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ABSTRACT2

State of the art algorithms for many pattern recognition problems rely on data-driven deep network3
models. Training these models requires a large labeled dataset and considerable computational4
resources. Also, it is difficult to understand the working of these learned models, limiting their5
use in some critical applications. Towards addressing these limitations, our architecture draws6
inspiration from research in cognitive systems, and integrates the principles of commonsense7
logical reasoning, inductive learning, and deep learning. As a motivating example of a task that8
requires explainable reasoning and learning, we consider Visual Question Answering in which,9
given an image of a scene, the objective is to answer explanatory questions about objects in the10
scene, their relationships, or the outcome of executing actions on these objects. In this context, our11
architecture uses deep networks for extracting features from images and for generating answers12
to queries. Between these deep networks, it embeds components for non-monotonic logical13
reasoning with incomplete commonsense domain knowledge, and for decision tree induction.14
It also incrementally learns and reasons with previously unknown constraints governing the15
domain’s states. We evaluated the architecture in the context of datasets of simulated and16
real-world images, and a simulated robot computing, executing, and providing explanatory17
descriptions of plans and experiences during plan execution. Experimental results indicate that in18
comparison with an “end to end” architecture of deep networks, our architecture provides better19
accuracy on classification problems when the training dataset is small, comparable accuracy with20
larger datasets, and more accurate answers to explanatory questions. Furthermore, incremental21
acquisition of previously unknown constraints improves the ability to answer explanatory questions,22
and extending non-monotonic logical reasoning to support planning and diagnostics improves23
the reliability and efficiency of computing and executing plans on a simulated robot.24

Keywords: Nonmonotonic logical reasoning, inductive learning, deep learning, visual question answering, commonsense reasoning,25
human-robot collaboration26
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1 INTRODUCTION

Deep neural network architectures and the associated algorithms represent the state of the art for many27
perception and control problems in which their performance often rivals that of human experts. These28
architectures and algorithms are increasingly being used for a variety of tasks such as object recognition,29
gesture recognition, object manipulation, and obstacle avoidance, in domains such as healthcare,30
surveillance, and navigation. Common limitations of deep networks are that they are computationally31
expensive to train, and require a large number of labeled training samples to learn an accurate mapping32
between input(s) and output(s) in complex domains. It is not always possible to satisfy these requirements,33
especially in dynamic domains where previously unseen situations often change the mapping between34
inputs and outputs over time. Also, it is challenging to understand or provide an explanatory description35
of the observed behavior of a learned deep network model. Furthermore, it is difficult to use domain36
knowledge to improve the computational efficiency of learning these models or the reliability of the37
decisions made by these models. Consider a self-driving car on a busy road. Any error made by the car,38
e.g., in recognizing or responding to traffic signs, can result in serious accidents and make humans more39
reluctant to use such cars. In general, it is likely that humans interacting with a system designed for complex40
domains, with autonomy in some components, will want to know why and how the system arrived at41
particular conclusions; this “explainability” will help designers improve the underlying algorithms and42
their performance. Understanding the operation of these systems will also help human users build trust in43
the decisions made by these systems. Despite considerable research in recent years, providing explanatory44
descriptions of decision making and learning continues to be an open problem in AI.45

We consider Visual Question Answering (VQA) as a motivating example of a complex task that inherently46
requires explanatory descriptions of reasoning and learning. Given a scene and a natural language question47
about an image of the scene, the objective of VQA is to provide an accurate answer to the question.48
These questions can be about the presence or absence of particular objects in the image, the relationships49
between these objects, or the potential outcome of executing particular actions on objects in the scene.50
For instance, a system recognizing and responding to traffic signs on a self-driving car may be posed51
questions such as “what is the traffic sign in the image?”, or “what is the meaning of this traffic sign?”,52
and a system controlling a robot arm constructing stable arrangements of objects on a tabletop may be53
asked “why is this structure unstable?” or “what would make the structure stable?”. We assume that54
any such questions are provided as (or transcribed into) text, and that answers to questions are also55
generated as text (that may be converted to speech) using existing software. Deep networks represent56
the state of the art for VQA, but are characterized by the known limitations described above. We seek57
to address these limitations by drawing inspiration from research in cognitive systems, which indicates58
that reliable, efficient, and explainable reasoning and learning can be achieved in complex problems by59
jointly reasoning with commonsense domain knowledge and learning from experience. Specifically, the60
architecture described in this paper tightly couples knowledge representation, reasoning, and learning, and61
exploits the complementary strengths of deep learning, inductive learning, and non-monotonic logical62
reasoning with incomplete commonsense domain knowledge. We describe the following characteristics of63
the architecture:64

• For any input image of a scene of interest, Convolutional Neural Networks (CNNs) extract concise65
visual features characterizing the image.66

• Non-monotonic logical reasoning with the extracted features and incomplete commonsense domain67
knowledge is used to classify the input image, and to provide answers to explanatory questions about68
the classification and the scene.69

This is a provisional file, not the final typeset article 2



Riley et al. Nonmonotonic Logical Reasoning, Inductive Learning, and Deep Learning for VQA

• Feature vectors that the non-monotonic logical reasoning is unable to classify are used to train a70
decision tree classifier that is also used to answer questions about the classification during testing.71

• Feature vectors not classified by non-monotonic logical reasoning, along with the output of the decision72
tree classifier, train a Recurrent Neural Network (RNN) that is used to answer explanatory questions73
about the scene during testing.74

• Feature vectors not classified by non-monotonic logical reasoning are also used to inductively learn,75
and subsequently reason with, constraints governing domain states; and76

• Reasoning with commonsense knowledge is expanded (when needed) to support planning, diagnostics,77
and the ability to answer related explanatory questions.78

This architecture builds on our prior work on combining commonsense inference with deep learning (Riley79
and Sridharan, 2018a; Mota and Sridharan, 2019) by introducing the ability to learn and reason with80
constraints governing domain states, and extending explainable inference with commonsense knowledge to81
also support planning and diagnostics to achieve any given goal.82

Although we use VQA as a motivating example, it is not the main focus of our work. State of the83
art algorithms for VQA focus on generalizing to images from different domains, and are evaluated on84
benchmark datasets of several thousand images drawn from different domains (Shrestha et al., 2019). Our85
focus, on the other hand, is on transparent reasoning and learning in any given domain in which a large,86
labeled dataset is not readily available. Towards this objective, our approach explores the interplay between87
non-monotonic logical reasoning, incremental inductive learning, and deep learning. We thus neither88
compare our architecture and algorithms with state of the art algorithms for VQA, nor use large benchmark89
VQA datasets for evaluation. Instead, we evaluate our architecture’s capabilities in the context of: (i)90
estimating the stability of configurations of simulated blocks on a tabletop; (ii) recognizing different traffic91
signs in a benchmark dataset of images; and (iii) a simulated robot delivering messages to the intended92
recipients at different locations. The characteristics of these tasks and domains match our objective. In93
both domains, we focus on answering explanatory questions about images of scenes and the underlying94
classification problems (e.g., recognizing traffic signs). In addition, we demonstrate how our architecture95
can be adapted to enable a robot assisting humans to compute and execute plans, and to answer questions96
about these plans. Experimental results show that in comparison with an architecture based only on deep97
networks, our architecture provides: (i) better accuracy on classification problems when the training dataset98
is small, and comparable accuracy on larger datasets; and (ii) significantly more accurate answers to99
explanatory questions about the scene. We also show that the incremental acquisition of state constraints100
improves the ability to answer explanatory questions, and to compute minimal and correct plans.101

We begin with a discussion of related work in Section 2. The architecture and its components are102
described in Section 3, with the experimental results discussed in Section 4. Section 5 then describes the103
conclusions and directions for further research.104

2 RELATED WORK

State of the art approaches for VQA are based on deep learning algorithms (Jiang et al., 2015; Malinowski105
et al., 2017; Masuda et al., 2016; Pandhre and Sodhani, 2017; Shrestha et al., 2019; Zhang et al., 2017).106
These algorithms use labeled data to train neural network architectures with different arrangements of107
layers and connections between them, capturing the mapping between the inputs (e.g., images, text108
descriptions) and the desired outputs (e.g., class labels, text descriptions). Although deep networks have109
demonstrated the ability to model complex non-linear mappings between inputs and outputs for different110
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pattern recognition tasks, they are computationally expensive and require large, labeled training datasets.111
They also make it difficult to understand and explain the internal representations, identify changes that112
will improve performance, or to transfer knowledge acquired in one domain to other related domains. In113
addition, it is challenging to accurately measure performance or identify dataset bias, e.g., deep networks114
can answer questions about images using question-answer training samples without even reasoning about115
the images (Jabri et al., 2016; Teney and van den Hengel, 2016; Zhang et al., 2017). There is on-going116
research on each of these issues, e.g., to explain the operation of deep networks, reduce training data117
requirements and bias, reason with domain knowledge, and incrementally learn the domain knowledge. We118
review some of these approaches below, primarily in the context of VQA.119

Researchers have developed methods to understand the internal reasoning of deep networks and other120
machine learning algorithms. Selvaraju et al. (2017) use the gradient in the last convolutional layer of a121
CNN to compute the relative contribution (importance weight) of each neuron to the classification decision122
made. However, the weights of neurons do not provide an intuitive explanation of the CNN’s operation123
or its internal representation. Researchers have also developed general approaches for understanding the124
predictions of any given machine learning algorithm. For instance, Koh and Liang (2017) use second-125
order approximations of influence diagrams to trace any model’s prediction through a learning algorithm126
back to the training data in order to identify training samples most responsible for any given prediction.127
Ribeiro et al. (2016) developed a framework that analyzes any learned classifier model by constructing a128
interpretable simpler model that captures the essence of the learned model. This framework formulates the129
task of explaining the learned model, based on representative instances and explanations, as a submodular130
optimization problem. In the context of VQA, Norcliffe-Brown et al. (2018) provide interpretability by131
introducing prior knowledge of scene structure as a graph that is learned from observations based on the132
question under consideration. Object bounding boxes are graph nodes while edges are learned using an133
attention model conditioned on the question. Mascharka et al. (2018) augment a deep network architecture134
with an image-space attention mechanism based on a set of composable visual reasoning primitives that135
help examine the intermediate outputs of each module. Li et al. (2018) introduce a captioning model to136
generate an image’s description, reason with the caption and the question to construct an answer, and137
use the caption to explain the answer. However, these algorithms do not support the use of commonsense138
reasoning to (i) provide meaningful explanatory descriptions of learning and reasoning; (ii) guide learning139
to be more efficient; or (iii) provide reliable decisions when large training datasets are not available.140

The training data requirements of a deep network can be reduced by directing attention to data relevant141
to the tasks at hand. In the context of VQA, Yang et al. (2016) use a Long Short-Term Memory (LSTM)142
network to map the question to an encoded vector, extract a feature map from the input image using a CNN,143
and use a neural network to compute weights for feature vectors based on their relevance to the question. A144
stacked attention network is trained to map the weighted feature vectors and question vector to the answer,145
prioritizing feature vectors with greater weights. Schwartz et al. (2017) use learned higher-order correlations146
between various data modalities to direct attention to elements in the data modalities that are relevant to147
the task at hand. Lu et al. (2016) use information from the question to identify relevant image regions and148
uses information from the image to identify relevant words in the question. A co-attentional model jointly149
and hierarchically reasons about the image and the question at three levels, embedding words in a vector150
space, using one-dimensional CNNs to model information at the phrase level, and using RNNs to encode151
the entire question. A generalization of this work, a Bilinear Attention Network, considers interactions152
between all region proposals in the image with all words in the (textual) question (Kim et al., 2018). A153
Deep Attention Neural Tensor Network for VQA, on the other hand, uses tensor-based representations154
to discover joint correlations between images, questions, and answers (Bai et al., 2018). The attention155
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module is based on a discriminative reasoning process, and regression with KL-divergence losses improves156
scalability of training and convergence. Recent work by Anderson et al. (2018) combines top-down and157
bottom-up attention mechanisms, with the top-down mechanism providing an attention distribution over158
object proposals provided by the bottom-up mechanism.159

In addition to reducing the training data requirements, researchers have focused on reducing the number160
of annotated samples needed for training, and on minimizing the bias in deep network models. In the161
context of VQA, Lin et al. (2014) iteratively revise a model trained on an initial training set by expanding162
the training set with image-question pairs involving concepts it is uncertain about, with an “oracle” (human163
annotater) providing the answers. This approach reduces annotation time, but the database includes just as164
many images and questions as before. Goyal et al. (2017) provide a balanced dataset with each question165
associated with a pair of images that require different answers, and provide a counterexample based166
explanation for each image-question pair. Agrawal et al. (2018), on the other hand, separate the recognition167
of visual concepts in an image from the identification of an answer to any given question, and include168
inductive biases to prevent the learned model from relying predominantly on priors in the training data.169

In computer vision, robotics and other applications, learning from data can often be made more efficient170
by reasoning with prior knowledge about the domain. In the context of VQA, Wang et al. (2017) reason171
with knowledge about scene objects to answer common questions about these objects, significantly172
expanding the range of natural language questions that can be answered without making the training data173
requirements impractical. However, this approach does not reduce the amount of data required to train the174
deep network. Furbach et al. (2010) directly use a knowledge base to answer questions and do not consider175
the corresponding images as inputs. Wagner et al. (2018), on the other hand, use physics engines and prior176
knowledge of domain objects to realistically simulate and explore different situations. These simulations177
guide the training of deep network models that anticipate action outcomes and answer questions about178
all situations. Based on the observation that VQA often requires reasoning over multiple steps, Wu et al.179
(2018) construct a chain of reasoning for multi-step and dynamic reasoning with relations and objects. This180
approach iteratively forms new relations between objects using relational reasoning operations, and forms181
new compound objects using object refining operations, to improve VQA performance. Given the different182
components of a VQA system, Teney and van den Hengel (2018) present a meta learning approach to183
separate question answering from the information required for the task, reasoning at test time over example184
questions and answers to answer any given question. Two meta learning methods adapt a VQA model185
without the need for retraining, and demonstrate the ability to provide novel answers and support vision186
and language learning. Rajani and Mooney (2018) developed an ensemble learning approach, Stacking187
With Auxiliary Features, which combines the results of multiple models using features of the problem as188
context. The approach considers four categories of auxiliary features, three of which are inferred from189
image-question pairs while the fourth uses model-specific explanations.190

Research in cognitive systems indicates that reliable, efficient, and explainable reasoning and learning can191
be achieved by reasoning with domain knowledge and learning from experience. Early work by Gil (1994)192
enabled an agent to reason with first-order logic representations and incrementally refined action operators.193
In such methods, it is difficult to perform non-monotonic reasoning, or to merge new, unreliable information194
with existing beliefs. Non-monotonic logic formalisms have been developed to address these limitations,195
e.g., Answer Set Prolog (ASP) has been used in cognitive robotics (Erdem and Patoglu, 2012) and other196
applications (Erdem et al., 2016). ASP has been combined with inductive learning to monotonically learn197
causal laws (Otero, 2003), and methods have been developed to learn and revise domain knowledge198
represented as ASP programs (Balduccini, 2007; Law et al., 2018). Cognitive architectures have also199
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been developed to extract information from perceptual inputs to revise domain knowledge represented in200
first-order logic (Laird, 2012), and to combine logic and probabilistic representations to support reasoning201
and learning in robotics (?Zhang et al., 2015). However, approaches based on classical first-order logic202
are not expressive enough, e.g., modeling uncertainty by attaching probabilities to logic statements is not203
always meaningful. Logic programming methods, on the other hand, do not support one or more of the204
desired capabilities such as efficient and incremental learning of knowledge, reasoning efficiently with205
probabilistic components, or generalization as described in this paper. These challenges can be addressed206
using interactive task learning, a general knowledge acquisition framework that uses labeled examples or207
reinforcement signals obtained from observations, demonstrations, or human instructions (Chai et al., 2018;208
Laird et al., 2017). Sridharan and Meadows (2018) developed such a framework to combine non-monotonic209
logical reasoning with relational reinforcement learning and inductive learning to learn action models to be210
used for reasoning or learning in dynamic domains. In the context of VQA, there has been interesting work211
on reasoning with learned symbolic structure. For instance, Yi et al. (2018) present a neural-symbolic VQA212
system that uses deep networks to infer structural object-based scene representation from images, and to213
generate a hierarchical (symbolic) program of functional modules from the question. An executor then214
runs the program on the representation to answer the question. Such approaches still do not (i) integrate215
reasoning and learning such that they inform and guide each other; or (ii) use the rich domain-specific216
commonsense knowledge that is available in any application domain.217

In summary, deep networks represent the state of the art for VQA and many other pattern recognition218
tasks. Recent surveys on VQA methods indicate that despite considerable research, it is still difficult to219
use these networks to support efficient learning, intuitive explanations, or generalization to simulated and220
real-world images (Pandhre and Sodhani, 2017; Shrestha et al., 2019). Our architecture draws on principles221
of cognitive systems to address these limitations. It tightly couples deep networks with components for222
non-monotonic logical reasoning with commonsense domain knowledge, and for learning incrementally223
from samples over which the learned model makes errors. This work builds on our proof of concept224
architecture that integrated deep learning with commonsense inference for VQA (Riley and Sridharan,225
2018a). It also builds on work in our research group on using commonsense inference and learned state226
constraints to guide deep networks that estimate object stability and occlusion in images (Mota and227
Sridharan, 2019). In comparison with our prior work, we introduce a new component for incrementally228
learning constraints governing domain states, expand reasoning with commonsense knowledge to support229
planning and diagnostics, explore the interplay between the architecture’s components, and discuss detailed230
experimental results.231

3 ARCHITECTURE

Figure 1 is an overview of our architecture that provides answers to explanatory questions about images of232
scenes and an underlying classification problem. The architecture seeks to improve accuracy and reduce233
training effort, i.e., reduce training time and the number of training samples, by embedding non-monotonic234
logical reasoning and inductive learning in a deep network architecture. We will later demonstrate how235
the architecture can be adapted to address planning problems on a simulated robot—see Section 3.5. The236
architecture may be viewed as having four key components that are tightly coupled with each other.237

1. A component comprising CNN-based feature extractors, which are trained and used to map any given238
image of a scene under consideration to a vector of image features.239
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Figure 1. Overview of the architecture that combines the principles of deep learning, non-monotonic
logical reasoning, and decision-tree induction.

2. A component that uses one of two methods to classify the feature vector. The first method uses240
non-monotonic reasoning with incomplete domain knowledge and the features to assign a class label241
and explain this decision. If the first method cannot classify the image, the second method trains and242
uses a decision tree to map the feature vector to a class label and explain the classification.243

3. A component that answers explanatory questions. If non-monotonic logical reasoning is used for244
classification, it is also used to provide answers to these questions. If a decision tree is instead used for245
classification, an RNN is trained to map the decision tree’s output, the image features, and the question,246
to the corresponding answer.247

4. A component that uses the learned decision tree and the existing knowledge base to incrementally248
construct and validate constraints on the state of the domain. These constraints revise the existing249
knowledge that is used for subsequent reasoning.250

This architecture exploits the complementary strengths of deep learning, non-monotonic logical reasoning,251
and incremental inductive learning with decision trees. Reasoning with commonsense knowledge guides252
learning, e.g., the RNN is trained on (and processes) input data that cannot be processed using existing253
knowledge. The CNNs and RNN can be replaced by other methods for extracting image features and254
answering explanatory questions (respectively). Also, although the CNNs and RNN are trained in an initial255
phase in this paper, these models can be revised over time if needed. We hypothesize that embedding non-256
monotonic logical reasoning with commonsense knowledge and the incremental updates of the decision257
tree, between the CNNs and the RNN, makes the decisions more transparent, and makes learning more time258
and sample efficient. Furthermore, the overall architecture and methodology can be adapted to different259
domains. In this paper, we will use the following two domains to illustrate and evaluate the architecture’s260
components and the methodology.261

1. Structure Stability (SS): this domain has different structures, i.e., different arrangements of simulated262
blocks of different colors and sizes, on a tabletop—see Figure 2 for some examples. We generated263
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Figure 2. Illustrative images of structures of blocks of different colors and sizes; these images were
obtained from a physics-based simulator for the SS domain.

Figure 3. Illustrative images of traffic signs from the BelgiumTS dataset (Timofte et al., 2013).

2500 such images using a physics-based simulator. The relevant features of the domain include the264
number of blocks, whether the structure is on a lean, whether the structure has a narrow base, and265
whether any block is placed such that it is not well balanced on top of the block below. The objective266
in this domain is to classify structures as being stable or unstable, and to answer explanatory questions267
such as “why is this structure unstable?” and “what should be done to make this structure stable?”.268

2. Traffic Sign (TS): this domain focuses on recognizing traffic signs from images—see Figure 3 for269
some examples. We used the BelgiumTS benchmark dataset (Timofte et al., 2013) with ≈ 7000270
real-world images (total) of 62 different traffic signs. This domain’s features include the primary271
symbol of the traffic sign, the secondary symbol, the shape of the sign, the main color in the middle,272
the border color, the sign’s background image, and the presence or absence of a cross (e.g., some273
signs have a red or black cross across them to indicate the end of a zone, with the absence of the cross274
indicating the zone’s beginning). The objective is to classify the traffic signs and answer explanatory275
questions such as “what is the sign’s message?” and “how should the driver respond to this sign?”.276

In addition to these two domains, Section 3.5 will introduce the Robot Assistant (RA) domain, a simulated277
domain to demonstrate the use of our architecture for computing and executing plans to achieve assigned278
goals. In the RA domain, a simulated robot reasons with existing knowledge to deliver messages to target279
people in target locations, and to answer explanatory questions about the plans and observed scenes.280

The focus of our work is on understanding and using the interplay between deep learning, commonsense281
reasoning, and incremental learning, in the context of reliable and efficient scene understanding in any282
given dynamic domain. The benchmark VQA datasets and the algorithms, on the other hand, focus on283
generalizing across images from different scenarios in different domains, making it difficult to support the284
reasoning and learning capabilities of our architecture. We thus do not use these datasets or algorithms in285
our evaluation.286
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3.1 Feature Extraction using CNNs287

The first component of the architecture trains CNNs to map input images to concise features representing288
the objects of interest in the images. For the SS domain and TS domain, semi-automated annotation was289
used to label the relevant features in images for training and testing. The selection of these features for290
each domain was based on domain expertise. In the SS domain, the features of interest are:291

• Number of blocks in structure (number ∈ [1, 5]);292

• Whether the structure is on a lean (true, false);293

• Width of the base block (wide, narrow); and294

• Whether any block is displaced, i.e., not well balanced on top of the block below (true, false).295

In the TS domain, the features of interest are:296

• Primary symbol in the middle of the traffic sign; 39 primary symbols such as bumpy road,297
slippery road, stop, left turn, and speed limit;298

• Secondary symbol in the traffic sign; 10 secondary symbols such as disabled, car and fence;299

• Shape of the sign; circle, triangle, square, hexagon, rectangle, wide rectangle, diamond, or300
inverted triangle;301

• Main color in the middle of the sign; red, white, or blue;302

• Border color at the edge of the sign; red, white, or blue;303

• Background image, e.g., some symbols are placed over a square or a triangle; and304

• Presence of a red or black cross across a sign to indicate a zone’s end or invalidity; the sign without the305
cross indicates the zone’s beginning or validity, e.g., a parking sign with a cross implies no parking.306

To reduce the training data requirements and simplify the training of CNNs, we (i) train a separate CNN for307
each feature to be extracted from an image; and (ii) start with a basic model for each CNN and incrementally308
make it more complex as needed. The number of CNNs is thus equal to the number of features to be309
extracted from each image for any given domain, and the CNN trained for each feature may be different310
even within a particular domain. The basic CNN model we begin with has an input layer, a convolutional311
layer, a pooling layer, a dense layer, a dropout layer, and a logit layer, as seen on the left of Figure 4.312
Additional convolutional and pooling layers are added until the feature extraction accuracy converges or313
exceeds a threshold (e.g., ≥ 90%). Our architecture also includes the option of fine-tuning previously314
trained CNN models instead of starting from scratch. The right side of Figure 4 shows a CNN model315
learned in our example domains, which has three convolutional layers and pooling layers. We trained and316
validated these CNNs in an initial phase, and used them for evaluation. Our code for constructing these317
CNNs for features (in our example domains) is in our repository (Riley and Sridharan, 2018b).318

3.2 Classification using Non-monotonic Logical Reasoning or Decision Trees319

The feature vector extracted from an image is used for decision making. In the SS domain and TS domain,320
decisions take the form of assigning a class label to each feature vector1. The second component of our321
architecture performs this task using one of two methods: (i) non-monotonic logical inference using ASP;322
or (ii) a classifier based on a learned decision tree. We describe these two methods below.323

1 In the RA domain discussed in Section 3.5, decision making also includes planning and diagnostics.
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Figure 4. Basic CNN model used for extracting each feature in our architecture. CNNs for individual
features may end up with different numbers of convolutional and pooling layers.

ASP-based Inference with Commonsense Knowledge: The first step in reasoning with incomplete
commonsense domain knowledge is the representation of this knowledge. In our architecture, an action
language is used to describe the dynamics of any domain under consideration. Action languages are formal
models of parts of natural language used for describing transition diagrams of dynamic systems. Our
architecture uses action language ALd (Gelfond and Inclezan, 2013), with a sorted signature Σ that can be
viewed as the vocabulary used to describe the domain’s transition diagram. The signature Σ comprises
basic sorts, which are similar to types in a programming language, statics, i.e., domain attributes whose
values do not change over time, fluents, i.e., domain attributes whose values can change over time, and
actions. The domain’s fluents can be basic, i.e., those that obey the laws of inertia and are changed directly
by actions, or defined, i.e., those that do not obey the laws of inertia and are defined by other attributes. A
domain attribute or its negation is a literal; of all its variables are ground, it is a ground literal. ALd allows
three types of statements: causal law, state constraint and executability condition.

a causes lb if p0, . . . , pm (Causal law)

l if p0, . . . , pm (State constraint)

impossible a0, . . . , ak if p0, . . . , pm (Executability condition)

where a is an action, l is a literal, lb is a basic literal, and p0, . . . , pm are domain literals.324

The domain representation (i.e., the knowledge base) comprises a system description D, which is a325
set of statements of ALd, and a history H. D comprises a sorted signature Σ and axioms describing326
the domain dynamics. For instance, in the SS domain, Σ includes basic sorts such as structure, color,327
size, and attribute; the basic sorts of the TS domain include main color, other color, main symbol,328
other symbol, shape, cross etc. The sort step is also in Σ to support temporal reasoning over time steps.329
The statics and fluents in the SS domain include:330
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num blocks(structure, num), block color(block, color), block size(block, size) (1)

block displaced(structure), stable(structure)

which correspond to the image features extracted in the domain, and are described in terms of their331
arguments’ sorts. In a similar manner, statics and fluents of the TS domain include:332

primary symbol(sign,main symbol), primary color(sign,main color) (2)

secondary symbol(sign, other symbol), secondary color(sign, other color)

sign shape(shape), background image(image)

In both domains, signature Σ includes a predicate holds(fluent, step), which implies that a particular333
fluent holds true at a particular time step. As stated above, Σ for a dynamic domain typically includes334
actions that cause state transitions, but this capability is not needed to answer explanatory questions about335
specific scenes and the underlying classification problem in our (SS, TS) domains. For ease of explanation,336
we thus temporarily disregard the modeling of actions, and their preconditions and effects. We will revisit337
actions in Section 3.5 when we consider planning tasks in the RA domain.338

Given a signature Σ for a domain, a state of the domain is a collection of ground literals, i.e., statics,
fluents, actions and relations with values assigned to their arguments—for more details, please see (Gelfond
and Kahl, 2014; Sridharan et al., 2019). The axioms of D are defined in terms of the signature and govern
domain dynamics; this typically includes a distributed representation of the constraints related to domain
actions, i.e., causal laws and executability conditions that define the preconditions and effects of actions,
and constraints related to states, i.e., state constraints. In the SS domain and TS domain, axioms govern the
belief about domain states; we will discuss axioms related to actions in Section 3.5 when we discuss the
RA domain. Specifically, the axioms of the SS domain include state constraints such as:

¬stable(S) if block displaced(S) (3a)

stable(S) if num blocks(S, 2), ¬structure type(S, lean) (3b)

where Statement 3(a) says that any structure with a block that is displaced significantly is unstable, and339
Statement 3(b) says that any pair of blocks without a significant lean is stable.340

Axioms of the TS domain include statements such as:

sign type(TS, no parking) if primary color(TS, blue), primary symbol(TS, blank),

cross(TS), shape(TS, circle) (4a)

sign type(TS, stop) if primary color(TS, red), primary symbol(TS, stoptext),

shape(TS, octagon) (4b)

where Statement 4(a) implies that a blue, blank, circular traffic sign with a cross across it is a no parking341
sign. Statement 4(b) implies that a red, octagon-shaped traffic sign with the text “stop” is a stop sign.342
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The historyH of a dynamic domain is usually a record of fluents observed to be true or false at a particular343
time step, i.e., obs(fluent, boolean, step), and the successful execution of an action at a particular time344
step, i.e., hpd(action, step); for more details, see (Gelfond and Kahl, 2014). The domain knowledge in345
many domains often includes default statements that are true in all but a few exceptional circumstances.346
For example, we may know in the SS domain that “structures with two blocks of the same size are usually347
stable”. To encode such knowledge, we use our recent work that expanded the notion of history to represent348
and reason with defaults describing the values of fluents in the initial state (Sridharan et al., 2019).349

Key tasks of an agent equipped with a system description D and historyH include reasoning with this350
knowledge for inference, planning and diagnostics. In our architecture, these tasks are accomplished351
by translating the domain representation to a program Π(D,H) in CR-Prolog, a variant of ASP that352
incorporates consistency restoring (CR) rules (Balduccini and Gelfond, 2003). In this paper, we use the353
terms “ASP” and “CR-Prolog” interchangeably. ASP is a declarative programming paradigm designed354
to represent and reason with incomplete commonsense domain knowledge. It is based on stable model355
semantics, and supports default negation and epistemic disjunction. For instance, unlike “¬a”, which356
implies that a is believed to be false, “not a” only implies a is not believed to be true. Also, unlike “p ∨ ¬p”357
in propositional logic, “p or ¬p” is not tautological. Each literal can thus be true, false or unknown, and358
the agent reasoning with domain knowledge does not believe anything that it is not forced to believe.359
ASP can represent recursive definitions, defaults, causal relations, special forms of self-reference, and360
language constructs that occur frequently in non-mathematical domains, and are difficult to express in361
classical logic formalisms (Baral, 2003; Gelfond and Kahl, 2014). Unlike classical first-order logic, ASP362
supports non-monotonic logical reasoning, i.e., it can revise previously held conclusions or equivalently363
reduce the set of inferred consequences, based on new evidence—this ability helps the agent recover from364
any errors made by reasoning with incomplete knowledge. ASP and other paradigms that reason with365
domain knowledge are often criticized for requiring considerable (if not complete) prior knowledge and366
manual supervision, and for being unwieldy in large, complex domains. However, modern ASP solvers367
support efficient reasoning in large knowledge bases with incomplete knowledge, and are used by an368
international research community for cognitive robotics (Erdem and Patoglu, 2012; Zhang et al., 2015)369
and other applications (Erdem et al., 2016). For instance, recent work has demonstrated that ASP-based370
non-monotonic logical reasoning can be combined with: (i) probabilistic reasoning for reliable and efficient371
planning and diagnostics (Sridharan et al., 2019); and (ii) relational reinforcement learning and active372
learning methods for interactively learning or revising commonsense domain knowledge based on input373
from sensors and humans (Sridharan and Meadows, 2018).374

In our architecture, the automatic translation from statements in ALd to the program Π is based on a
custom-designed script2. The resultant program Π includes the signature and axioms of D, inertia axioms,
reality checks, closed world assumptions for defined fluents and actions, and observations, actions, and
defaults fromH. For instance, Statements 3(a-b) are translated to:

¬stable(S) ← block displaced(S) (5a)

stable(S) ← num blocks(S, 2), ¬structure type(S, lean) (5b)

In addition, features extracted from an input image (to be processed) are encoded as the initial state of375
the domain in Π. Each answer set of Π(D,H) then represents the set of beliefs of an agent associated376

2 An independent group of researchers has developed a general-purposed software to automatically translate any description in ALd to the corresponding
CR-Prolog program; we expect this software to be made publicly available soon.
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Figure 5. Example of part of a decision tree constructed from labeled samples and used for classification
in the SS domain. The nodes used to classify a particular example are highlighted. Each leaf shows a class
label and indicates the proportion of the labeled examples (at the leaf) that correspond to this label.

with this program. Algorithms for computing entailment, and for planning and diagnostics, reduce these377
tasks to computing answer sets of CR-Prolog programs. We compute answer sets of CR-Prolog programs378
using the SPARC system (Balai et al., 2013). The CR-Prolog programs for our example domains are in our379
open-source software repository (Riley and Sridharan, 2018b). For the classification task in our example380
domains, the relevant literals in the answer set provide the class label and an explanatory description of381
the assigned label (see Section 3.3); we will consider the planning task in Section 3.5. The accuracy of382
the inferences drawn from the encoded knowledge depends on the accuracy and extent of the knowledge383
encoded, but encoding comprehensive domain knowledge is difficult. The decision of what and how much384
knowledge to encode is made by the designer.385

Decision Tree Classifier: If ASP-based inference cannot classify the feature vector extracted from an386
image, the feature vector is mapped to a class label using a decision tree classifier learned from labeled387
training examples. In a decision tree classifier, each node is associated with a question about the value of a388
particular feature, with the child nodes representing the different answers to the question, i.e., the possible389
values of the feature. Each node is also associated with samples that satisfy the corresponding values of the390
features along the path from the root node to this node. We use a standard implementation of a decision391
tree classifier (Duda et al., 2000). This implementation uses the Gini measure to compute information392
gain (equivalently, the reduction in entropy) that would be achieved by splitting an existing node based on393
each feature that has not already been used to create a split in the tree. Among the features that provide a394
significant information gain, the feature that provides the maximum information gain is selected to split the395
node. If none of the features would result in any significant information gain, this node becomes a leaf396
node with a class label that matches a majority of the samples at the node.397

The decision tree’s search space is quite specific since it only considers samples that could not be398
classified by ASP-based reasoning. The decision tree does not need to generalize as much as it would have399
to if it had to process every training (or test) sample in the dataset. Also, although overfitting is much less400
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likely, we still use pruning to minimize the effects of overfitting. Figure 5 shows part of a learned decision401
tree classifier; specific nodes used to classify a particular example are highlighted to indicate that 94% of402
the observed examples of structures that have fewer than three blocks, do not have a significant lean, and403
do not have a narrow base, correspond to stable structures. These “active” nodes along any path in the404
decision tree that is used to classify an example can be used to explain the classification outcome in terms405
of the values of particular features that were used to arrive at the class label assigned to a specific image406
under consideration.407

3.3 Answering Explanatory Questions408

The third component of the architecture provides two methods for answering explanatory questions. The409
available inputs are the (i) question; (ii) vector of features extracted from the image under consideration;410
and (iii) classification output. The human designer also provides pre-determined templates for questions411
and their answers. In our case, we use a controlled vocabulary, templates based on language models and412
parts of speech for sentences, and existing software for natural language processing. Any given question413
is transcribed using the controlled vocabulary, parsed (e.g., to obtain parts of speech), and matched with414
the templates to obtain a relational representation. Recall that questions in the SS domain are of the form:415
“is this structure stable/unstable?” and “ what is making this structure stable/unstable?”. These questions416
can be translated into relational statements such as stable(S) or ¬stable(S) and used as a question, or417
as the desired consequence, during inference or in a search process. In a similar manner, questions in418
the TS domain such as: “what sign is this?” and “what is the sign’s message?” can be translated into419
sign type(S, sign) and used for subsequent processing.420

The first method for answering explanatory questions is based on the understanding that if the feature421
vector extracted from the image is processed successfully using ASP-based reasoning, it is also possible422
to reason with the existing knowledge to answer explanatory questions about the scene. To support such423
question answering, we need to revise the signature Σ in the system description D of the domain. For424
instance, we add sorts such as query type, answer type, and query to encode different types of queries425
and answers. We also introduce suitable relations to represent questions, answers to these questions, and426
more abstract attributes, e.g., of structures of blocks, traffic signs etc.427

In addition to the signature, we also augment the axioms in D to support reasoning with more abstract
attributes, and to help construct answers to questions. For instance, we can include an axiom such as:

many blocks(S) ← unstable(S), ¬base(S, narrow),

¬struc type(S, lean), ¬block displaced(S) (6)

which implies that if a structure (of blocks) is not on a narrow base, does not have a significant lean, and428
does not have blocks significantly displaced, any instability in the structure implies (and is potentially429
because) there are too many blocks in the structure. Once the ASP program Π(D,H) has been revised as430
described above, we can compute answer set(s) of this program to obtain the beliefs of the agent associated431
with this program. For any given question, the answer set(s) are parsed based on the known controlled432
vocabulary and templates (for questions and answers) to extract relevant literals—these literals are included433
in the corresponding templates to construct answers to explanatory questions. These answers can also be434
converted to speech using existing software.435

The second method for answering explanatory questions is invoked if the decision tree is used to process436
(i.e., classify in the context of the SS domain and TS domain) the vector of image features. The inability437
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Figure 6. Example of the basic RNN used to construct explanations. The RNN learned for the example
domains has 26− 30 hidden layers.

to classify the feature vector through ASP-based reasoning is taken to imply that the encoded domain438
knowledge is insufficient to answer explanatory questions about the scene. In this case, an LSTM network-439
based RNN is trained and used to answer the explanatory questions. The inputs are the feature vector,440
classification output, and a vector representing the transcribed and parsed query. The output (provided441
during training) is in the form of answers in the predetermined templates. Similar to the approach used442
in Section 3.2, the RNN is built incrementally during training. We begin with one or two hidden layer(s),443
as shown in Figure 6, and add layers as long as it results in a significant increase in the accuracy. We444
also include the option of adding a stack of LSTMs if adding individual layers does not improve accuracy445
significantly. In our example domains, the RNN constructed to answer explanatory questions had as many446
as 26− 30 hidden layers and used a softmax function to provide one of about 50 potential answer types.447
An example of the code used to train the RNN is available in our repository (Riley and Sridharan, 2018b).448

3.4 Learning State Constraints449

The components of the architecture described so far support reasoning with commonsense knowledge,450
learned decision trees, and deep networks, to answer explanatory questions about the scene and an451
underlying classification problem. In many practical domains, the available knowledge is incomplete, the452
number of labeled examples is small, or the encoded knowledge changes over time. The decisions made453
by the architecture can thus be incorrect or sub-optimal, e.g., a traffic sign can be misclassified or an454
ambiguous answer may be provided to an explanatory question. The fourth component of our architecture455
seeks to address this problem by supporting incremental learning of domain knowledge. Our approach is456
inspired by the inductive learning methods mentioned in Section 2, e.g., Sridharan and Meadows (2018) use457
relational reinforcement learning and decision tree induction to learn domain axioms. The work described458
in this paper uses decision tree induction to learn constraints governing domain states. The methodology459
used in this component, in the context of VQA, is as follows:460

1. Identify training examples that are not classified, or are classified incorrectly, using the existing461
knowledge. Recall that this step is accomplished by the component described in Section 3.2, which462
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processes each training example using the existing knowledge encoded in the CR-Prolog program, in463
an attempt to assign a class label to the example.464

2. Train a decision tree using the examples identified in Step-1 above. Recall that this step is also465
accomplished by the component described in Section 3.2.466

3. Identify paths in the decision tree (from root to leaf) such that (i) there are a sufficient number of
examples at the leaf, e.g., 10% of the training examples; and (ii) all the examples at the leaf have the
same class label. Since the nodes correspond to checks on the values of domain features, the paths will
correspond to combinations of partial state descriptions and class labels that have good support among
the labeled training examples. Each such path is translated into a candidate axiom. For instance, the
following are two axioms identified by this approach in the SS domain:

¬stable(S) ← num blocks(S, 3), base(S,wide), (7a)

struc type(S, lean)

¬stable(S) ← num blocks(S, 3), base(S, narrow), (7b)

struc type(S, lean)

4. Generalize candidate axioms if possible. For instance, if one candidate axiom is a over-specification
of another existing axiom, the over-specified version is removed. In the context of the axioms in
Statement 7(a-b), the second literal represents redundant information, i.e., if a structure with three
blocks has a significant lean, it is unstable irrespective of whether the base of the structure is narrow or
wide. Generalizing over these two axioms results in the following candidate axiom:

¬stable(S) ← num blocks(S, 3), struc type(S, lean) (8)

which only includes the literals that encode the essential information.467

5. Validate candidate axioms one at a time. To do so, the candidate axiom is added to the CR-Prolog468
program encoding the domain knowledge. A sufficient number of training examples (e.g., 10% of the469
dataset, as before) relevant to this axiom, i.e., the domain features encoded by the examples should470
satisfy the body of the axiom, are drawn randomly from the training dataset. If processing these471
selected examples with the updated CR-Prolog program results in misclassifications, the candidate472
axiom is removed from further consideration.473

6. Apply sanity checks to the validated axioms. The validated axioms and existing axioms are checked to474
remove over-specifications and retain the most generic version of any axiom. Axioms that pass these475
sanity checks are added to the CR-Prolog program and used for subsequent reasoning.476

Section 4.3 examines the effect of such learned constraints on classification and VQA performance.477

3.5 Planning with Domain Knowledge478

The description of the architecture’s components has so far focused on classification and VQA, and479
reasoning has been limited to inference with knowledge. However, the architecture is also applicable to480
planning (and diagnostics) problems. Consider the RA domain in which a simulated robot has to navigate481
and deliver messages to particular people in particular places, and to answer explanatory questions, i.e., the482
domain includes aspects of planning and VQA. Figure 7 depicts this domain and a simulated scenario in it;483
semantic labels of the offices and rooms are shown in the upper half.484
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Figure 7. Block diagram and a simulated scenario in the RA domain in which the robot has to deliver
messages to people in target locations.

A robot planning and executing actions in the real world has to account for the uncertainty in sensing and485
actuation. In other work, we addressed this issue by coupling ASP-based coarse-resolution planning with486
probabilistic fine-resolution planning and execution (Sridharan et al., 2019). In this paper, we temporarily487
abstract away such probabilistic models of uncertainty to thoroughly explore the interplay between488
reasoning and learning, including the effect of added noise in sensing and actuation (in simulation).489

To support planning, the signature Σ of system description D has basic sorts such as: place, robot,
person, object, entity, status, and step, which are arranged hierarchically, e.g., robot and person are
subsorts of agent, and agent and object are subsorts of entity. Σ also includes ground instances of
sorts, e.g., office, workshop, kitchen, and library are instances of place, and Sarah, Bob, John, and
Sally are instances of person. As before, domain attributes and actions are described in terms of the
sorts of their arguments. The fluents include loc(agent, place), which describes the location of the robot
and people in the domain, and message status(message id, person, status), which denotes whether a
particular message has been delivered (or remains undelivered) to a particular person. Static attributes
include relations such as next to(place, place) and work place(person, place) to encode the arrangement
of places and the work location of people (respectively) in the domain. Actions of the domain include:

move(robot, place) (9)

deliver(robot,message id, person)

which move the robot to a particular place, and cause a robot to deliver a particular message to a particular490
person (respectively). For ease of explanation, we assume that the locations of people are defined fluents491
whose values are determined by external sensors, and that the locations of objects are static attributes; as a492
result, we do not consider actions that change the value of these attributes. The signature Σ also includes493
(as before) the relation holds(fluent, step) to imply that a particular fluent is true at a particular time step.494
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Axioms of the RA domain capture the domain’s dynamics. These axioms include causal laws, state
constraints and executability conditions encoded as statements in ALd such as:

move(rob1, L) causes loc(rob1, L) (10a)

deliver(rob1, ID, P ) causes message status(ID, P, delivered) (10b)

loc(P,L) if work place(P,L), not ¬loc(P,L) (10c)

¬loc(T, L2) if loc(T, L1), L1 6= L2 (10d)

impossible deliver(rob1, ID, P ) if loc(rob1, L1), loc(P,L2), (10e)

L1 6= L2

impossible move(rob1, L) if loc(rob1, L) (10f)

where Statement 10(a) states that executing a move action causes the robot’s location to be the target place;495
Statement 10(b) states that executing a deliver action causes the message to be delivered to the desired496
person; Statement 10(c) is a constraint stating that unless told otherwise the robot expects (by default) a497
person to be in her/his place of work; Statement 10(d) is a constraint stating that any thing can be in one498
place at at time; Statement 10(e) implies that a robot cannot deliver a message to an intended recipient if499
the robot and the person are not in the same place; and Statement 10(f) states that a robot cannot move to a500
location if it is already there.501

As described in Section 3.2, the domain history is a record of observations (of fluents), the execution502
of actions, and the values of fluents in the initial state. Also, planning (similar to inference) is reduced to503
computing answer set(s) of the program Π(D,H) after including some helper axioms for computing a504
minimal sequence of actions; for examples, please see (Gelfond and Kahl, 2014; Sridharan et al., 2019). If505
the robot’s knowledge of the domain is incomplete or incorrect, the computed plans may be suboptimal or506
incorrect. The approach described in Section 3.4 can then be used to learn the missing constraints; we will507
explore the interplay between learning and planning in Section 4.4.508

4 EXPERIMENTAL SETUP AND RESULTS

In this section, we describe the results of experimentally evaluating the following hypotheses about the509
capabilities of our architecture:510

• H1: for the underlying classification problem, our architecture outperforms an architecture based on511
just deep networks for small training datasets, and provides comparable performance as the size of the512
dataset increases;513

• H2: in the context of answering explanatory questions, our architecture provides significantly better514
performance in comparison with an architecture based on deep networks;515

• H3: our architecture supports reliable and incremental learning of state constraints, which improves516
the ability to answer explanatory questions; and517

• H4: our architecture can be adapted to planning tasks, with the incremental learning capability518
improving the ability to compute minimal plans.519

These hypotheses were evaluated in the context of the domains (SS, TS and RA) introduced in Section 3.520
Specifically, hypotheses H1, H2 and H3 are evaluated in the SS domain and TS domain in the context521
of VQA. As stated in Section 1, VQA is used in this paper only as an instance of a complex task that522
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requires explainable reasoning and learning. We are primarily interested in exploring the interplay between523
reasoning with commonsense domain knowledge, incremental learning, and deep learning, in any given524
domain in which large labeled datasets are not readily available. State of the art VQA algorithms, on the525
other hand, focus instead on generalizing across different domains, using benchmark datasets of several526
thousand images. Given the difference in objectives between over work and the existing work on VQA,527
we thus do not compare with state of the art algorithms, and do not use the benchmark VQA datasets.528
Furthermore, we evaluated hypothesis H4 in the RA domain in which the robot’s goal was to deliver529
messages to appropriate people and answer explanatory questions about this process.530

We begin by describing some execution traces in Section 4.1 to illustrate the working of our architecture.531
This is followed by Sections 4.2- 4.4, which describe the results of experimentally evaluating the532
classification, VQA, axiom learning, and planning capabilities, i.e., hypotheses H1-H4. We use accuracy533
(precision) as the primary performance measure. Classification accuracy was measured by comparing the534
assigned labels with the ground truth values, and question answering accuracy was evaluated heuristically535
by computing whether the answer mentions all image attributes relevant to the question posed. This536
relevance was established by a human expert, the lead author of this paper. Unless stated otherwise, we537
used two-thirds of the available data to train the deep networks and other computational models, using the538
remaining one-third of the data for testing. For each image, we randomly chose from the set of suitable539
questions for training the computational models. We repeated this process multiple times and report the540
average of the results obtained in these trials. For planning, accuracy was measured as the ability to541
compute minimal and correct plans for the assigned goals. Finally, Section 4.5 discusses the reduction in542
computational effort achieved by our architecture in comparison with the baselines.543

4.1 Execution Traces544

The following execution traces illustrate our architecture’s ability to reason with commonsense knowledge545
and learned models to provide intuitive answers for explanatory questions.546

Execution Example 1. [Question Answering, SS domain] Consider a scenario in the SS Domain in547
which the input (test) image is the one on the extreme right in Figure 2.548

• First classification-related question posed: “is this structure unstable?”549
The architecture’s answer: “no”.550

• The explanatory question posed: “what is making this structure stable?”551
The architecture’s answer: “the structure has five blocks and a narrow base, it is standing straight,552
and there is no significant lean”.553

• This answer was based on the following features extracted by CNNs from the image: (i) five blocks;554
(ii) narrow base; (iii) standing straight; and (iv) no significant lean, i.e, all blocks in place.555

• The extracted features were converted to literals. ASP-based inference provided an answer about the556
stability of the arrangement of objects in the scenario. Relevant literals in the corresponding answer set557
were then inserted into a suitable template to provide the answers described above.558

• Since the example was processed successfully using ASP-based inference, it was not processed using559
the decision tree (for classification) or the RNN (for answering the explanatory question).560

Execution Example 2. [Question Answering, TS domain] Consider a scenario in the TS Domain with561
the input (test) image is the one on the extreme right in Figure 3.562
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• The classification question posed was: “what is the sign’s message?”563
The architecture’s answer: “uneven surfaces ahead”.564

• When asked to explain this answer (“Please explain this answer”), the architecture identified that the565
CNNs extracted the following features of the sign in the image: (i) it is triangle-shaped; (ii) main color566
is white and other (i.e., border) color is red; (iii) it has no background image; (iv) it has a bumpy-road567
symbol and no secondary symbol; and (v) it has no cross.568

• These features were converted to literals and used in ASP-based inference based on existing knowledge569
in the TS domain. ASP-based inference is unable to provide an answer, i.e., unable to classify the sign.570

• The extracted features were processed using the trained decision tree, which only used the colors in the571
sign to assign the class label. The main (or border) color is normally insufficient to accurately classify572
signs. However, recall that the decision tree is trained to classify signs that cannot be classified by573
reasoning with existing knowledge.574

• The decision tree output, image feature vector, and input question, were processed by the previously575
trained RNN to provide the answer type and the particular answer described above.576

These (and other such) execution traces illustrate the working of our architecture, especially that:577

• The architecture takes advantage of (and perform non-monotonic logical inference with) the existing578
commonsense domain knowledge to reliably and efficiently address the decision-making problem579
(classification in the examples above) when possible. In such cases, it is also able to answer explanatory580
questions about the classification decision and the underlying scene.581

• When the desired decision cannot be made using non-monotonic logical inference with domain582
knowledge, the architecture smoothly transitions to training and using a decision-tree to make and583
explain the classification decision. In such cases, the architecture also learns and uses an RNN to584
answer explanatory questions about the scene.585

4.2 Experimental Results: Classification + VQA586

To quantitatively evaluate hypotheses H1 and H2, we ran experimental trials in which we varied the size587
of the training dataset. In these trials, the baseline performance was provided by a CNN-RNN architecture,588
with the CNNs processing images to extract and classify features, and the RNN providing answers to589
explanatory questions. The number of questions considered depends on the complexity of the domain, e.g.,590
we included eight different types of questions in the SS domain and 248 different types of questions in591
the TS domain. We repeated the trials 50 times (choosing the training set randomly each time) and the592
corresponding average results are summarized in Figures 8 and 9 for the SS domain, and in Figures 10593
and 11 for the TS domain. We make some observations based on these figures:594

1. The classification performance of our architecture depends on the domain. In the relatively simpler SS595
domain, the baseline deep network architecture is at least as accurate as our architecture, even with a596
small training set—see Figure 8. This is because small differences in the position and arrangement of597
blocks (which could almost be considered as noise) influence the decision about stability. For instance,598
two arrangements of blocks that are almost identical end up receiving different ground truth labels for599
stability, and it is not possible to draft rules based on abstract image features to distinguish between600
these cases. The baseline deep network architecture, which generalizes from data, is observed to be601
more sensitive to these small changes than our architecture. Exploring the reason for this performance602
is an interesting direction for further research.603
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Figure 8. Classification accuracy as a function of the number of training samples in the SS domain.

2. In the more complex TS domain, our architecture provides better classification accuracy than the604
baseline architecture based on just deep networks, especially when the size of the training set is605
small—see Figure 10. The classification accuracy increases with the size of the training set3, but our606
architecture is always at least as accurate as the baseline architecture.607

3. Our architecture is much more capable of answering explanatory questions about the classification608
decisions than the baseline architecture. When the answer provided by our architecture does not609
match the ground truth, we are able to examine why that decision was made. We were thus able to610
understand and explain the lower classification accuracy of our architecture in the SS domain. The611
baseline architecture does not provide this capability.612

4. Unlike classification, the VQA performance of our architecture is much better than that of the baseline613
architecture in both domains. Also performance does not improve just by increasing the size of training614
set, even in simpler domains, e.g., see Figure 9. This is because VQA performance also depends on615
the complexity of the explanatory questions. For more complex domains, the improvement in VQA616
accuracy provided by our architecture is much more pronounced, e.g., see Figure 11.617

We explored the statistical significance of the observed performance by running paired t-tests. We observed618
that the VQA performance of the proposed architecture was significantly better than that of the baseline619
architecture; this is more pronounced in the TS domain that is more complex than the SS domain. Also,620
although the baseline architecture provides better classification performance in the SS domain, the difference621
is not always statistically significant.622

To further explore the observed results, we obtained a “confidence value” from the logits layer of each623
CNN used to extract a feature from the input image. For each CNN, the confidence value is the largest624
probability assigned to any of the possible values of the corresponding feature, i.e., it is the probability625
assigned to the most likely value of the feature. These confidence values are considered to be a measure of626
the network’s confidence in the corresponding features being a good representation of the image. We trained627
a version of our architecture in which if the confidence value for any feature was low, the image features628

3 We limit ourselves to training sets that are not too large in order to match the focus of our paper.
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Figure 9. VQA accuracy as a function of the number of training samples in the SS domain.

Figure 10. Classification accuracy as a function of number of training samples in TS domain.

were only used to revise the decision tree (during training), or were processed using the decision tree629
(during testing). In other words, features that do not strongly capture the essence of the image are not used630
for non-monotonic logical reasoning; the deep network architectures provide much better generalization631
to noise. We hypothesized that this approach would improve the accuracy of classification and question632
answering, but it did not make any significant difference in our experimental trials. We believe this is633
because the extracted features were mostly good representations of the objects of interest in the images.634
We thus did not use such networks (that compute the confidence value) in any other experiments.635

4.3 Experimental Results: Learn Axiom + VQA636

Next, we experimentally evaluated the ability to learn axioms, and the effect of such learning on the637
classification and VQA performance. For the SS domain, we designed a version of the knowledge base638
with eight axioms related to stability or instability of the structures. Out of these, four were chosen639
(randomly) to be removed and we examined the ability to learn these axioms, and the corresponding640
accuracy of classification and VQA, as a function of the number of labeled training examples (ranging641
from 100 to 2000). We repeated these experiments 30 times and the results (averaged over the 30 trials)642
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Figure 11. VQA accuracy as a function of number of training samples in TS domain.

are summarized in Figures 12-13. In the TS domain, the methodology for experimental evaluation was643
the same. However, since the domain was more complex, there were many more axioms in the domain644
description (for classification and VQA); we also had access to more labeled training examples. In each645
experimental trial, a quarter of the available axioms were thus selected and commented out, and the646
accuracy of classification and VQA were evaluated with the number of labeled training examples varying647
from 100 to 4000. The results averaged over 30 such trials are summarized in Figures 14-15.648

Figure 12. Comparison of classification accuracy in the SS domain with and without axiom learning. In
both cases, some axioms were missing from the knowledge base.

In these figures, “Original KB” (depicted in blue) represents the baseline with some axioms missing649
from the system description, e.g., four in the SS domain and one quarter of the axioms in the TS domain.650
The results obtained by using the available labeled examples to learn the axioms that are then used for651
classification and answering explanatory questions about the scene, are shown as “Learned KB” in orange.652
We observe that our approach supports incremental learning of the domain axioms, and that using the653
learned axioms improves the classification accuracy and the accuracy of answering explanatory questions,654
in comparison with the baseline. This improvement was found to be statistically significant using paired655
tests at 95% level of significance. These results support hypothesis H3.656
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Figure 13. Comparison of VQA accuracy in the SS domain with and without axiom learning. In both
cases, some axioms were missing from the knowledge base.

Figure 14. Comparison of classification accuracy in the TS domain with and without axiom learning. In
both cases, some axioms were missing from the knowledge base.

4.4 Experimental Results: Learn Axiom + Plan657

Next, we experimentally evaluated the ability to learn axioms and the effect of the learned axioms on658
planning, in the RA domain. The simulated robot was equipped with domain knowledge for planning,659
classification, and question answering. It uses this knowledge to navigate through an office building, locate660
the intended recipient of a message, deliver the message, detect and reason about objects in its surroundings,661
and answer questions about the rooms it has visited. We considered 24 different types of questions in662
this domain. As stated in Section 3.5, we limit uncertainty in sensing and actuation on robots to noise663
added in simulation. Average results from 100 trials indicates a VQA accuracy of ≈ 85% after training664
the architecture’s components with just 500 labeled images. The domain knowledge includes learned665
axioms—the corresponding experimental results and the planning performance are discussed later in this666
section. We begin with an execution trace in this domain.667

Execution Example 3. [Question Answering, RA Domain] Consider the scenario in the RA domain668
(Figure 7) in which the robot’s goal was to deliver a message from John to Sally, and return to John to669
answer questions.670
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Figure 15. Comparison of VQA accuracy in the TS domain with and without axiom learning. In both
cases, some axioms were missing from the knowledge base.

• The robot was initially in John’s office. It computed a plan that comprises moving to Sally’s office671
through the library and the kitchen, delivering the message to Sally, and returning to John’s office672
through the same route to answer questions.673

• During plan execution, the robot periodically takes images of the scenes in the domain, which are used674
for planning, classification and question answering.675

• After returning to John’s office, the robot and the human had an exchange about the plan constructed676
and executed, and the observations received. The exchange includes instances such as:677
John’s question: “is Sally’s location cluttered?”678
Robot’s answer: “Yes”.679
When asked, the robot provides an explanation for this decision: “Sally is in her office. Objects680
detected are Sally’s chair, desk, and computer, and a cup, a large box, and a sofa. The room is cluttered681
because the cup, large box, and sofa are not usually in that room”.682

The RA domain was also used to evaluate the effects of axiom learning. There were four employees in
offices in the simulated scenario, as shown in Figure 7, and the robot was asked to find particular individuals
and deliver particular messages to them. Employees are initially expected to be in their assigned workplace
(i.e., their office), and spend most of their time in these offices, unless this default knowledge has been
negated by other knowledge or observations. This information is encoded as follows:

holds(loc(P,L), 0) ← not default negated(P,L), work place(P,L)

where work place(P,L) specifies the default location of each person, and default negated(P,L) is used
to encode that a particular person may not be in their default location. These exceptions to the defaults can
be encoded as follows:

default negated(P,L) ← obs(loc(P,L1), true, I), L 6= L1 (11a)

default negated(P,L) ← obs(loc(P,L), false, I) (11b)

Statement 11(a) implies that the default assumption should be ignored if the person in question is observed683
to be in a location other than their workplace, and Statement 11(b) implies that a default assumption684
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should be ignored if the corresponding person is not observed in their workplace. Including such default685
knowledge (and exceptions) in the reasoning process allows the robot to compute better plans and execute686
the plans more efficiently, e.g., when trying to deliver a message to a particular person. However, this687
knowledge may not be known in advance, the existing knowledge may be inaccurate or change with time688
(e.g., humans can move between the different places), or the observations may be incorrect. Our axiom689
learning approach was used in this domain to acquire previously unknown information about the default690
location of people and exceptions to these defaults. In all the trials, the simulated robot was able to learn691
the previously unknown axioms.692

Axiom learning Plans Actions Execution time Planning time Planning time
(per trial) (per trial) (per trial) (per trial) (per plan)

Before 4 2.3 1.6 6.0 1.6
After 1 1 1 1 1

Table 1. Planning performance in a scenario in the RA domain (see Figure 7) before and after axiom
learning. Results averaged over 100 paired trials indicate that reasoning with previously unknown axioms
results in fewer plans with fewer actions in each trial, and significantly reduces the time taken to compute
and execute the plans.

We then conducted 100 paired trials to explore the effects of the learned axioms on planning, with the693
corresponding results summarized in Table 1. In each trial, we randomly chose a particular goal and initial694
conditions, and measured planning performance before and after the previously unknown axioms had been695
learned and used for reasoning. Since the initial conditions are chosen randomly, the object locations, the696
initial location of the robot, and the goal, may vary significantly between trials. Under these circumstances,697
it is not meaningful to average the results obtained in the individual trials for performance measures such698
as planning time and execution time. Instead, the results obtained without including the learned axioms699
were computed as a ratio of the results obtained after including the learned axioms; the numbers reported700
in Table 1 are the average of these computed ratios. Before axiom learning, the robot often explored an701
incorrect location (for a person) based on other considerations (e.g., distance to the room) and ended702
up having to replan. After the previously unknown axioms were included in the reasoning process, the703
robot went straight to the message recipient’s most likely location, which also happened to be the actual704
location of the recipient in many trials. As a result, we observe a (statistically) significant improvement705
in planning performance after the learned axioms are used for reasoning. Note that in the absence of the706
learned axioms, the robot computes four times as many plans taking six times as much time in any given707
trial (on average) as when the learned axioms are included in reasoning. Even the time taken to compute708
each plan (with potentially multiple such plans computed in each trial) is significantly higher in the absence709
of the learned axioms. This is because the learned axioms enable the robot to eliminate irrelevant paths in710
the transition diagram from further consideration. In a similar manner, reasoning with intentional actions711
enables the robot to significantly reduce the plan execution time by terminating or revising existing plans712
when appropriate, especially in the context of unexpected successes and failures. These results provide713
evidence in support of hypothesis H4.714

Finally, we conducted some initial proof of concept studies exploring the use of our architecture on715
physical robots. We considered a robot collaborating with a human to jointly describe structures of blocks716
on a tabletop (similar to the SS domain described in this paper). We also considered a mobile robot finding717
and moving objects to desired locations in an indoor domain (similar to the RA domain). These initial718
experiments provided some promising outcomes. The robot was able to provide answers to explanatory719
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questions, compute and execute plans to achieve goals, and learn previously unknown constraints. In the720
future, we will conduct a detailed experimental analysis on robots in different domains.721

4.5 Computational Effort722

In addition to the improvement in accuracy of classification and VQA, we also explored the reduction in723
computational effort provided by our architecture in comparison with the baselines. Measuring this time724
quantitatively is challenging because it depends on various factors such as the task being performed (e.g.,725
classification, VQA), the knowledge encoded in the knowledge base, the size and order of samples in the726
training set, and the parameters of the deep networks. However, we were able to gain the following insights.727

The computation time includes the training time and the testing (i.e., execution) time, and we first728
considered the training time. Depending on the task being performed (e.g., classification, VQA, and/or729
planning), this time includes the time taken to encode and draw inferences from the knowledge base,730
process queries and construct answers, and train the deep network models. Encoding the incomplete731
domain knowledge is a one-time exercise for any given domain. The time taken to reason with this732
knowledge, and the time taken to process queries and construct answers, are negligible in comparison733
with the time taken to learn the deep network models. Also, the use of CNNs to extract features from734
images is common to both our architecture and the baselines, and these networks (for the most part) do735
not need to be retrained multiple times for any given domain. The key difference between our architecture736
and the baselines is observed in the context of answering explanatory questions about the scenes and the737
underlying classification problem. Recall that with our architecture, only examples that cannot be processed738
by ASP-based reasoning are processed by decision-trees and the RNNs for VQA. In our experimental739
trials, ≈ 10− 20% of a training set is used (on average) to train the RNNs with our architecture, whereas740
the entire training set is used for training the RNNs with the baseline architectures. This difference often741
translates to an order of magnitude difference in the training time, e.g., a few minutes for each training set742
(in a particular domain) with our architecture compared with hours or days with the baseline architectures.743
Note that accuracy of our architecture is still much better than that of the baselines, e.g., see Figure 9 and744
Figure 11, i.e., any given accuracy is achieved using a much smaller number of training samples.745

The execution time of our architecture is comparable with that of the baselines and is often less. Once746
the deep network models have been learned, using them for the different tasks does not take much time,747
e.g., a few seconds to process the input and provide a decision and/or the answer to a query. However,748
similar to the situation during training, only test samples that cannot be processed by ASP-based reasoning749
are processed by the decision trees and RNNs with our architecture. Also, since the deep networks in our750
architecture only need to disambiguate between a small(er) number of training examples, they often have a751
much simpler structure than the deep networks in the baseline architectures.752

Note that in addition to classification and VQA, our architecture also supports explainable reasoning753
for planning and incremental learning of previously unknown constraints. Providing similar capabilities754
using just deep network architectures will (at the very least) require a large number of training examples of755
planning under different conditions; it is often not possible to provide such training examples in dynamic756
domains. We thus conclude that our architecture significantly reduces the computational effort while757
supporting a range of capabilities in comparison with the baseline architectures comprising deep networks.758
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5 DISCUSSION AND FUTURE WORK

Visual question answering (VQA) combines challenges in computer vision, natural language processing,759
and explainability in reasoning and learning. Explanatory descriptions of decisions help identify errors,760
and to design better algorithms and frameworks. In addition, it helps improve trust in the use of reasoning761
and learning systems in critical application domains. State of the art algorithms for VQA are based on deep762
networks and the corresponding learning algorithms. Given their focus on generalizing across different763
domains, these approaches are computationally expensive, require large training datasets, and make it764
difficult to provide explanatory descriptions of decisions. We instead focus on enabling reliable and efficient765
operation in any given domain in which a large number of labeled training examples may not be available.766
Inspired by research in cognitive systems, our architecture tightly couples representation, reasoning, and767
interactive learning, and exploits the complementary strengths of deep learning, non-monotonic logical768
reasoning with commonsense knowledge, and decision tree induction. Experimental results on datasets of769
real world and simulated images indicate that our architecture provides the following benefits in comparison770
with a baseline architecture for VQA based on deep networks:771

1. Better accuracy, improved sample efficiency, and reduced computational effort on classification772
problems when the training dataset is small, and comparable accuracy with larger datasets while still773
using only a subset of these samples for training;774

2. Ability to provide answers to explanatory questions about the scenes and the underlying decision775
making problems (e.g., classification, planning);776

3. Incremental learning of previously unknown domain constraints, whose use in reasoning improves the777
ability to answer explanatory questions; and778

4. Ability to adapt the complementary strengths of non-monotonic logical reasoning with commonsense779
domain knowledge, inductive learning, and deep learning, to address decision-making (e.g., planning)780
problems on a robot.781

Our architecture opens up multiple directions of future work, which will address the limitations of existing782
work and significantly extend the architecture’s capabilities. We discuss some of these extensions below:783

1. The results reported in this paper are based on image datasets (simulated, real-world) chosen or784
constructed to mimic domains in which a large, labeled dataset is not readily available. One direction of785
future work is to explore the use of our architecture in other domains that provide datasets of increasing786
complexity, i.e., with a greater number of features and more complex explanatory questions. This787
exploration may require us to consider larger datasets, and to examine the trade-off between the size of788
the training dataset, the computational effort involved in processing such a dataset with many labeled789
examples, and the effort involved in encoding and reasoning with the relevant domain knowledge.790

2. In our architecture, we have so far used variants of existing network structures as the deep network791
components (i.e., CNN, RNN). In the future, we will explore different deep network structures in792
our architecture, using the explanatory answers to further understand the internal representation of793
these network structures. Towards this objective, it would be particularly instructive to construct and794
explore deep networks and logic-based domain representations that provide similar behavior on a set795
of tasks, or provide different behavior when operating on the same dataset. As stated in the discussion796
in Section 4.2, such an exploration may help us better understand (and improve) the design and use of797
deep network models for different applications.798
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3. This paper used VQA as a motivating problem to address key challenges in using deep networks in799
dynamic domains with limited labeled training examples. We also described the use of our architecture800
(with tightly-coupled reasoning and learning components) for planning on a simulated robot. In the801
future, we will combine this architecture with other architectures we have developed for knowledge802
representation, reasoning, and interactive learning in robotics (Sridharan and Meadows, 2018; Sridharan803
et al., 2019). The long-term goal will be to support explainable reasoning and learning on a physical804
robot collaborating with humans in complex domains.805
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