rob1 in Scenario-1 has moved to
the library and put book1 down, and observes book2. The robot should explain this
observation (e.g., book2 was moved there) and realize the goal has been achieved.

– Scenario 3 (not expected to achieve goal, diagnose and replan, case 1): Assume
rob1 in Scenario-1 starts moving book1 to library, but observes book2 is not in
the kitchen. The robot should realize the plan will fail to achieve the overall goal,
explain the unexpected observation, and compute a new plan.

– Scenario 4 (not expected to achieve goal, diagnose and replan, case 2): Assume
rob1 is in the kitchen holding book1, and believes book2 is in office2 and library
is unlocked. The plan is to put book1 in the library before fetching book2 from
office2. Before rob1 moves to library, it observes book2 in the kitchen. The
robot should realize the plan will fail and compute a new plan.

– Scenario 5 (failure to achieve the goal, diagnose and replan): Assume rob1 in
Scenario-1 is putting book2 in the library, after having put book1 in the library
earlier, and observes that book1 is no longer there. The robot’s intention should per-
sist; it should explain the unexpected observation, replan if necessary, and execute
actions until the goal is achieved.

One way to support the desired behavior in such scenarios is to reason with all possi-
ble observations of domain objects and events (e.g., observations of all objects in the
sensor’s field of view) during plan execution. However, such an approach would be
computationally intractable in complex domains. Instead, we build on the principles of
non-procrastination and persistence and the ideas from T I. Our architecture enables
the robot to compute actions that are intended for any given goal and current beliefs. As
the robot attempts to implement each such action, it obtains all observations relevant to
this action and the intended goal, and adds these observations to the recorded history.
We will henceforth use AT I to refer to this adapted theory of intention that expands
both the system description Dc and history Hc in the original program Π(Dc,Hc).
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First, the signature Σc is expanded to represent an activity, a triplet of a goal, a plan to
achieve the goal, and a specific name, by introducing relations such as:

activity(name), activity goal(name, goal), activity length(name, length)

activity component(name, number, action)

These relations represent each named activity, the goal and length of each activity, and
actions that are components of the activity; when ground, these relations are statics.

Next, the existing fluents of Σ are considered to be physical fluents and the set of
fluents is expanded to include mental fluents such as:

active activity(activity), in progress goal(goal), next action(activity, action),

in progress activity(activity), active goal(goal), next activity name(name),

current action index(activity, index)

where the first four relations are defined fluents, and other relations are basic fluents.
These fluents represent the robot’s belief about a particular activity, action or goal being
active or in progress. None of these fluents’ values are changed directly by executing
any physical action. The value of current action index changes if the robot has com-
pleted an intended action or if a change in the domain makes it impossible for an activity
to succeed. The values of other mental fluents are changed by expanding the set of exist-
ing physical actions ofΣ to include mental actions such as start(name), stop(name),
select(goal), and abandon(goal), where the first two mental actions are used by the
controller to start or stop a particular activity, and the other two are exogenous actions
that are used (e.g., by human) to select or abandon a particular goal.

In addition to the signature Σc, history Hc is also expanded to include relations
such as attempt(action, step) and ¬ hpd(action, step), which denote that a particu-
lar action was attempted at a particular time step, and that a particular action was not
executed successfully at a particular time step. Figuring out when an action was actually
executed (or not executed) requires reasoning with observations of whether an action
had the intended outcome(s).

We also introduce new axioms in Dc, e.g., to represent the effects of the physical
and mental actions on the physical and mental fluents, e.g., starting (stopping) an activ-
ity makes it active (inactive), and executing an action in an activity keeps the activity
active. The new axioms also include state constraints, e.g., to describe when a particu-
lar activity or goal is active, and executability conditions, e.g., it is not possible for the
robot to simultaneously execute two mental actions. In addition, axioms are introduced
to generate intentional actions, build a consistent model of the domain history, and to
perform diagnostics.

The revised system description D′c and history H′c are translated automatically to
CR-Prolog programΠ(D′c,H′c) that is solved for planning or diagnostics. The complete
program for the RA domain is available online [17]. Key differences betweenAT I and
prior work on T I are:

– T I becomes computationally expensive, especially as the size of the plan or his-
tory increases. It also performs diagnostics and planning jointly, which allows it to



Theory of Intentions for Human-Robot Collaboration 9

consider different explanations during planning but increases computational cost in
complex domains. AT I, on the other hand, first builds a consistent model of his-
tory by considering different explanations, and uses this model to guide planning,
significantly reducing computational cost in complex domains.

– T I assumes complete knowledge of the state of other agents (e.g., humans or other
robots) that perform exogenous actions. In many robotics domains, this assumption
is rather unrealistic. AT I instead makes the more realistic assumption that the
robot can only infer exogenous actions by reasoning with the observations that it
obtains from sensors.

– AT I does not include the notion of sub-goals and sub-activities (and associated
relations) from T I, as they were not necessary. Also, the sub-activities and sub-
goals will need to be encoded in advance, and reasoning with these relations will
also increase computational complexity in many situations. The inclusion of sub-
activities and sub-goals will be explored in future work.

Any architecture with AT I, T I, or a different reasoning component based on logic-
programming or classical first-order logic, has two key limitations. First, reasoning does
not scale well to the finer resolution required for many tasks to be performed by the
robot. For instance, the coarse-resolution representation discussed so far is not suffi-
cient if the robot has to grasp and pickup a particular object from a particular location,
and reasoning logically over a sufficiently fine-grained domain representation will be
computationally expensive. Second, we have not yet modeled the actual sensor-level
observations of the robot or the uncertainty in sensing and actuation. Section 2 fur-
ther discusses the limitations of other approaches based on logical and/or probabilistic
reasoning for robotics domains. Our architecture seeks to address these limitations by
combining AT I with ideas drawn from work on a refinement-based architecture [18].

3.3 Refinement, Zooming and Execution

Consider a coarse-resolution system description Dc of transition diagram τc that in-
cludes AT I. For any given goal, reasoning with Π(Dc,Hc) will provide an activity,
i.e., a sequence of abstract intentional actions. In our architecture, the execution of the
coarse-resolution transition corresponding to each such abstract action is based on a
fine-resolution system description Df of transition diagram τf , which is a refinement
of, and is tightly coupled to, Dc. We can imagine refinement as taking a closer look
at the domain through a magnifying lens, potentially leading to the discovery of struc-
tures that were previously abstracted away by the designer [18]. Df is constructed au-
tomatically as a step in the design methodology using D′c and some domain-specific
information provided by the designer.

First, the signature Σf of Df includes each basic sort of Dc whose elements have
not been magnified by the increase in resolution, or both the coarse-resolution copy and
its fine-resolution counterparts for sorts with magnified elements. For instance, sorts in
the RA domain include cells that are components of the original set of places, and any
cup has a base and handle as components; any book, on the other hand, is not magnified
and has no components. We also include domain-dependent statics relating the magni-
fied objects and their counterparts, e.g., component(cup base, cup). Next, domain at-
tributes of Σf include the coarse-resolution version and fine-resolution counterparts (if
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any) of each domain attribute ofΣc. For instance, in the RA domain,Σf include domain
attributes, e.g.: loc∗(thing∗, place∗), next to∗(place∗, place∗), loc(thing, place), and
next to(place, place), where relations with and without the “*” represent the coarse-
resolution counterparts and fine-resolution counterparts respectively. The specific rela-
tions listed above describe the location of each thing at two different resolutions, and
describe two places or cells that are next to each other. Actions of Σf include (a) ev-
ery action inΣc with its magnified parameters replaced by fine-resolution counterparts;
and (b) knowledge-producing action test(robot, f luent) that checks the value of a flu-
ent in a given state. Finally, Σf includes knowledge fluents to describe observations of
the environment and the axioms governing them, e.g., basic fluents to describe the di-
rect (sensor-based) observation of the values of the fine-resolution fluents, and defined
domain-dependent fluents that determine when the value of a particular fluent can be
tested. The test actions only change the values of knowledge fluents.

The axioms of Df include (a) coarse-resolution and fine-resolution counterparts of
all state constraints of Dc, and fine-resolution counterparts of all other axioms of Dc,
with variables ranging over appropriate sorts from Σf ; (b) general and domain-specific
axioms for observing the domain through sensor inputs; and (c) axioms relating coarse-
resolution domain attributes with their fine-resolution counterparts. If certain conditions
are met, e.g., each coarse-resolution domain attribute can be defined in terms of the fine-
resolution attributes of the corresponding components, there is a path in τf for each
transition in τc—see [18] for formal definitions and proofs.

Reasoning with Df does not address the uncertainty in sensing and actuation, and
becomes computationally intractable for complex domains. We address this problem
by drawing on the principle of zooming introduced in [18]. Specifically, for each ab-
stract transition T to be implemented at fine resolution, we automatically determine the
system description Df (T ) relevant to this transition; we do so by determining the rele-
vant object constants and restricting Df to these object constants. To implement T , we
then use ASP-based reasoning withΠ(Df (T ),Hf ) to plan a sequence of concrete (i.e.,
fine-resolution) actions. In what follows, we use “refinement and zooming” to refer to
the use of both refinement and zooming as described above. Note that fine-resolution
reasoning does not (need to) reason with activities or intentional actions.

The actual execution of the plan of concrete action is based on existing imple-
mentations of algorithms for common robotics tasks such as motion planning, object
recognition, grasping and localization. These algorithms use probabilistic models of
uncertainty in sensing and actuation. The high-probability outcomes of each action’s
execution are elevated to statements associated with complete certainty inHf and used
for subsequent reasoning. The outcomes from fine-resolution execution of each abstract
transition, along with relevant observations, are added to Hc for subsequent reasoning
using AT I. The CR-Prolog programs for fine-resolution reasoning and the program
for the overall control loop of the architecture are available online [17].

Key differences between the current representation and use of fine-resolution infor-
mation, and the prior work on the refinement-based architecture [18] are:

– Prior work used a partially observable Markov decision process (POMDP) to rea-
son probabilistically over the zoomed fine-resolution system descriptionDf (T ) for
any coarse-resolution transition T ; this can be computationally expensive, espe-
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cially when domain changes prevent reuse of POMDP policies [18]. In this paper,
CR-Prolog is used to compute a plan of concrete actions from Df (T ); each con-
crete action is executed using algorithms that incorporate probabilistic models of
uncertainty, significantly reducing the computational costs of fine-resolution plan-
ning and execution. The disadvantage is that the uncertainty associated with each
algorithm is not considered explicitly during planning at the fine-resolution.

– Prior work did not (a) reason about intentional actions; (b) maintain any fine-
resolution history; or (c) extract and exploit all the information from fine-resolution
observations. The architecture described in this paper keeps track of the relevant
fine-resolution observations and adds appropriate statements to the coarse-resolution
history to use all the relevant information. It also explicitly builds a consistent
model of history at the finer resolution.

4 Experimental Setup and Results

This section reports the results of experimentally evaluating the capabilities of our ar-
chitecture in different scenarios. We evaluated the following hypotheses:

– H1: using AT I improves the computational efficiency in comparison with not
using it, especially in scenarios with unexpected success.

– H2: using AT I improves the accuracy in comparison with not using it, especially
in scenarios with unexpected goal-relevant observations.

– H3: the architecture that combines AT I with refinement and zooming supports
reliable and efficient operation in complex robot domains.

We report results of evaluating these hypotheses experimentally: (a) in a simulated do-
main based on Example 1; (b) on a Baxter robot manipulating objects on a tabletop;
and (c) on a Turtlebot finding and moving objects in an indoor domain. We also provide
some execution traces as illustrative examples of the working of the architecture. In each
trial, the robot’s goal was to find and move one or more objects to particular locations.
As a baseline for comparison, we used an ASP-based reasoner that does not include
AT I—we refer to this as the “traditional planning” (T P) approach in which only the
outcome of the action currently being executed is monitored. Note that this baseline still
uses refinement and zoom, and probabilistic models of the uncertainty in sensing and
actuation. Also, we do not use T I as the baseline because it includes components that
make it much more computationally expensive than AT I—see Section 3.2 for more
details. To evaluate the hypotheses, we used one or more of the following performance
measures: (i) total planning and execution time; (ii) number of plans computed; (iii)
planning time; (iv) execution time; (v) number of actions executed; and (vi) accuracy.

4.1 Experimental Results (Simulation)

We first evaluated hypotheses H1 and H2 extensively in a simulated world that mimics
Example 1, with four places and different objects. Please also note the following:

– To fully explore the effects of AT I, the simulation-based trials did not include re-
finement, i.e., the robot only reasons with the coarse-resolution domain representa-
tion. We also temporarily abstracted away uncertainty in perception and actuation.
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Scenarios
Average Ratios Accuracy

Total Time Number Plans Planning Time Exec. Time Exec.Steps T P AT I
1 0.81 1.00 0.45 1.00 1.00 100% 100%
2 3.06 2.63 1.08 5.10 3.61 100% 100%
3 0.81 0.92 0.34 1.07 1.12 72% 100%
4 1.00 1.09 0.40 1.32 1.26 73% 100%
5 0.18 0.35 0.09 0.21 0.28 0% 100%

All 1.00 1.08 0.41 1.39 1.30 74% 100%
3 - no failures 1.00 1.11 0.42 1.32 1.39 100% 100%
4 - no failures 1.22 1.31 0.49 1.61 1.53 100% 100%

All - no failures 1.23 1.30 0.5 1.72 1.60 100% 100%
Table 1: Experimental results comparing AT I with T P in different scenarios. Values
of all performance measures (except accuracy) for T P are expressed as a fraction of
the values of the same measures for AT I. AT I improves accuracy and computational
efficiency, especially in dynamic domains.

– We conducted paired trials and compared the results obtained with T P and AT I
for the same initial conditions and for the same dynamic domain changes (when
appropriate), e.g., a book is moved unknown to the robot and the robot obtains an
unexpected observation.

– To measure execution time, we assumed a fixed execution time for each concrete
action, e.g., 15 units for moving from a room to the neighboring room, 5 units to
pick up an object or put it down; and 5 units to open a door. Ground truth is provided
by a component that reasons with complete domain knowledge.

Table 1 summarizes the results of ≈ 800 paired trials in each scenario described in
Section 3.2; all claims made below were tested for statistical significance. The initial
conditions, e.g., starting location of the robot and objects’ locations, and the goal were
set randomly in each paired trial; the simulation ensures that the goal is reachable from
the chosen initial conditions. Also, in suitable scenarios, a randomly-chosen, valid (un-
expected) domain change is introduced in each paired trial. Given the differences be-
tween paired trials, it does not make sense to average the measured time or plan length
across different trials. In each paired trial, the value of each performance measure (ex-
cept accuracy) obtained with T P is thus expressed as a fraction of the value of the same
performance measure obtained withAT I; each value reported in Table 1 is the average
of these computed ratios. We highlight some key results below.

Scenario-1 represents a standard planning task with no unexpected domain changes.
Both T P and AT I provide the same accuracy (100%) and compute essentially the
same plan, but computing plans comprising intentional actions takes longer. This ex-
plains the reported average values of 0.45 and 0.81 for planning time and total time (for
T P) in Table 1. In Scenario-2 (unexpected success), both T P andAT I achieve 100%
accuracy. Here, AT I stops reasoning and execution once it realizes the desired goal
has been achieved unexpectedly. However, T P does not realize this because it does not
consider observations not directly related to the action being executed; it keeps trying
to find the objects of interest in different places. This explains why T P has a higher
planning time and execution time, computes more plans, and executes more plan steps.
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Scenarios 3–5 correspond to different kinds of unexpected failures. In all trials cor-
responding to these scenarios, AT I leads to successful achievement of the goal, but
there are many instances in which T P is unable to recover from the unexpected ob-
servations and achieve the goal. For instance, if the goal is to move two books to the
library, and one of the books is moved to an unexpected location when it is no longer
part of an action in the robot’s plan, the robot may not reason about this unexpected oc-
currence and thus not achieve the goal. This phenomenon is especially pronounced in
Scenario-5 that represents an extreme case in which the robot using T P is never able to
achieve the assigned goal because it never realizes that it has failed to achieve the goal.
Notice that in the trials corresponding to all three scenarios,AT I takes more time than
T P to plan and execute the plans for any given goal, but this increase in time is more
than justified given the high accuracy and the desired behavior that the robot is able to
achieve in these scenarios using AT I.

The row labeled “All” in Table 1 shows the average of the results obtained in the
different scenarios. The following three rows summarize results after removing from
consideration all trials in which T P fails to achieve the assigned goal. We then notice
that AT I is at least as fast as T P and often faster, i.e., takes less time (overall) to
plan and execute actions. In summary, T P results in faster planning but results in lower
accuracy and higher execution time than AT I in dynamic domains, especially in the
presence of unexpected successes and failures that are common in dynamic domains.
All these results provide evidence in support of hypotheses H1 and H2. For extensive
results in more complex domains, including a comparison with an architecture that does
not use zooming at the fine-resolution, please see [11].

4.2 Execution Trace

The following execution trace illustrates the differences in the decisions made by a robot
using AT I in comparison with a robot using T P . This trace corresponds to scenarios
in which the robot has to respond to the observed effects of an exogenous action.

Execution Example 1 [Example of Scenario-2]
Assume that robot rob1 is in the kitchen initially, holding book1 in its hand, and be-
lieves that book2 is in office2 and the library is unlocked.

– The goal is to have book1 and book2 in the library. The computed plan is the same
for AT I and T P , and consists of actions:

move(rob1, library), put down(rob1, book1),move(rob1, kitchen),

move(rob1, office2), pickup(rob1, book2), move(rob1, kitchen)

move(rob1, library), putdown(rob1, book2)

– Assume that as the robot is putting book1 down in the library, someone has moved
book2 to the library.

– With AT I, the robot observes book2 in the library, reasons and explains the ob-
servation as the result of an exogenous action, realizes the goal has been achieved
and stops further planning and execution.
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– With T P , the robot does not observe or does not use the information encoded
in the observation of book2. It will thus waste time executing subsequent steps
of the plan until it is unable to find or pickup book2 in the library. It will then
replan (potentially including prior observation of book2) and eventually achieve the
desired goal. It may also compute and pursue plans assuming book2 is in different
places, and take more time to achieve the goal.

4.3 Robot Experiments

We also ran experimental trials with the combined architecture, i.e., AT I with refine-
ment and zoom, on two robot platforms. These trials represented instances of the dif-
ferent scenarios in variants of the domain in Example 1.

First, consider the experiments with the Baxter robot manipulating objects on a
tabletop. The goal is to move particular objects between different “zones” (instead of
places) or particular cell locations on a tabletop. After refinement, each zone is mag-
nified to obtain grid cells. Also, each object is magnified into parts such as base and
handle after refinement. Objects are characterized by color and size. The robot cannot
move its body but it can use its arm to move objects between cells or zones.

Next, consider the experiments with the Turtlebot robot operating in an indoor do-
main. The goal is to find and move particular objects between places in an indoor do-
main. The robot does not have a manipulator arm; it solicits help from a human to
pickup the desired object when it has reached the desired source location and found
the object, and to put the object down when it has reached the desired target location.
Objects are characterized by color and type. After refinement, each place or zone was
magnified to obtain grid cells. Also, each object is magnified into parts such as base
and handle after refinement.

Although the two domains differ significantly, e.g., in the domain attributes, actions
and complexity, no change is required in the architecture or the underlying methodol-
ogy. Other than providing the domain-specific information, no human supervision is
necessary; most of the other steps are automated. In ≈ 50 experimental trials in each
domain, the robot using the combined architecture is able to successfully achieve the
assigned goal. The performance is similar to that observed in the simulation trials. For
instance, if we do not includeAT I, the robot has lower accuracy or takes more time to
achieve the goal in the presence of unexpected success or failure; in other scenarios, the
performance with AT I and T P is comparable. Also, if we do not include zooming,
the robot takes a significantly longer to plan and execute concrete, i.e., fine-resolution
actions. In fact, as the domain becomes more complex, i.e., there are many objects and
achieving the desired goal requires plans with multiple steps, there are instances when
the planning starts becoming computationally intractable. All these results provide evi-
dence in support of hypothesis H3.

Videos of the trials on the Baxter robot and Turtlebot corresponding to different
scenarios can be viewed online [19]. For instance, in one trial involving the Turtlebot,
the goal is to have both a cup and a bottle in the library, and these objects and the robot
are initially in office2. The computed plan has the robot pick up the bottle, move to
the kitchen, move to the library, put the bottle down, move back to the kitchen and
then to office2, pick up the cup, move to the library through the kitchen, and put the
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cup down. When the Turtlebot is moving to the library holding the bottle, someone
moves the cup to the library. With AT I, the robot uses the observation of the cup,
once it has put the bottle in the library, to infer the goal has been achieved and thus
stops planning and execution. With just T P , the robot continued with its initial plan
and realized that there was a problem (unexpected position of the cup) only when it
went back to office2 and did not find the cup.

5 Discussion and Future Work

In this paper we presented a general architecture that reasons with intentions and beliefs
using transition diagrams at two different resolutions. Non-monotonic logical reasoning
with a coarse-resolution domain representation containing commonsense knowledge is
used to provide a plan of abstract intentional actions for any given goal. Each such
abstract intentional action is implemented as a sequence of concrete actions by rea-
soning with the relevant part of a fine-resolution representation that is a refinement of
the coarse-resolution representation. Also, the architecture allows the robot to auto-
matically and elegantly consider the observations that are relevant to any given goal
and the underlying intention. Experimental results in simulation and on different robot
platforms indicate that this architecture improves the accuracy and computational effi-
ciency of decision making in comparison with an architecture that does not reason with
intentional actions and/or does not include refinement and zooming.

This architecture opens up directions for future research. First, we will explore and
formally establish the relationship between the different transition diagrams in this ar-
chitecture, along the lines of the analysis provided in [18]. This will enable us to prove
correctness and provide other guarantees about the robot’s performance. We will also
instantiate the architecture in different domains and to further demonstrate the appli-
cability of the architecture. The long-term goal will be enable robots to represent and
reason reliably and efficiently with different descriptions of knowledge and uncertainty.
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