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ABSTRACT

Despite significant advances in software testing research,
the ability to produce reliable software products for a va-
riety of critical applications remains an open problem. The
key challenge has been the fact that each program or soft-
ware product is unique, and existing methods are predom-
inantly not capable of adapting to the observations made
during program analysis. This paper makes the following
claim: Bayesian reasoning methods provide an ideal research

paradigm for achieving reliable and efficient software testing

and program analysis. A brief overview of some popular
Bayesian reasoning methods is provided, along with a justi-
fication of why they are applicable to software testing. Fur-
thermore, some practical challenges to the widespread use
of Bayesian methods are discussed, along with possible so-
lutions to these challenges.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: [Testing and Debugging,
Diagnostics, Monitors, Tracing]

General Terms

Reliability, Experimentation, Measurement

Keywords

Bayesian data analysis, probabilistic reasoning, stochastic
methods, software testing, program analysis

1. MOTIVATION
The software industry is a multi-billion dollar contribu-

tor to the economic growth and technological advancement
of modern society [15]. Bohem and Sullivan attributed the
importance of software economics to three reasons: the al-
teration of the dynamics of technology innovation; the in-
creased impact of software-enabled change in organizations;
and the identification of value creation as the key to suc-
cess [3]. The quality and reliability of software products are
hence of paramount importance, and thus software testing
is a key component of the software development life-cycle.
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Despite significant advances in testing methods, the in-
creased use of software has only increased the cost of debug-
ging defective software. Harrold even stated that the use
of systematic testing techniques is not widespread in indus-
try [18]. Existing software testing methods are still unable
to provide high-quality software products.

Software testing research has frequently utilized methods
from other computer science disciplines such as compilers,
programming languages, logical reasoning, data mining and
graph theory. However, many software testing challenges
are essentially NP-hard problems. Hence, a critical concern
is whether the solutions proposed for software testing chal-
lenges are appropriate and sufficient. In his paper, Notkin
[26] states: “we may need to approach testing and anal-

ysis more like theoreticians pursue NP-hard problems: in

the absence of efficient, precise algorithms, the theoreticians

pursue probabilistic and epsilon-approximate algorithms.” In
other words, approximation algorithms [20] may constitute
a more appropriate approach for software testing problems.

Software programs are typically developed for specific tasks,
and they possess certain unique features (e.g., mathematical
computation) that result in unique behaviors during test-
ing. Though these unique features define the complexity of
the program, there is little agreement on a comprehensive
list of features that characterize all programs. The unique
behaviors introduce uncertainties during program analysis,
and the existing software testing methods are incapable of
adapting to these behaviors due to the following reasons:
• Specificity. Software testing methods are often devel-

oped to encode the observations obtained through case
studies or experiments. Though these methods may per-
form well for certain subject programs, they may not pro-
vide good performance when used for other programs.

• Intractability. Effective test cases need to be devel-
oped to create reliable software products. Generating a
large number of test cases for any reasonable-sized pro-
gram and evaluating the thoroughness of these test cases
is intractable. Furthermore, maintaining these test cases
in the context of regression testing and software changes
is a challenge.

• Inability to Adapt. Current testing methods typically
do not adapt based on the data observed while analyzing
a particular program. As a result, the debugging data is
not fully utilized and these methods are unable to account
for the uncertainties associated with each program.

Though the above-mentioned problems are posed in the con-
text of software testing, they are also observed in many other
research areas in computer science and engineering. Data



mining methods, for instance, automatically recognize com-
plex patterns in a noisy data stream, and use these patterns
to make adaptive intelligent decisions. The pattern recogni-
tion methods developed in data mining research can there-
fore be utilized to automate some software testing problems
[22]. However, not all such methods can address the chal-
lenging issues (e.g., specificity, intractability) listed above.

It has been stated that the field of software engineering is
a fertile ground and that many software engineering prob-
lems can be formulated as learning problems that can be
addressed using popular machine learning algorithms [35].
In a recent keynote address, Briand [5] stated that machine
learning techniques are diverse and that their utilization de-
pends on the underlying assumptions and the preparation of
the research community. Machine learning methods can be
grouped into two high-level categories. The offline learning

methods train models based on observed data—the models
are then used to identify desired patterns in the test data.
Examples include: decision-trees, association rules, support
vector machines etc. The online learning methods, on the
other hand, include adaptive algorithms that learn models
and incrementally refine the learned models based on the
observed data. One popular means of achieving this adap-
tive performance is to use a probabilistic representation and
a Bayesian reasoning scheme. Examples include: Bayesian
classification, Markov decision processes, Bayesian networks,
stochastic sampling etc. These probabilistic algorithms have
been used extensively in research areas such as computer vi-
sion, robotics and human-computer interaction [2, 32].

Bayesian methods have been used to address a few re-
search issues in software engineering [27, 30]. Research in
software reliability, for instance, has several examples of the
use of Bayesian methods to address research challenges. Ex-
amples include the: use of active learning for predicting
software behavior [4]; use of Bayesian networks for predict-
ing software maintainability [33]; and the use of Bayesian
networks to predict software defects in development life cy-
cles [13, 14]. However, despite the inherent potential of
Bayesian methods to adapt to the observed behavior during
program analysis, the use of Bayesian reasoning in software
testing and program analysis is still in its early stages.

It has been stated that software testing is among the most
challenging domains for structured machine learning over
the next ten years [11]. Machine learning algorithms, espe-
cially the Bayesian reasoning methods, are appropriate for
adapting to the behavior of the target program based on the
observed (debugging) data. However, though learning algo-
rithms and probabilistic representations have been used in
software testing research, the online and incremental adap-
tation capabilities of Bayesian methods have not been fully
utilized. This paper advocates the use of Bayesian methods
for achieving adaptive software testing, primarily because
these methods can model the inherent stochasticity of soft-
ware testing and other real-world systems.

2. BAYESIAN REASONING AND APPLICA-

BILITY TO SOFTWARE TESTING
Exact inference is often intractable in complex real-world

domains. Bayesian reasoning methods provide a mathemat-
ically well-defined mechanism for representation, inference
and learning in such situations. They use a probabilistic
representation to explicitly model the uncertainty and hence
track multiple hypotheses about the state of the system be-

ing analyzed. A higher probability represents a higher like-
lihood that the corresponding hypothesis is true. As addi-
tional information is obtained about the state of the system,
in the form of a series of noisy observations, Bayesian meth-
ods provide an elegant scheme to incrementally update the
probabilities associated with the individual hypotheses [2].
As a result, Bayesian inference methods have been used ex-
tensively in several real-world domains. This section briefly
overviews some Bayesian inference methods and their ap-
plicability to software testing challenges. The underlying
principle of Bayesian inference is [2]:

p(a|b) =
p(b|a)p(a)

p(b)
=

likelihood · prior

normalizer
(1)

Equation 1 is the basic form of Bayes rule that computes the
posterior (conditional) probability of event a given b, i.e.,
p(a|b), based on the likelihood p(b|a), prior probability p(a),
and probability p(b) that is a normalizing constant. This
simple rule can be used to design many different methods.

p(Ci|z) =
p(z|Ci) · p(Ci)

PN

j=1
p(z|Cj)p(Cj)

(2)

Equation 2 shows the version of Bayes rule for multi-class
classification with classes Ci, i ∈ [1, N ], where N is the num-
ber of classes. It incrementally updates the probability of
class Ci given observation z, i.e., p(Ci|z), based on the prior
likelihood of obtaining this observation given class Ci, i.e.,
p(z|Ci), and the prior probability of this class: p(Ci). Con-
sider the example of detecting the presence or absence of a
fault in a specific code segment, denoted by classes C1 and
C2 respectively. The debugging data from individual test
runs provides observations (z). A model of the likelihood of
observations given the presence or absence of faults in a code
segment, i.e., p(z|C1) and p(z|C2), can be modeled based on
known program behavior. Then, based on the observations,
the posterior probability of the presence or absence of a fault
can be incrementally updated. This formulation is robust to
a few unreliable observations, and can be used for several dif-
ferent classification and regression tasks in software testing
or program analysis.

A key principle in Bayesian reasoning is the Markov as-
sumption. Consider a system that changes over time, and is
observed through a series of observations z obtained through
a set of actions u: {u1, z1, . . . , ut, zt}. The goal is to esti-
mate the probabilistic belief of system state x at time t:
bel(xt) = p(xt|x0, u1, z1, . . . , xt−1, ut, zt). The first-order
Markov assumption for system state can then be stated as:

p(xt|x0, u1, z1, . . . , xt−1, ut, zt) = p(xt|xt−1, zt, ut) (3)

i.e., given xt−1 the system state at time t − 1, the cur-
rent action and the current observation, the state at time
t can be estimated conditionally independent of all prior
states, actions and observations. This assumption is appli-
cable to some software testing problems as well when the do-
main is stationary—the presence or absence of a fault does
not change during program analysis. In addition, each test
run does provide an independent observation. Furthermore,
other Bayesian methods can be utilized to formulate dy-
namic domains where the state of the system can change
over time.

The Markov assumption can be used to derive a two-step
iterative process that forms the core of Bayesian inference
methods. First, a prediction step updates the belief of all



possible hypotheses of system state based on the prior be-
lief and the actions taken since then. Second, a correction

step “corrects” the updated belief based on the correspon-
dence between the expected and actual observations. The
key feature is the incremental and iterative update of the
likelihood of the hypotheses. Such an adaptive procedure
is well-suited to the software testing domain. Consider the
problem of determining the location of faults in a program.
Here, the first step will predict the likely locations based
on prior knowledge (or observations), while the second step
will revise the fault location probabilities based on the obser-
vations obtained during the current test run. Popular state
estimation techniques such as Kalman filters and particle fil-
ters (i.e., MonteCarlo sampling) are based on this inference
scheme—see [2, 32] for complete details.

The MonteCarlo sampling methods have been used suc-
cessfully in domains with significant noise in the observa-
tions and actions [2, 32]. Sampling is applicable to domains
with multiple hypotheses about the state of the system be-
ing analyzed. Each “sample” is an instance of a hypothesis
(e.g., the occurrence of a type of fault) and it is associated
with a probability that represents the likelihood that the
hypothesis is true. A small set of samples of the hypotheses
are selected initially, and each iteration of sampling consists
of three steps: (1) each hypothesis is modified to account for
any dynamic changes in the system; (2) the probability of
each hypothesis is updated based on examining some sam-
ples of that hypothesis; and (3) a larger number of samples
are drawn corresponding to hypotheses with a larger (rela-
tive) probability. Over a few iterations, sampling converges
to focus on hypotheses that show more evidence of being
correct.

Sampling methods are hence well-suited to model the in-
herent stochasticity of software testing. Consider, for in-
stance, the mutation testing problem, where the adequacy
of a test suite is measured in terms of its ability to expose
faulty versions of the target program (i.e., mutants) that
are synthetically generated using well-defined mathematical
transformations (i.e., mutation operators). The generated
mutants will differ based on the target program and the mu-
tation operators, and analyzing all mutants of a reasonable-
sized program is intractable. One intuitively appealing ap-
proach is to determine the mutation operators whose mu-
tants are more likely to remain unexposed by the existing
test suite, so that the test suite can be suitably augmented.
The authors have developed an approach based on impor-
tance sampling and information theory that significantly im-
proves the mutation testing performance in comparison to
the existing approaches [28]. A similar sampling-based ap-
proach is also applicable to related challenges such as test
case generation, test case minimization, adaptive random
testing and static analysis. For instance, a sampling-based
selection of appropriate test cases would result in reliable
program analysis. Similarly, sampling-based prioritization
of the results obtained during static analysis would provide
significantly better results than the existing probabilistic ap-
proaches for this problem [19].

It is frequently necessary to plan a sequence of actions
to perform a given task reliably and efficiently. This plan-
ning is particularly challenging when the action outcomes
are not reliable. In addition, the state may not be directly
observable, and can only be estimated based on action out-
comes. Planning in real-world domains characterized by

non-determinism and partial observability can be elegantly
modeled as Markov decision processes (MDPs) or partially
observable MDPs (POMDPs) [2]. MDPs and POMDPs are
common formulations used in probabilistic, i.e., decision-
theoretic planning methods. These planning methods are
instances of Bayesian reasoning that have been used success-
fully in many application domains. Another related problem
is to use a sequence of observations to estimate the most
likely sequence of states that generated the observations.
Methods such as hidden Markov models can be used to for-
mulate such problems [2, 21]. The key feature, once again,
is the ability to explicitly model the inherent uncertainty in
order to provide a sequence of actions most likely to achieve
a desired goal, or to estimate the sequence of states that is
most likely to have produced the observations.

Consider fault localization, a software testing challenge
where the objective is to identify faulty statements in the
program being analyzed. However, the result of evaluat-
ing individual test cases on the program can be noisy, i.e.,
non-deterministic. There have been some instances of the
application of machine learning methods to fault localiza-
tion [6, 7]. In the last few years, fault localization has
been addressed using Bayesian reasoning techniques such
as dependency graphs, Bayesian networks, universal mod-
els and causal inferences [1, 8, 12, 24]. These graphical
methods have been successful because they have explicitly
modeled this uncertainty in program analysis [1, 12]. The
performance can be further improved by developing a fully
Bayesian treatment of such challenges, where the required
(probabilistic) models are learned and updated online. Fur-
thermore, stochastic sampling methods such as importance
sampling and Gibbs samplings can be used to effectively
model the uncertainties associated with the cause of failure
during fault localization.

A probabilistic representation can also be used in the soft-
ware reliability domain to represent and measure the reliabil-
ity of program components. Factors such as defect density,
time to failure and growth model have already been mod-
eled using Bayesian networks [4, 33, 13]. These approaches
can be enhanced significantly using methods such as Markov
decision processes and (Bayesian) regression. Software eco-
nomics and metrics research also provides an application
domain for Bayesian analysis—software cost models can, for
instance, be learned using Bayesian reasoning methods [9].

Test case generation is another major software testing
challenge that can be formulated using Bayesian reasoning
methods. Efficiency and effectiveness are the main concerns
in this domain. Prior research has already resulted in ap-
proaches that prioritize test cases in the course of regression
testing [25], and generating test strategies based on Bayesian
networks [17, 34]. Adaptive random test case generation is
a feasible approach for generating a large number of test
cases. The effectiveness and thoroughness of these randomly
generated test cases can be significantly enhanced by using
Bayesian sampling and probabilistic reasoning to generate
test cases that are more useful, i.e., more likely to identify
faults in the target program.

In many real-world tasks, noisy observations are obtained
over several trials, and an approach is required to use these
observations to learn a reliable model of the system being
analyzed. In other instances, it may be necessary to es-
timate the best possible action to take in any given state.
The reinforcement learning literature provides several meth-



ods for learning such models and estimating the “value” of
taking each possible action in each possible state [31]. The
problem is essentially modeled as an MDP, and several so-
lution techniques have been proposed and used extensively
to tackle research problems in industry and medicine.

In addition to the core Bayesian reasoning methods, prin-
ciples drawn from the associated fields such as information
theory can also be applied to software testing challenges.
Consider the example of entropy, a key concept in informa-
tion theory [10]. Entropy is a measure of the uncertainty
associated with a random variable. A large value of entropy
indicates a higher uncertainty, while a small value implies
a greater confidence in the estimated value of the random
variable. One possible use of entropy is to measure whether
successive iterations in a stochastic sampling process are pro-
viding useful information. For instance, the authors used en-
tropy to automatically terminate the importance sampling
process while estimating the mutation operators whose ap-
plication to the target program is more likely to generate
mutants that will remain undetected by the corresponding
test suites [28].

Only a small representative set of Bayesian methods have
been summarized above—see [2] for a detailed description
of a wide range of Bayesian methods and their applicabil-
ity to several machine learning problems. However, the
above-mentioned description does establish the applicabil-
ity of Bayesian methods to software testing challenges. Re-
cent papers in the software testing literature have shown
that such Bayesian formulations lead to significantly bet-
ter performance than the existing methods. However, the
utilization of Bayesian methods as a research paradigm for
formulating software testing challenges needs further inves-
tigation. The goal of this paper is to stimulate interest in
the software testing community, and to promote the use of
Bayesian methods for formulating challenges in the field of
adaptive program analysis.

3. PRACTICAL CHALLENGES
Bayesian reasoning methods have the capability to trans-

form the field of software testing, by offering probabilistic
solutions to major challenges in the field. However, some
practical challenges need to be overcome in order to enable
the widespread use Bayesian methods.

Generalization Issues. One criticism of Bayesian reason-
ing (and even empirical) approaches is the generalizabil-
ity of these approaches. Logical reasoning plays an impor-
tant role in many areas of computer science, and there are
well-established ways to move from specific observations to
broader generalizations using inductive reasoning. However,
it is extremely challenging to generalize the results of empir-
ical or probabilistic analysis. Research initiatives based on
empirical work typically discuss the threats to validity, espe-
cially the external threats to the proposed method. It is also
common to question whether the results obtained would gen-
eralize to other programs or programming languages. Such
an argument can also be made against empirical work based
on Bayesian reasoning methods. However, many researchers
may not realize that the underlying probabilistic representa-
tion makes Bayesian methods more robust to such threats to
validity. Furthermore, Bayesian methods provide the highly
desirable ability to incrementally and automatically tune the
performance based on the observations (i.e., debugging data)
obtained during the analysis of the target program.

Sensitivity to Priors. Another criticism of Bayesian ap-
proaches is that their performance is highly dependent on
the choice of prior probabilities. In addition, it is a challenge
to effectively estimate the conditional likelihoods and joint
probability densities required for the Bayesian update. How-
ever, it can be argued that the same prior knowledge that
is encoded to design the existing techniques, can be better
utilized by the Bayesian methods. The underlying proba-
bilistic representation provides an elegant scheme to repre-
sent prior information. In addition, the incremental update
scheme ensures a significant amount of robustness to unreli-
able observations (e.g., spurious recognition of faults), a fea-
ture that the existing non-probabilistic techniques lack. For
instance, the authors recently developed a method based on
importance sampling for mutation testing [28]. The corre-
sponding experimental results showed that the performance
of the stochastic sampling technique was mostly indepen-
dent of the choice of the prior probabilities. One way to
address this prevalent criticism is to perform extensive ex-
perimental analysis on different subject programs, and to
state the possible threats to validity along with all reported
results. At the same time, the research community needs to
recognize the contributions made by Bayesian reasoning to
several real-world applications.

Steep Learning Curve. Ghezzi and Mandrioli [16] em-
phasized that all engineers, including software engineers,
must have a solid background in statistics and probability
theory. In reality, however, the time-consuming nature of
statistical analysis deters researchers from investing the time
required to master even the basic concepts such as p-values

and hypothesis testing [23]. As a result, contradictory re-
search findings are frequently published. In addition, there
is this perception that “statistics can be used to prove any-
thing”. The situation is all the more formidable with regard
to Bayesian reasoning methods. Unlike other applied re-
search fields (e.g., machine learning and computer vision),
not all software engineering researchers are likely to possess
the required background in Bayesian reasoning. The core
concepts of Bayesian and probabilistic reasoning are typi-
cally not covered in a standard software engineering course
curriculum. As a result, there is a significant “inertia” that
has to be overcome in order to enable researchers in the field
to utilize Bayesian methods to formulate their research chal-
lenges. One solution to this problem is to expose software
engineering researchers to the core principles and benefits of
Bayesian reasoning, through coursework and tutorials that
include extensive case studies. Motivated by this thought,
the authors recently offered a tutorial on“Bayesian Methods
for Data Analysis in Software Engineering” at the Interna-
tional Conference on Software Engineering (ICSE-2010) [29].

To summarize, this paper advocates the use of Bayesian
reasoning methods as a widespread research paradigm, in
order to address the representation, inference and learning
challenges in the field of software testing. The ability of
Bayesian methods to explicitly account for the unique char-
acteristics of each software product will enable researchers
to make significant inroads on the hard challenges in the do-
main. As a result, robust software products will be created,
which will have a major impact on the economic growth and
technological advancement of modern society.

———–
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