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Abstract

Deep learning has become the state of the art algorithm for many areas of machine learning research.

Deep learning can achieve high performance but it requires a lot of training data and is not readily in-

terpretable. This makes it difficult to develop algorithms for new applications, as errors cannot easily be

resolved when the algorithm’s reasoning is obscure, and large datasets cannot always be obtained. To ad-

dress these limitations logic knowledge bases can be used for interpretable reasoning while deep learning

is used used for any processing that is not suitable for representation by a knowledge base. A knowledge

base requires no training data and provides interpretable outputs, and in addition, the intermediate out-

puts from knowledge base components can be used to guide learning for the deep learning components,

making training more efficient. These advantages were central to the design of a novel architecture,

which used deep learning for image processing and a combination of non-monotonic logic and decision

tree induction for interpretable reasoning. Performance was evaluated with visual question answering

(VQA), and a state of the art planning architecture was used to show the advantages of knowledge bases

in dynamic domains. The VQA architecture’s performance was evaluated in two domains: estimating

the stability of simulated block towers, and determining the messages conveyed by traffic signs. Experi-

mental results showed that the proposed architecture achieved interpretability and high performance with

small training datasets. The planning architecture was evaluated in a dynamic tower-building domain.

Another domain in which a simulated Turtlebot acted as an office assistant was used to show that the

VQA and planning architectures could be combined. The performance of knowledge base reasoning

was improved through the use of automated axiom learning, which was shown in all four domains. In

the stability and traffic domains the use of axiom learning to add to the knowledge base improved VQA

accuracy, while in the tower building and office assistant domains the action plans developed after axiom

learning were more sensible and efficient than those developed before.
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1. Introduction

Artificial intelligence (AI) algorithms are increasingly being used in critical application domains such as

security, healthcare and autonomous navigation. In general, it is likely that humans interacting with an

autonomous system designed for critical domains will want to know why and how the system arrived

at particular conclusions. For example, consider automated diagnosis systems that are designed to take

symptoms and patient history as input and generate diagnoses and treatment options as output. Patients

and doctors are both going to want to know why a particular diagnosis or treatment option was suggested

so that they can determine the best course of action. Designing more interpretable algorithms - that is,

algorithms whose internal reasoning can be seen and understood by humans - is important if humans are

to place trust in AI in critical domains. Interpretability is also important as a diagnostic tool for complex

AI applications.

Deep learning is a machine learning algorithm that is increasing in popularity and has become the

state of the art for many pattern recognition tasks. Deep neural networks can achieve high performance

when sufficient training data is provided. Unfortunately, their training data requirements are prohibitive

and there are many specialised domains (e.g. automated diagnosis of rare diseases) where the amount

of training data required to implement a purely deep learning algorithm cannot be obtained. Addition-

ally, deep learning algorithms have poor interpretability, due to the black box nature of a neural network.

Due to its capacity for high performance and ease of implementation, deep learning has become a go-to

method of increasing prevalence, particularly in the area of computer vision where they are used for both

feature extraction and decision making. This in itself is not a problem, and the use of neural networks for

image processing is a sensible choice. However, many computer vision applications require additional

processing for which neural networks may not be the most suitable algorithm, such as reasoning about

the features of an image after they have been extracted. The use of end-to-end deep learning models

puts unnecessary restrictions on what constitutes an acceptable domain for these applications. Sufficient

training data must be provided to train the large network, and the uninterpretable nature of neural net-

works leads to a lack of trust in these algorithms, as well as making it difficult to diagnose and correct

any problems in their performance.

The architecture described in this thesis was designed for training efficiency and interpretability, mak-

ing it suitable for domains with limited training data and for applications that humans need to understand

and trust. This architecture combines deep learning with non-monotonic logic reasoning and decision

tree induction to get the best of both worlds. Deep learning was used to provide high performance for

complex tasks such as image processing, while knowledge bases and decision trees were used to provide
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interpretable outputs for tasks that could be represented by axioms or dendrograms. Only applying the

deep learning components to specific tasks reduced the overall training data requirement.

Knowledge bases are useful, particularly in domains with limited training data, because they do not

require training and they provide interpretable outputs. One downside to knowledge bases, however, is

that they need to be created by a human designer, as opposed to neural networks which automatically learn

how to correctly match input to output. Knowledge bases can present particular difficulty in complex

domains, where many axioms are necessary to fully represent the domain and it is difficult for a human

designer to capture all of them. One way to overcome this drawback is to use an automated ‘axiom

learning’ methodology to add to an incomplete knowledge base. This thesis presents an axiom learning

system that can be used to add new state constraints and statics to a knowledge base. The methodology

presented is novel but was inspired by a similar methodology, presented in [38], that was designed to add

executability conditions to knowledge bases.

One of the biggest computer vision challenges is visual question answering (VQA), as in addition to

the common computer vision tasks of image processing, feature extraction and object detection, a VQA

algorithm must reason about a question and determine the answer. The questions asked might be things

like ‘what colour is the man’s shirt’ or ‘is there a cat in this image’. Traditional VQA datasets contain

tens or hundreds of thousands of images [6, 7], so applying VQA to a domain that has limited training

data is a challenging goal. A standard VQA architecture that forms the base of most state of the art

algorithms is composed of a convolutional neural network (CNN) for image processing and a recurrent

neural network (RNN) for question answering. The proposed architecture used, in addition, a knowledge

base and a decision tree for classification and a knowledge base for question answering. This reduced the

load on the deep learning components of the architecture, making their tasks easier to learn with limited

training data. The answer sets generated by the knowledge base, or the branches used by the decision

tree, were parsed and the information used to construct explanations for the classification decisions made.

In addition, to show that non-monotonic logic is useful in a variety of domains, a planning architecture

that relies on a planning knowledge base was applied to a robotic task, and this architecture was then

combined with the proposed VQA architecture.

It was hypothesised that the proposed architecture would outperform a baseline architecture that was

purely based on deep networks when the size of the training dataset was small, and that it would be able

to provide explanations for its classification decisions. It was expected that the proposed architecture

could be combined with a planning architecture for dynamic domains, and that an automated axiom

learning process would improve the performance of knowledge base reasoning, in both static and dynamic

domains. Experimental results confirmed these expectations.

The rest of this thesis is laid out as follows: Chapter 2 describes previous research related to the goals

of the thesis, Chapter 3 describes the proposed architecture and a methodology that can be used to apply

the proposed architecture to new domains, and Chapter 4 discuses experimental results.
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2. Related work

Deep learning is a popular machine learning technique, and it is increasingly being used for applications

with complex inputs, such as computer vision [1, 2, 3, 4, 5]. There are three issues currently affecting

many deep learning models: they require a lot of training data and thus are difficult to train, they lack

interpretability, and they are often affected by dataset bias. In this thesis it is hypothesised that the use

of commonsense knowledge reasoning can help to alleviate these issues. The following sections explore

four topics: training data requirements, interpretability, dataset bias, and reasoning with knowledge.

2.1 Training data volume

Most deep learning algorithms need to be trained on large datasets in order to achieve high performance.

For visual question answering (VQA) this training data is usually obtained from benchmark databases

such as Microsoft Common Objects in Context (MSCOCO) [6] or the Dataset for Question Answering

on Realworld Images (DAQUAR) [7]. Constructing such large databases can be an expensive and time-

consuming process, meaning that most research is only being done on a few popular generic datasets,

and finding enough training data for specific applications can be difficult. A discussion of the methods

currently being used to mitigate the training data requirements of computer vision algorithms follows.

Transfer learning was used in [46, 47] to reduce the amount of training data required. With transfer

learning, a neural network that has already been trained on a large, generic dataset (such as ImageNet

[48]) is fine-tuned with a domain-specific dataset. This improves performance when the domain-specific

dataset is too small to train a neural network from scratch. The model for ship classification presented

in [46] was a pre-trained Resnet-50 network [59] which was fine-tuned on a database of approximately

2000 images of ships. A similar model for landscape classification was based on a pre-trained CNN

which was fine-tuned on a database of approximately 5000 military vehicle images [47]. In this paper

pre-training was done with 50,000 unlabelled landscape images (similar to the landscapes in the target

images, but without the military vehicles). Though this reduced the labelling requirement, a large image

dataset was still required. Transfer learning cannot be applied to all domains as many do not have a large

dataset available that is similar enough to their target data.

Active learning was used for VQA in [10] and for image classification in [45] to reduce the amount

of labelled data required. For the VQA application a large question-image database was used, with only

some of the question-image pairs labelled with answers. The model was first trained with the labelled

training data. It then iteratively expanded its training set by selecting image-question pairs involving
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concepts it was uncertain about and asking an ‘oracle’ (human annotator) for the answer. Experimental

results showed that using active learning instead of annotating all questions in the database with answers

saved on time spent annotating answers by about 20%. However, a large database of question-image

pairs still had to be constructed.

Another way to reduce the amount of training data required is to use an attentional model to determine

which region of the image the model should get the answer from. A model was proposed that used

stacked attentional networks to improve VQA performance [8]. The words of a question were embedded

to a vector, and at each time step a word vector was passed to a long short term memory (LSTM) [60]

network that updated its hidden state. Once every word in the question had been processed, the final

hidden layer in the LSTM was used as the question vector. A visual geometry group neural network

(VGGNet) [61] was used to extract the image feature map from a raw image. The question vector and

image feature map were given as inputs to a single layer neural network, the output of which was passed

through a softmax function to generate an attentional distribution over the image. This was then used to

calculate the weights of the image vectors, each from a different region in the image. These image vectors

were combined with the question vector to form a query vector that encoded both question information

and the visual information that was relevant to the potential answer. The query-attention process was done

iteratively using multiple attention layers, each extracting more fine-grained visual attention information

for answer prediction. With this method objects were first identified and located, and then concepts in

the question used to rule out irrelevant objects (e.g. if the question asked ‘what is sitting in the basket’,

any objects that did not fit the concept ‘sitting in’ could be ignored). Once as many objects as possible

had been ruled out the remaining object was the answer to the question.

In a similar paper a co-attentional model was proposed to improve robustness to variations in question

wording [9]. Most attentional models create a spatial map highlighting which regions of the image to pay

attention to. This model went a step further and highlighted which words of the question to pay attention

to. For example, the questions ‘how many horses are in this image’ and ‘how many horses can you

see’ have the same meaning but different wording, which could affect the performance of simpler VQA

models. However, with a co-attentional model, the first three words ‘how many horses’ are identified

as the most important words in the question, so the wording will not affect the answer. Two different

co-attention mechanisms were presented, parallel co-attention, and alternating co-attention. Parallel co-

attention attended to the image and question simultaneously. The similarity between image and question

features at all pairs of image-locations and question-locations was calculated as an affinity matrix. This

affinity matrix was used as a feature and the model trained to predict image and question attention maps

from it. In alternating co-attention the model sequentially alternated between generating image and

question attention. First, the question was summarized into a single vector. The question vector was

then used to attend to the image. The attended image feature was then used to attend to the question. At

each step an attention operation took the features and attention guidance (derived from either the image
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or question) as inputs, and output the attended question or image vector. The answer was predicted with

the coattended image and question features as inputs. Experimental results from both of these papers [8,

9] showed that the attentional models outperformed baselines where neural networks were used without

any attentional model. Improved performance with the same amount of training data suggests that the

attentional models would be able to achieve the same performance as plain neural network models with

less training data, however, this was not a focus of these papers.

A Deep Attention Neural Tensor Network (DA-NTN) for VQA used tensor-based representations to

discover joint correlations between images, questions and answers [72]. An attention module selected

a discriminative reasoning process, and optimized the DA-NTN through regression with KL-divergence

losses to improve scalability of training and convergence. Schwartz and colleagues describe a general-

purpose attention mechanism in the context of VQA [73]; the approach learned high-order correlations

between various data modalities, directing attention to elements in the data modalities that were relevant

to the task at hand.

2.2 Interpretability

A model designed to explain neural network decisions was proposed to address the issue of how difficult

to understand their reasoning can be [19]. GradCAM used the gradient information flowing into the last

convolutional layer of a CNN to understand the importance of each neuron for a decision of interest. The

feature map of a convolutional layer of a neural network was used to compute the gradient score for a

target class. These gradients were global-average-pooled to obtain neuron importance weights, with the

weight representing the importance of the target class. Although this was a step in the right direction, the

explanations it provided (they were represented as heat maps) were not very intuitive.

A similar model was used to improve the interpretability of deep neural network EEG classifications

[51]. The technique was called ‘layer-wise relevance propagation’ and the output was a heatmap showing

the relevance of each input for the final outcome.

A model called ‘interpretable CNN’ was designed in such a way that each filter in the higher con-

volutional layers represented a specific object part [49]. The model automatically assigned object parts

to filters during training. As these object parts were selected by the algorithm, not by a human, some

of them were not intuitive. Images could be generated with detected object parts highlighted to indicate

what parts of the image the CNN was focusing on.

Fong and Vedaldi used image blurring to detect the most relevant part of an input image [50]. Sections

of an image were blurred and the blurred images run through a CNN. The results were compared to the

result from the unblurred image, and the blurred shape that suppressed the CNN’s softmax prediction was

used to create an image mask highlighting which section of the image was most relevant to the CNN’s

classification. This showed what part of the image the algorithm is paying attention to.
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Researchers have also developed general approaches for understanding the predictions of any given

machine learning algorithm. Second-order approximations of influence diagrams can be used to trace

any model’s prediction through a learning algorithm back to the training data in order to identify training

samples most responsible for any given prediction [74]. Ribeiro and colleagues developed a framework

that analyzed any learned classifier model by constructing a interpretable simpler model that captured the

essence of the learned model, and formulated the task of explaining models based on selected represen-

tative instances and explanations as a submodular optimization problem [75].

The methods listed above are useful for highlighting which parts of a neural network are the most

active or relevant to the output, or which parts of an image it is paying the most attention to. However

there is still a gap in the interpretability literature with regards to explanations. An explanation is an

additional output generated by an algorithm in which it explains, with words (e.g. a paragraph of text

printed to the screen), its reasons for selecting a particular class or value for the main output.

2.3 Dataset bias

Dataset bias occurs when a neural network is trained to simply match inputs to the outputs that they

were most often paired with in the training dataset, rather than learning to reason about the information

it is given. In visual question answering an issue that can arise from training a model with some of the

popular large datasets is that the algorithm learns to answer questions based on similar question-answer

pairs that it has seen, without reasoning about the image at all [1, 13, 14]. These models often achieve

high accuracy if testing and training data are similar, and this can give a false idea of how well the

algorithm would work in a real world application where it needs to reason about its environment. The

following papers present datasets and models designed to mitigate the effect of dataset bias.

A balanced version of the VQA dataset was presented to address the issue of models relying on

language priors to give them the answer without actually understanding the image [15]. In this database

a complementary image was added for every question so that each question could be paired with two

separate images that give two different answers. A similar balanced database that includes only yes/no

questions was presented in [16]. With every question paired with multiple different answers, algorithms

cannot rely on language priors to achieve high performance.

A similar paper presented both a dataset designed to reduce bias and a model designed to not rely on

bias were presented [17]. The databases were new splits of the VQA v1 and VQA v2 datasets, called

Visual Question Answering under Changing Priors (VQA-CP v1 and VQA-CP v2 respectively), which

were arranged to have different answer distributions in the training set and testing set for each type

of question (e.g. for yes/no questions the training set might have mostly yes answers but the testing

set might have mostly no answers). This meant that in order to perform well a model had to rely on

information from the image rather than relying on common answers from the training set. Along with
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the dataset, a model called Grounded Visual Question Answering (GVQA) was designed specifically to

ignore language priors and rely on information from the image. GVQA separated the tasks of locating

relevant objects and their features in the image, and choosing from a range of possible answers, so that

the question was used only to analyse the image and could not be directly used to guess the answer. An

example given in the paper was asking ‘what colour is the dog?’ The question was parsed to find out

what visual concepts need to be located in the image (in this case ‘dog’) and what type the answer should

be (in this case ‘colour’). The model then located the patch in the image corresponding to ‘dog’, detected

features such as black and furry, and finally output black because it matched the required answer type.

The algorithm makes two assumptions about the contents of an image: (1) the attended image patch

required to answer a question has at most one dominant object in it; and (2) every object has at most one

dominant attribute from each attribute category.

Another way to reduce dataset bias would be to include image-question pairs that do not make sense,

so that the model cannot learn how to predict answers from the question alone. However it would be

disadvantageous if the model responded to nonsensical questions with nonsensical answers. In one VQA

architecture a pre-trained captioning model was used to determine whether a question was relevant to an

image, and only if it was relevant was an answer attempted [18].

2.4 Reasoning with knowledge

It has been suggested in a review of previously attempted knowledge-directed vision techniques (mostly

from the 1980s) that a more modern attempt is called for [58]. The proposed architecture presented in this

thesis uses non-monotonic logic knowledge bases for reasoning about computer vision tasks such as VQA

and planning. This section presents some other ways in which knowledge has been used in computer

vision or question answering applications. The techniques used include production-system languages, a

declarative programming language called Loom, physics engines, predicate knowledge bases, description

logic, temporal logic, fuzzy logic, and first-order logic. This section also introduces non-monotonic logic

and describes some ways in which it has previously been used.

A declarative programming language called Loom has been used for the detection of objects such

as runways and taxis in aerial Airport images [54]. Production-system languages have been used for

selecting which algorithm to use for segmentation [56]. A recent approach for VQA used physics engines

and prior knowledge (of domain objects) to realistically simulate and explore different situations. These

simulations guided the training of deep network models that anticipated action outcomes and answered

questions about hypothetical situations [40].

One question answering architecture used domain knowledge to reason about general-knowledge

questions regarding objects in an image, such as ‘what country is this animal from’, thus enabling a

wide range of questions to be answered without making the amount of training data needed impractical
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[11]. The model detected objects in the image and extracted information regarding those objects from

a knowledge base. It then used information from both the image and the knowledge base to answer a

natural language question. The knowledge base was composed of predicates that encoded relations such

as (giraffe, from country, Africa). Though this enabled the algorithm to answer a wider range of questions

with a standard amount of training data, it did not reduce the amount of training data required to answer

questions about the image.

Another question answering architecture used description logic to encode information about the struc-

tures of buildings [41]. Information such as lists of external features (e.g. wall, roof), internal features

(e.g. stairwell, room), and the materials that the building was constructed from were encoded in a hier-

archical list that could be parsed for the answers to questions. A summary of recent progress combining

descriptive logic with computer vision was given in [53], with examples of description logic being used

for pattern classification and image interpretation.

Temporal logic can be used for scene recognition [52]. An algorithm was presented that was able to,

though video processing, recognise different users and interpret their gestures. The gestures tracked over

time were compiled in a knowledge base that reasoned about the actions being taken by different people

to determine what activity was being performed in the video.

Another form of logic that has been combined with computer vision is fuzzy logic [42, 43, 44].

Fuzzy logic is different from most other types of logic, which tend to only assign the values true, false,

or sometimes unknown. Fuzzy logic, on the other hand, can represent things qualitatively and is useful

for probabilistic reasoning. Fuzzy logic and computer vision are often combined in robotic applications

[42], with computer vision predicting object locations and fuzzy vision tracking object trajectories over

time, allowing the robot to easily interact with the object.

A question answering architecture was developed that used a first-order logic knowledge base to an-

swer common knowledge questions such as ‘what is the capital city of France’ [39]. Another architecture

was presented that reasoned with first-order logic representations and incrementally refined action opera-

tors [76]. Cognitive architectures have also been developed to extract information from perceptual inputs

to revise domain knowledge represented in first-order logic [80], and to combine logic and probabilistic

representations to support reasoning and learning in robotics [81, 65]. Out of the approaches used in the

current literature, the one most similar to non-monotonic logic is first-order logic. Both forms of logic can

be encoded in knowledge bases of axioms. First-order logic is more efficient and less computationally

expensive that non-monotonic logic, but it cannot represent uncertainty or revise beliefs.

A complete review of knowledge-based computer vision is given in [55]. It was written in 2010,

so does not discuss the most recent advances, but the only type of logic mentioned is first-order logic.

From the related work presented in this section of the thesis the conclusion that there are currently no

algorithms using non-monotonic logic for interpreting the content of images or videos can be drawn.

Non-monotonic logic formalisms such as Answer Set Prolog (ASP) have been developed and used
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in cognitive robotics [64] and other applications [66]. ASP has been combined with inductive learning

to monotonically learn causal laws [77], and the theory of actions has been expanded to learn and revise

domain knowledge represented as ASP programs [78, 79].

A disadvantage of logic programming methods is that they do not support incremental learning of

new axioms or generalisation. These challenges can be addressed using interactive task learning, a gen-

eral framework for acquiring knowledge using labeled examples or reinforcement signals obtained from

observations, demonstrations, or human instructions [82, 83]. Sridharan and Meadows developed such a

framework that combined non-monotonic logical reasoning and relational reinforcement learning to learn

action models or search control rules to be used for reasoning or learning in dynamic domains [68].

It is hypothesised that reasoning with knowledge will allow artificial intelligence architectures to

reduce training data requirements and improve interpretability. Though the related works mentioned

here have interesting and useful capabilities, none have made significant progress on the goal this thesis

addresses: creating a knowledge-based architecture that is designed in such a way that it minimises

training data requirements, provides interpretable outputs, can be used for a variety of applications and is

unaffected by dataset bias. This thesis proposes an architecture that is designed to achieve that goal, and

it is described in detail in the next chapter.
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3. Proposed architecture

This thesis proposes a novel architecture for the task of visual question answering (VQA), in which an

algorithm must generate an answer to a question about an image. This is a good example of a task that

can make use of incremental learning and explainable reasoning, but the proposed architecture could

easily be adapted for other applications. The methodology behind the architecture’s design combines

deep learning with knowledge bases (and decision trees when additional flexibility is required) to get the

best of both worlds - high performance when processing raw inputs such as images, interpretable outputs,

and manageable training data requirements. This methodology is generalisable and can be used to design

architectures for a variety of tasks. As well as the proposed VQA architecture, this thesis describes a

state of the art planning architecture that follows the same principle of combining knowledge bases with

deep learning.

The VQA architecture was designed to improve training efficiency and provide explanations for the

image classification desicions made. This architecture is made up of four main components, as can be

seen in the block diagram in Figure 3.1. The planning architecture is discussed in Section 3.6. An

advantage of the modular nature of these architectures is that components can be exchanged, allowing

architectures designed for different tasks to be combined for applications that require several functional-

ities.

1. The yellow blocks in the block diagram represent the feature extraction component. This is a group

of convolutional neural networks (CNNs) that process the input image and determine what features

are present.

2. The blue blocks represent the classification component, which uses two systems - a knowledge

base and a decision tree. The knowledge base does not need to be trained, but it is not very flexible

and cannot deal with unexpected feature combinations (this could happen if a CNN misclassifies

a feature). The decision tree is used to classify inputs that the knowledge base cannot. Using the

decision tree on only a small subset of the feature space (i.e. combinations that the knowledge base

has no classification rule for) reduces the amount of training data required.

3. The orange blocks represent the question answering component. Like the classification component,

this uses two systems - a knowledge base and an RNN. Once again this allows the best of both

words, with the knowledge base dealing with most inputs to reduce the amount of training data

required, and an RNN providing the flexibility needed for unexpected inputs.

4. The purple block represents the explanation generation component. This takes as input either the
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Figure 3.1: Block diagram of the components of the proposed architecture.

answer set from the knowledge base or a list of the branches used by the decision tree, depending

on which system was used for classification. This input is parsed and the information gained used

to construct an intuitive explanation for the classification decision made.

The proposed architecture used deep learning for processing the image and answering unexpected ques-

tions, and used a knowledge base and decision tree for classifying the image and answering expected

questions. Expected questions are defined as those that are paired with a combination of features (ex-

tracted from the image) that the knowledge base has axioms for. An unexpected combination of features

can be produced if any of the CNNs misclassify a feature, and in these cases the flexibility of an RNN

which can learn to map even incorrect inputs to the correct outputs, so long as the same mistakes are

commonly made, is useful. This design gained the advantages of deep learning while avoiding the dis-

advantages; deep learning was used to provide high performance for tasks that would have been difficult

to encode in a knowledge base, and because these tasks were made as specific as possible the training

data requirement was kept to a minimum. The use of the non-monotonic logic reasoning and decision

tree induction also provided interpretable intermediate outputs. Another advantage of separating the

VQA task into classification and question answering was that it avoided a problem that can occur with

biased datasets, where the algorithm simply chooses the most common answer without reasoning about

the image at all. With a separate classification step being trained specifically for classification accuracy

the algorithm was forced to learn how to reason about the image. This architecture was designed to be

versatile and can be applied to a wide variety of domains.

The steps involved in applying the proposed VQA architecture to a new domain are:

1. Choose relevant features

11



Figure 3.2: Illustrative images of structures of blocks from a physics-based simulator.

Figure 3.3: Illustrative images of traffic signs from the BelgiumTS dataset [33].

2. Design neural network structures

3. Create classification knowledge base

4. Create decision tree algorithm

5. Create question answering knowledge base

6. If the domain is dynamic, create planning knowledge base

7. If performance needs to be improved, implement axiom learning

Example code from four example domains is available in a Github repository [84]. Examples include

scripts for training and using CNNs, RNNs, and decision trees, as well as ASP files showing classi-

fication, question answering and planning knowledge bases. A controller script can be written in any

sequential language (e.g. Python [57]) to manage the inputs and outputs between the components of the

architecture. Figure 3.1 can be referred to as a guide for this. Methodology sections throughout this

chapter describe each of the above steps in more detail. First, four domains that are used throughout this

thesis to provide explanatory examples are introduced.
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3.1 Domains

The following list describes the domains that were used to obtain experimental results for the proposed

architecture. The first two were used for the VQA task, the third was used for the planning task, and the

fourth was applied to both tasks simultaneously.

1. Structure Stability (SS): This domain used 2500 images of structures created in the PyBullet

physics simulator [35]. These structures were composed of varying numbers of blocks with ran-

domly chosen sizes, colours and positions (see Figure 3.2 for examples). The relevant features of

this domain were the number of blocks, whether the structure was on a lean, whether the structure

had a narrow base, and whether any block was displaced (placed so far to the side) such that it

was not well balanced on top of the block below. The objective was to classify structures as being

stable or unstable, and to answer explanatory questions such as ‘why is this structure unstable?’

and ‘what needs to happen to make the structure stable?’.

2. Traffic Sign (TS): For this domain the BelgiumTS benchmark dataset [33] was used with ≈ 5000

real-world images (total) of 62 different traffic signs (see Figure 3.3 for examples). The features

of this domain were the primary symbol/sign in the middle, secondary symbol, shape (e.g., circle,

hexagon), color (main, border), and the background image. The objective in this domain was to

classify the traffic signs in images and to answer explanatory questions such as ‘what is the sign’s

message?’ and ‘how should the driver respond to this sign?’.

3. Tower Building (TB): This dynamic domain involved a simulated robot building a tower of boxes.

The robot’s objective was to make the tower as high as possible without risking collapse. There

were five boxes available - a large blue one, a medium orange one, a medium yellow one, a medium

red one, and a small green one. Putting a box on top of a smaller box was unstable and usually

resulted in the tower collapsing. If the tower collapsed or the robot’s attempt to place a box did not

result in the box being balanced on top of the tower the robot would use the state and action that

led to that to learn axioms about which box combinations would be unstable. More details on this

domain are given in Section 3.6.

4. Robot Assistant (RA): This dynamic domain was simulated in Gazebo [84], using models from

the 3DGEMS database [85]. A simulated Turtlebot (model 2.0), a small wheeled mobile robot,

was used to deliver messages to the workers in an office world (see Figure 3.4). After delivering

a message it would observe the room and objects around it. It would then return to the sender of

the message, and answer questions about its observations. More details on this domain are given

in Section 3.6.2.

The proposed architecture was designed for use in domains with two main features: firstly, they

should be specialised enough that all the relevant features can be feasibly captured within a knowledge
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Figure 3.4: The layout of the office building in the Gazebo simulation of the RA domain. The top half of

the figure shows a map of the layout with room names, while the bottom half shows the composition of

the rooms with models of objects and people included.

base, and secondly, they should only have a limited amount of training data. While the proposed archi-

tecture can also be used for domains with large training datasets, end-to-end deep learning algorithms are

likely to perform just as well with these datasets so the proposed architecture may not be the best choice

(unless interpretability is of high importance e.g. in critical domains where humans want to understand

the automated system). There is currently a gap in the state of the art for specialised domains with small

training datasets. Most state of the art VQA algorithms are designed for benchmark datasets with huge

amounts of training data. These benchmark datasets would be unsuitable for the proposed architecture

because they contain a wide variety of image and question types and it would not be feasible to cre-

ate a knowledge base capable of classifying all of the image types and answering all of the questions.

For these reasons the SS and TS domains were selected as suitable candidates for testing the proposed

architecture’s VQA performance.

3.1.1 Methodology: Choosing relevant features

Each domain will have a separate list of features that are used for classification. The user must select

these based on their knowledge of the domain. The features should be visual, and simple enough that
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Figure 3.5: Illustrative example of the CNN architecture used for feature extraction in the SS and TS

domains. Part (a), on the left, shows the simplest possible CNN that would be used in this architecture

while part (b), on the right, shows a more standard CNN structure.

CNNs can detect them in images without much training. They should also be class-specific enough for

a knowledge base and decision tree to use the features for classifying the images. For example, in the

TS domain the features are the shape of the sign, the colour, the colour around the border, the symbol,

the secondary symbol, the background image, and whether there is a cross. If, during the creation of

the classification knowledge base (discussed in Section 3.3.2) accurate classification axioms cannot be

found, it is likely that more refined features need to be chosen.

3.2 Feature extraction with CNNs

The first component of the architecture takes images as input and extracts user-defined features that can

then be used to classify the image. For the VQA example domains (SS and TS), semi-automated annota-

tion was used to obtain the relevant features from images of different scenes. The feature representation

for each domain was selected based on domain expertise about the characteristic features of the corre-

sponding domain.

In the SS domain the features were:

• The number of blocks in the structure (between two and five);

• Whether the structure was on a lean (true or false);

• Whether the structure had a narrow base (true or false);
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• Whether any block was displaced, i.e., placed far to one side such that it was not balanced on top

of the block below it (true or false).

In the TS domain the features were:

• The primary symbol in the middle of the traffic sign (there were 39 different primary symbols such

as bumpy road, slippery road, stop, left turn, and speed limit);

• The secondary symbol in the traffic sign (there were 10 different secondary symbols such as dis-

abled, car and fence);

• The shape of the sign (circle, triangle, square, hexagon, rectangle, wide rectangle, inverted trian-

gle, or diamond);

• The main color in the middle of the sign (red, white, or blue);

• The border color at the edge of the sign (red, white, or blue);

• The sign’s background image (some signs had the symbol placed over a background image such as

a square or a triangle);

• The presence of a cross, in red or black, across a sign to indicate the end or invalidity of a zone

(with the sign without the cross indicating the beginning or validity of the zone), e.g. a parking

sign with a cross implied no parking.

As stated earlier, CNNs were trained and used for this task. A separate CNN was trained for each

feature, and each CNN was designed using the same training methodology, which is described in the

following subsection.

3.2.1 Methodology: Neural network design

There are a variety of languages and libraries available for the implementation of machine learning algo-

rithms. For the implementation of the decision trees and neural networks presented as examples in this

thesis Python [57] and TensorFlow [62] were used.

The CNNs and RNN should be designed to be as simple as possible while still achieving high accu-

racy. Because some features are more complex than others, a separate CNN should be designed for each

feature. The methodology for neural network structure design is given below, and it should be applied

separately to each CNN and the RNN.

1. Start with the basic version of the network you are creating. For a CNN refer to Figure 3.5(a) for

a guide to the layers which should be included. For an RNN the basic structure is an LSTM with

one hidden layer.
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2. Test the network’s accuracy.

3. Add a layer / layers (for the CNN one pooling layer and one convolution layer should be added;

for the RNN one hidden layer).

4. Test the network’s accuracy again.

5. If the accuracy has increased: repeat steps 1-5.

6. If not: remove the last layer(s) added and stop.

The number of CNNs should be equal to the number of features to be extracted for the application

domain, and the structure of CNNs trained for different features may be different. One of the common

CNN architectures learned for feature extraction in the example domains had three convolutional layers

and three pooling layers, as shown in Figure 3.5(b). For more complex features, the architecture also

allows the option of fine-tuning previously trained CNN models (transfer learning) instead of starting

from scratch. This was not necessary for any of the example domains.

3.3 Classification with logic or decision tree induction

Once the feature vector had been extracted from an image, it needed to be assigned a class label. In the

proposed architecture the class label was assigned using non-monotonic logical reasoning or a decision

tree-based classifier. In the examples presented in this thesis the logic classifier was implemented using

Answer Set Prolog (ASP) [36], while the decision tree classifier was implemented using Python [57].

Both classification methods are described below.

3.3.1 Logic-based inference with commonsense knowledge

Answer Set Prolog (ASP), a non-monotonic logical reasoning paradigm, was used to represent incom-

plete commonsense knowledge about the domain. ASP is based on stable model semantics, and supports

default negation and epistemic disjunction, e.g., unlike “¬a” that states a is believed to be false, “not a”

only implies a is not believed to be true, and unlike “p ∨ ¬p” in propositional logic, “p or ¬p” is not

tautological. Each literal can be true, false or unknown, i.e., the agent does not have to believe anything

that it is not forced to believe. ASP can represent recursive definitions, defaults, causal relations, special

forms of self-reference, and language constructs that occur frequently in non-mathematical domains, and

are difficult to express in classical logic formalisms [34]. Also, unlike classical first-order logic, ASP

supports non-monotonic logical reasoning, i.e., it can revise previously held conclusions (equivalently

reduce the set of inferred consequences) based on new evidence, aiding in recovery from errors due to in-

complete knowledge. ASP and other paradigms that support reasoning with domain knowledge are often
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criticized for requiring considerable (if not complete) prior knowledge and manual supervision, and for

being unwieldy in large, complex domains. However, modern ASP solvers support efficient reasoning in

large knowledge bases with incomplete knowledge, and are used by an international research community

for cognitive robotics [64, 65] and other applications [66]. For instance, existing work has demonstrated

that ASP-based commonsense reasoning can be combined with probabilistic reasoning for reliable and

efficient planning and diagnostics [67], and interactive learning for incrementally learning or revising

such commonsense domain knowledge based on input from sensors and humans [68].

An ASP program (Π) has a sorted signature Σ and axioms. Σ includes sorts, statics, i.e., do-

main attributes that do not change over time, and fluents, i.e., domain attributes whose values can be

changed. The specific sorts and attributes encoded depend on the domain under consideration. For

instance, in the TS domain, Σ includes sorts such as shape, main color, border color, symbol, and

secondary symbolc. In the SS and TS domains, some statics and fluents of interest include:

num blocks(blocks), structure(feature), (3.1)

symbol(symbol), main color(main color)

secondary symbol(secondary symbol)

These relations are described in terms of their arguments’ sorts.

The axioms of Π encode some rules that are used for inference with commonsense knowledge. Some

examples from the SS and TS domains are:

structure(unstable) ← structure(block displaced). (3.2)

structure(stable) ← num blocks(2),

¬structure(lean).

class(no parking) ← main color(blue),

symbol(blank).

where the first axiom says that any structure that has a block that is significantly displaced is unstable,

and the second axiom says that any pair of blocks that does not have a significant lean is stable. The third

axiom says that a traffic sign that is blue and blank is a no parking sign.

Additionally, in dynamic domains, Π includes fluents which can have a different value in each

timestep, a predicate holds(fluent, step) is used to indicate that a particular fluent holds true at a partic-

ular timestep, actions with their preconditions and effects, and a history H that allows the ASP program

to reason about a robot’s previous interactions with the environment. The domain knowledge in practi-

cal domains often includes default statements that are true in all but certain exceptional circumstances.

For example, we may know in the SS domain that structures with two blocks of the same size are usu-

ally stable. ASP supports the elegant encoding of, and reasoning with, such defaults and exceptions (if
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any). Recent work expanded the notion of history to represent defaults describing the values of fluents

in the initial state, and demonstrated how this knowledge could be used for planning and diagnostics in a

robotics domains [67]. This capability is supported in the proposed architecture.

Key tasks of an agent equipped with a system description D and history H include reasoning with

this knowledge for inference, planning and diagnostics. In the proposed architecture, these tasks were

accomplished by translating the domain representation to a program Π(D,H) in CR-Prolog, a variant of

ASP that incorporates consistency restoring (CR) rules [69]. The program Π included the signature and

axioms of D, inertia axioms, reality checks, closed world assumptions for defined fluents and actions,

and observations, actions, and defaults from H . In addition, the features extracted from an input image

were encoded as the initial state of the domain in Π. Each answer set of Π(D,H) represented the set of

beliefs of an agent associated with this program. Algorithms for computing entailment, and for planning

and diagnostics, reduced these tasks to computing answer sets of CR-Prolog programs. Answer sets

of CR-Prolog programs were computed using a system called Sorted ASP with Consistency Restoring

Rules (SPARC) [37]. The CR-Prolog programs for the example domains are available in an open-source

software repository [84]. For the classification task in the example domains, the relevant literal in the

answer set provided the class label. Note that the accuracy of the inferences drawn from the encoded

knowledge depends on the accuracy and extent of the knowledge encoded, but encoding comprehensive

domain knowledge is difficult. The decision of what (and how much) knowledge to encode is made by

the designer (i.e., domain expert).

In some cases (if the knowledge base was incomplete or one of the features extracted by the CNNs

was inaccurate), the knowledge base might not have an axiom for classifying the set of features it received

as input. In these cases the decision tree would be used for classification instead.

3.3.2 Methodology: Create classification knowledge base

Algorithm 1 shows a methodology for creating accurate classification axioms that use the features se-

lected in Section 3.1.1. The user must first choose a target accuracy, which for the rest of this section will

be referred to as X. They must then create a skeleton ASP file, including sorts, predicates, and generic

axioms such as the closed world assumption [36]. Once this has been done they will be ready to add

classification axioms to the knowledge base.

Following the methodology in Algorithm 1, the user must iterate through their list of relevant features

and test axioms of increasing complexity until they find one that has their desired accuracy. For each

feature, and each value that that feature can have, the training dataset should be used to determine whether

that feature value is always (or mostly always) associated with a particular class. If not, more specificity

is required and therefore another feature should be included in the axiom. If it is impossible to find

axioms that have the desired accuracy then it is likely that more detailed features need to be selected in
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Data: Features and training samples

Result: Classification axioms

for each feature in features do
for each possible value of feature do

for each possible image class do
candidate axiom format: image(class) if feature(value);

test classification accuracy of this axiom with the training dataset (this can be done

with a script);

if accuracy is greater than or equal to X then
add axiom to knowledge base;

end

end
if accuracy of X not achieved for any class then

for each feature two in features do
for each possible value two of feature two do

for each possible image class do
candidate axiom format: image(class) if feature(value),

feature two(value two);

test classification accuracy of this axiom;

if accuracy is greater than or equal to X then
add axiom to knowledge base;

end

end
if accuracy of X not achieved for any class then

Continue including new features (i.e. adding nested for loops to this

methodology) until you have attempted axioms that combine every feature

that can be extracted by the CNNs;

end

end

end

end

end

end
Algorithm 1: Methodology for manually discovering all relevant classification axioms.
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the feature selection step, which is outlined in Section 3.1.1.

Once the algorithm has been completed the user should go through the classification axioms added to

the knowledge base and remove any that elaborate on another, simpler one.

3.3.3 Decision tree classifier

If ASP-based inference could not classify the feature vector from an image, it was classified by a decision

tree learned from labeled training samples. In a decision tree classifier, each node is associated with a

question about the value of a particular feature, with the child nodes representing the different answers to

the question, i.e., the possible values of the feature. Each node is also associated with samples that satisfy

the corresponding values of the features along the path from the root node to this node. In the proposed

architecture a standard implementation of a decision tree classifier was used [71]. In this implementation,

the Gini measure was used to compute information gain (equivalently, the reduction in entropy) that

would be achieved by splitting an existing node based on each particular feature that has not already been

used to create a split in the tree. Among the features that provided a significant information gain, the

feature that provided the maximum information gain was selected to split the node. If none of the features

would result in any information gain this node was set to be a leaf node associated with a particular class

label, e.g., one of the types of traffic sign in the TS domain. Note that the decision tree’s search space was

quite specific since it only considered samples that could not be classified by ASP-based reasoning. The

decision tree did not need to generalize as much as it would have if it had to process every training (or

test) sample in the dataset. Also, although overfitting is much less likely, it is still possible; pruning can be

used to minimize the effects of overfitting, although this was not found necessary in any of the example

domains. Figure 3.6 shows part of a learned decision tree classifier; specific nodes used to classify a

particular example are highlighted to indicate that 94% of the observed examples of structures that have

fewer than three blocks, do not have a significant lean, and do not have a narrow base, correspond to stable

structures. These ‘active’ nodes along any path in the decision tree that is used to classify an example can

be used to explain the classification outcome in terms of the values of particular features that were used

to arrive at the class label assigned to a specific image under consideration. The classifier used in this

stage of the architecture determined which question answering system would be used in the next stage. If

the knowledge base was used for classification, it was also used to answer a question about the classified

image. If the decision tree was used, its output was passed to an RNN for question answering.

3.3.4 Methodology: Decision tree design

There are decision tree libraries available, but for the SS and TS domains it was sufficient to create simple

decision tree algorithms in Python. As mentioned in the above subsection, the decision trees designed

for the SS and TS domains used the Gini measure to compute information gain, selected the feature that
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Figure 3.6: Illustrative example of part of a decision tree constructed for classification. Nodes used to

classify a particular example are highlighted.

would provide the maximum information gain to split a node, and if no features provided information

gain the node was designated a leaf node. Pruning was not found to be necessary. This design is not a

strict requirement of the proposed architecture, and if a different decision tree algorithm is a better match

for the target domain then the use of more sophisticated algorithms, libraries, alternative information gain

measures or pruning are all permissible.

3.4 Question answering with logic or neural networks

As mentioned earlier, two systems were used for question answering. The non-monotonic logic compo-

nent, implemented as an ASP knowledge base, answered questions for inputs that the knowledge base

was able to classify. The neural network component, an RNN, answered questions for inputs that were

classified by the decision tree. The inputs to the question answering systems were the transcribed ques-

tion, the vector of features extracted from the image under consideration, and the classification output.

The human designer must provide pre-determined templates for questions and their answers. In the SS

and TS domains a list of the questions used for training was provided, as well as a controlled vocabulary

containing all the words deemed relevant to the domain (as well as basic words such as ‘the’ or ‘why’

that were thought necessary for phrasing questions). For every input the classifier used would determine

which question answering system would be used, and the user would them be prompted to select or write

a question. For the knowledge base the user would have to select from a provided list of questions.
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The chosen question would then be mapped to a number and the information provided to the knowledge

base as a fact (an axiom with no conditions, which is always true) with the format question(X). For the

RNN the user could type out any question so long as it only contained words from the preset vocabulary.

The vocabulary defined mappings of each word to a number, and this would be used to convert the

question string into a word vector. Answers were chosen from a list of possible answers (50 for the SS

domain, 157 for the TS domain). Examples of questions in the SS domain include: ‘is this structure

stable/unstable?’, ‘what is making this structure stable/unstable?’, and ‘what would need to be changed

to make this structure stable/unstable?’. Examples of questions in the TS domain include: ‘what sign is

this?’, ‘what is the sign’s message?’, and ‘how should the driver respond to this sign?’.

3.4.1 Logic question answering

The first method for answering explanatory questions was based on the understanding that if the feature

vector extracted from the image was classified using ASP-based reasoning, it was also possible to reason

with the existing knowledge to answer explanatory questions about the scene.

To support question answering in the knowledge base, the signature Σ and system description D had

to be augmented. For instance, sorts such as question and answer, and suitable relations to represent

questions and answers, were included. A constraint axiom was used to ensure that a question did not

result in multiple contradictory answers. Once the program Π had been augmented, a solver was used to

compute the answer set of the program. For any given question, the answer set was then parsed to extract

literals that were used to construct the answer (based on pre-determined templates).

3.4.2 Methodology: Create question answering knowledge base

To avoid the need to create another skeleton ASP file, the question answering axioms can be added to the

same file as the classification axioms.

This step is simple. For every possible combination of classification and question (in some domains

the features will need to be considered also), add an axiom that selects the answer.

An example of a question answering axiom that relies on the feature-classification-question combi-

nation in the SS domain is:

answer(20)← structure(stable), num blocks(2), structure(narrow base),

structure(lean), structure(block displaced), question(2).
(3.3)

Question two means ‘what is making this structure stable?’ and answer twenty means ‘it has a small

number of blocks’.

An example of a question answering axiom that relies on the classification-question combination in

the TS domain is:
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answer(101)← class(50), question(1). (3.4)

Class fifty is a parking sign, question one means ‘what is the sign’s message?’ and answer 101 means

‘parking available here’.

This mapping of strings to numbers in order to encode question information in the knowledge base

is only one way of using templates for question answering. The RNN maps individual words to numbers

and compiles them into a word vector representing the question, rather than mapping the entire question

to a single number. The user can use any template style that suits their application or implementation.

3.4.3 Neural network question answering

The second method for providing answers to explanatory questions was invoked if the decision tree was

used to classify the vector of image features. In this case, the inability to classify the feature vector

through ASP-based reasoning was taken to imply that the encoded domain knowledge was insufficient

to answer explanatory questions about the scene. An LSTM was trained and used to answer questions.

This RNN took as input the feature vector, classification result, and a vector representing the transcribed

and parsed query. The output (provided during training) was in the form of answers in the predetermined

templates. As with the CNNs for feature extraction, an incremental strategy was used to design the

network structure with the goal of making it as simple as possible while achieving high performance. The

strategy begins with a single hidden layer and increases complexity until the accuracy stops increasing.

Further details are given in Section 3.2.1. Adding a stack of LSTMs can be effective if adding individual

layers does not improve network accuracy significantly and the performance is still below the desired

target. Figure 3.7 shows an example RNN with two hidden layers. In the SS domain this RNN design

method resulted in a network with 12 hidden layers, while in the TS domain the RNN had 24 hidden

layers.

3.5 Axiom learning

The components of the architecture described above support reasoning with commonsense knowledge,

decision trees, and deep networks, to answer explanatory questions about the scene and an underlying

classification problem. In some complex domains, the available knowledge is incomplete, and this can

result in the knowledge base not having enough axioms to process a large percentage of the inputs. In or-

der to minimise the amount of training data required, the variety of inputs that have to be classified by the

decision tree should be restricted as much as possible. Additionally, in planning domains, an incomplete

planning knowledge base can result in suboptimal plans being developed that do not achieve the goal or
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Figure 3.7: Block diagram of an RNN with two hidden layers.

take an unnecessarily long time to do so. Figure 3.8 shows an updated block diagram of the proposed

VQA architecture, with axiom learning included as part of the classification section. This indicates the

inputs and outputs the axiom learning component requires in order to update the classification knowledge

base with new axioms. Note that axiom learning is not restricted to just the classification knowledge base,

but can also be used to update question answering or planning knowledge bases.

In domains where it is not feasible to create entire knowledge bases by hand a human expert can

create a simple version of the knowledge base, and then axiom learning can be used to automatically add

new rules to the knowledge base and make it more complete. This thesis presents a new axiom learning

methodology for learning state constraints, a format that is particularly useful for VQA domains in which

all the classification and question answering rules are state constraints, and statics, which are useful for

encoding knowledge about the physical world in a planning domain. The inclusion of axiom learning

with the proposed architecture was inspired by Sridharan and Meadows [38], who presented an axiom

learning methodology for executability conditions.
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Figure 3.8: Block diagram of the components of the proposed architecture with axiom learning included.

To perform axiom learning the training dataset was first run through the original knowledge base,

and any inputs that it failed to produce the correct output (classification or answer) for were added to a

list. Decision tree induction was used to generate candidate axioms from these lists, and after a rigorous

testing procedure any candidate axioms deemed worthy were added to the knowledge base. In planning

domains there is usually not a premade training dataset of the results of actions available, so the agent

should be given numerous goals to achieve and any unexpected action outcomes collected into a list.

Descriptions of two such domains are included in Section 3.6.

3.5.1 Methodology: Implement axiom learning

Axiom learning can be used to make a classification, question answering or planning knowledge base

more complete. A methodology for automatically learning new state constraints or statics is given below.

• All the training samples are run through the knowledge base, and any that it does not classify

correctly are added to a list.

• A decision tree is trained on the list of misclassified/unclassified samples.

• Paths that end in certain predictions (i.e. all the samples that fit that path had the same label) and

are supported by at least ten percent of the training samples are translated into axioms.

• Candidate axioms are generalised. For example, the axioms

structure(stable)← ¬structure(lean),¬structure(narrow base), num blocks(4). (3.5)
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and

structure(stable)← ¬structure(lean),¬structure(narrow base), num blocks(3). (3.6)

have almost all the same conditions, and have the same classification, suggesting that the condition

they do not have in common (the number of blocks) is irrelevant. The generalised axiom would be:

structure(stable)← ¬structure(lean),¬structure(narrow base). (3.7)

• The candidate axioms are tested one at a time. The candidate being tested is added to the knowledge

base. A number of samples equal to ten percent of the dataset are randomly selected from the

training dataset and classified with the updated knowledge base. Only samples that are relevant

to the new axioms are used; if a sample’s features do not match the conditions of any of the new

axioms it is rejected and a different sample selected. If there are not enough relevant samples to test

it properly the candidate axiom is rejected. Any axiom that results in a misclassification is rejected.

• The candidate axioms are compared to one another and if any axiom has the same conditions as

another, plus extra (i.e. if an axiom elaborates on another axiom) it is removed.

• The remaining axioms are added to the knowledge base and inputs are now run through this new,

updated knowledge base.

Although this methodology applies only to learning state constraints and statics, other axiom learning

methodologies can be implemented to learn any kind of axiom; for example, a methodology that can be

used to learn executability conditions is presented in [38].

3.6 Planning

The proposed VQA architecture is modular and can be combined with planning components. Figure 3.9

shows a block diagram of a standard ASP planning architecture. The controller sends an updated history

to the knowledge base whenever a new plan needs to be developed, receives an action plan in return,

instructs the executer to execute each action one by one, and instructs the computer vision component

to make observations about relevant fluents. The planning and VQA architectures can be combined

by replacing the computer vision component with the VQA architecture, and using answers to certain

questions (e.g. ‘what is the robot’s location?’) as observations.

In this thesis the domains used to show planning capabilities are the tower building (TB) and robotic

assistant (RA) domains, introduced in Section 3.1. To support planning and diagnostics, the planning

architectures each include a planning knowledge base with a system description D augmented with flu-

ents and actions, as discussed in Section 3.3. A history H must also be provided. The history H of a
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Figure 3.9: A block diagram of a logic-based planning architecture.

dynamic domain is a record of the fluents observed to be true at particular time steps, encoded in the form

obs(fluent, step), and the execution of actions at particular time steps, encoded in the form hpd(action,

step). The TB and RA domains will be described as examples of dynamic domains. Planning knowledge

bases from both domains are presented in a Github repository [84].

In the TB domain the signature Σ of the system description D had basic sorts such as box, box place,

tower level, location and step. These could be arranged hierarchically, e.g. the sorts place and tower level

were subsorts of location. Σ also included ground instances of these sorts, e.g. red box, green box and

yellow box were instances of the sort box. Domain attributes and actions were described in terms of the

sorts of their arguments. In the TB domain there were no statics, and fluents included loc(box, location),

to describe the location of each box, in hand(box), which denoted whether a particular box was in the

agent’s hand, unstable placement(box), which denoted whether placing a particular box would make

the tower unstable, and empty(tower level), which denoted whether a particular level of the tower had

a box in it. The actions in this domain were pickup(box) and place(box, tower level). The signature Σ

also included the relation holds(fluent, step) to imply that a particular fluent was believed to be true at a

particular time step.
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3.6.1 Methodology: Create planning knowledge base

A planning knowledge base for a dynamic domain needs to include actions, fluents, and a goal. An agent

is the entity (a robot or a simulation) who’s task is to achieve the goal. The actions should encompass

everything the agent might need to do to accomplish the goal. The fluents should encompass everything

in the environment that can change and that is relevant to the goal or actions. Before creating the ASP

file, the user should first come up with a list of possible goals, as well as all of the actions and fluents that

are relevant to the domain.

For example, the TB domain includes the following:

• Actions: pick up boxes, and place boxes.

• Fluents: the location of each box, whether each box is in the robot’s hand, the stability of any

potential box placement, and the status of each tower level (empty or filled).

• Goals: in this domain the goal is always to increase the tower height by one.

Once these lists have been created they should be converted into axioms in an action language (AL) file.

This is a form of pseudocode which helps to define the domain before writing axioms in the less readable

ASP file. The format of an AL file is described in detail in [36]. It should include:

• State constraints, which are used to define what is and is not allowed in the domain. For example,

when the condition of the robot being in a certain location is met, all other robot locations are set

to false. This constrains the robot’s location so that it cannot be in two places at once.

not loc(Box, Location2) if loc(Box, Location1), Location1 != Location2.

• Causal laws, which are used to define the effect that performing an action will have on the agent

and environment. For example, picking an object up causes it to be in the robot’s hand.

pickup(Box) causes in hand(Box).

• Executability conditions, which are used to define circumstances in which it is impossible to per-

form a certain action. For example, it is impossible to place a box on top of an empty tower level.

impossible place(Box, Location) if empty(Location-1).

In the TB domain tower locations are represented by numbers, so ‘Location-1’ refers to the tower

level below ‘Location’.

These examples include full words to improve readability, but to make axioms more concise it is generally

advisable to use only a single letter for each variable name. The remaining examples in this section follow

the single letter variable name format.
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As with the classification knowledge base, a skeleton ASP file should be created before the domain-

relevant axioms are added. As well as the axioms included in a static knowledge base, a dynamic ASP

file needs an inertial axiom, a constraint forcing the answer set to include the goal being achieved, and

constraints to avoid more than one action being performed in one time step [36].

To translate AL axioms into ASP, time steps need to be included, and the keyword ‘holds’ used to

indicate that a fluent’s value at a particular time step is a belief held by the agent at that time, not an

absolute truth. The following list gives translation guidelines; for more detailed instructions see [36]. For

each example, the first equation is the AL axiom, and the second is the ASP axiom.

• Translating state constraints: fluents such as location (‘loc’) become part of the ‘holds’ predicate,

along with the timestep at which the fluent is believed to have that particular value (i.e. fluent(value)

becomes holds(fluent(value),timestep).

not loc(B,L2) if loc(B,L1), L1! = L2. (3.8)

¬holds(loc(B,L2), I)← holds(loc(B,L1), I), L1! = L2. (3.9)

• Translating causal laws: actions must now become part of the ‘occurs’ predicate, along with the

time step at which they were performed (i.e. action(action variables) becomes occurs(action (ac-

tion variables), timestep). The effects of an action must become part of the ‘holds’ predicate, with

the time step at which that fluent is believed to take on the value caused by the action being the

time step after the one in which the action occurred.

pickup(B) causes in hand(B). (3.10)

holds(in hand(B), I + 1)← occurs(pickup(B), I). (3.11)

• Translating executability conditions: once again, actions must become part of the ‘occurs’ predi-

cate, and fluents must become part of the ‘holds’ predicate. The format of executability conditions

in ASP is as follows: an action does not occur in a particular time step if certain conditions are met

in that time step.

impossible place(B,L) if empty(L− 1). (3.12)

¬occurs(place(B,L), I)← holds(empty(L− 1), I). (3.13)
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3.6.2 Combining two architectures

Another dynamic domain, the robot assistant (RA) domain, was used to show that the VQA and planning

architectures could be combined. The planning knowledge base had the same layout as the TB domain’s

planning knowledge base, and the elements included are listed below.

• Sorts: location, person, robot, status, and agent. person and robot are subsorts of agent.

• Ground instances: Example instances of the location sort are bobs office, sarahs office, kitchen,

library. Example instances of the person sort are bob, sarah, sally. The Turtlebot is the only

instance of the robot sort and it is referred to as rob1. The instances of the status sort are delivered

and undelivered.

• Statics: workplace(person,location), which indicated which room a person was most likely to be

found in, and next to(location,location), which encoded the layout of the office world by describing

which rooms were next to one another.

• Fluents: loc(agent,location) means that the agent (a person or a robot) is currently at location.

message status(message id, person, status) means that the message for person is currently either

delivered or undelivered, depending on which status is used.

• Actions: move(robot,location) and deliver(robot,message id,person).

The above list does not describe the entire domain, as the domain description was split between the clas-

sification knowledge base and the planning knowledge base. The planning knowledge base dealt with

navigation and message delivery, while the classification knowledge base encoded information about

objects and the states of rooms. The classification domain was static, i.e., objects were not reasoned

about dynamically and were assumed to stay in place during the time that the Turtlebot was perform-

ing its task. This was considered a reasonable assumption as the robot only took a few minutes to

deliver a message and return to the sender, and its beliefs about object locations would be reset when

it was given a new goal, so the movement of objects between delivery tasks would not confuse the

robot. Objects were represented by sorts that divided them into separate categories, such as object,

ground object, tabletop object, kitchen object, kitchen tabletop object, etc. These sorts were hierarchi-

cal. For example: kitchen tabletop object and kitchen ground object were subsorts of kitchen object;

kitchen tabletop object and library tabletop object were subsorts of tabletop object; and tabletop object

and ground object were subsorts of object. The objects included in the domain are listed below.

• Kitchen tabletop objects: plate one, plate two, cup one, cup two.

• Kitchen ground objects: table, chair one, chair two, chair three, chair four.
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• Library tabletop objects: book one, book two, book three.

• Library ground objects: bookshelf one, bookshelf two, bookshelf three, coffee table.

• Sarah’s office tabletop objects: sarahs computer.

• Sarah’s office ground objects: sarahs desk, sarahs chair.

• The offices of Sally, John and Bob had the same objects as Sarah’s office.

The combination of two architectures allowed a wide range of functionality to be achieved - the simulated

Turtlebot could move around an office world, deliver messages, make observations, and answer questions

about observed scenes, supplying the humans with any information their coworkers wanted them to

receive or that they wanted to know about the state of the office rooms. The order in which the robot

accomplished its tasks was as follows:

• Receive instructions from sender (intended message and recipient must be provided) - this is en-

coded as the goal in the planing knowledge base

• Search office world until message recipient has been found

• Deliver message

• Observe surroundings

• Navigate back to sender

• Answer questions about the room the recipient was in

The robot had to reason about its environment, which can be seen in Figure 3.4, in three separate ways: it

had to navigate through the rooms and maintain an estimate of its position; it had to recognise individuals

and deliver messages to the correct recipients; and it had to observe the objects in its vicinity and reason

about the state of its environment (e.g. is a room tidy or messy). Domain knowledge was encoded to help

it achieve all three tasks.

The planning knowledge base included the static next to(location,location) to describe which rooms

were next to one another, allowing the robot to come up with efficient plans for navigation. An exe-

cutability condition, shown below, ensured that the robot did not try to move directly from one room to

another unless they were next door.

¬occurs(move(R,L1), I) ← holds(loc(R,L2), I), ¬next to(L1, L2). (3.14)

The planning knowledge base also included axioms that ensured that any plan the robot came up with

would involve achieving its goal (which was to deliver a message). When it first set out on this task the
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robot would not know what room the recipient of the message was in, so it would make an assumption

and then go to the room that it thought the recipient was in. If it did not observe the recipient of the

message there it would include this fact in its history H and replan. Eventually it would find the correct

room. An executability condition, shown below, ensured that the robot would not deliver a message

unless it had observed the recipient of the message to be in the same room as it.

¬occurs(deliver(R,M,P ), I) ← holds(loc(R,L), I), not holds(loc(P,L), I). (3.15)

Section 4.4 describes how axiom learning was used to update the Turtlebot’s domain knowledge with in-

formation on which rooms certain people were most likely to be in, allowing it to find message recipients

more efficiently.

Finally, the Turtlebot had to observe objects and reason about its surroundings. A separate CNN was

trained for the observation of each object with a training dataset of 500 images taken from the simulated

Turtlebot’s camera, showing various viewpoints through the office world. Labels were manually provided

indicating which objects were visible in each image. During the observation of a room the robot would

take four images, rotating 90 degrees in between each image. If an object was observed in any of the four

images it was considered to be in the room. In order to include as much relevant information as possible,

in addition to the four images taken after the recipient had been found, the robot would take one image

each time it entered a new room. If any object was observed (in these images or in the four images taken

after delivering the message) this information was provided as an input to the classification knowledge

base in the form loc(object,room). Some objects, such as cups and plates in the kitchen, were usually on

top of a high table and therefore out of the robot’s field of view (which was close to the ground). For these

objects defaults were encoded in the classification knowledge base so that if a robot had not observed a

tabletop object to be in another room, it was assumed to be in its usual location (e.g. cups and plates were

usually in the kitchen, books were usually in the library). Ground objects (such as chairs and desks), on

the other hand, had to be observed or the robot would believe them to not be in the room.

As well as reasoning about object locations, the classification knowledge base used the information it

had about which objects were present (or assumed to be present) in a room to determine the state of that

room. The room was classified into multiple different categories. It was considered to be untidy if any

object not belonging to the room was detected, e.g. if plate was spotted in the library. It was considered

to have objects missing if any of the objects usually in the room weren’t detected (ground objects) or had

been observed somewhere else (ground or tabletop objects). It was considered cluttered if the number

of objects in the room was above the usual amount (e.g. if the library contained all of the bookshelves,

books and the coffee table, as well as a laptop, the library was cluttered). The room was also categorised

as a particular type based on the prevalent object category within the room. This information might be

important to managers; for example, if a manager often noticed the robot classifying the library as a

‘kitchen’ because it frequently observed cups and plates there, it might indicate to the manager that there
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were not enough chairs in the kitchen and employees had resorted to sitting in the library during lunch

breaks. All of these classification decisions were made with state constraint axioms. Some examples are

given below.

tidy(L) ← not mess(L). (3.16)

¬tidy(L) ← not tidy(L). (3.17)

mess(L) ← loc(O,L), ¬designated area(O,L). (3.18)

object missing(L) ← ¬loc(O,L), designated area(O,L). (3.19)

¬object missing(L) ← not object missing(L). (3.20)

The first three axioms state that a room is tidy if it is not known to be messy, that it is not tidy if it is

not known to be tidy, and that it is messy if it contains an object which who’s designated area is not that

room. The last two axioms state that a room has an object is missing if any object that has that room as its

designated area is not there, and that no objects are missing if the room is not known to have any objects

missing.

The robot would use these classifications to answer questions about the recipient’s location such as

‘what type of room was it’, ‘was the room tidy’, ‘was the room cluttered’, etc. The robot would also

report on the name of the room, which was expected to match the type but wouldn’t always, for example

if Sarah left a lot of books in her office the robot might tell the manager that ‘Sarah’s office’ was classified

as a library. The objects detected by the robot were used to provide explanations for the classification

decision made. See Section 4.3 for examples.

3.7 Methodology: Training

The following components of the architecture need to be trained: the CNNs, the RNN, the decision

tree, and any knowledge bases for which axiom learning is being applied. These components should be

trained separately, so that sensible outputs from one fully-trained component can then be used to train the

next. This requires less training data than end-to-end training [63]. The training methodology assumes

that the target architecture has a planning knowledge base and that axiom learning is being applied to

all knowledge bases. If this is not the case simply ignore the methodology sections that are irrelevant

to the target architecture. Training should proceed in the following order: train the CNNs with images

and feature labels; train the classification knowledge base and decision tree with the features output

by the trained CNNs and classification labels; train the question answering knowledge base and RNN

with classification outputs and answer labels (the answer labels should bes correct with respect to the

ground truth classification, not the output from the classification components). Finally, once the VQA
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architecture has been fully trained its outputs should be incorporated into the planning architecture. Test

the planning architecture for a pre-determined number of iterations and train the planning knowledge

base with any unexpected action outcomes.

3.7.1 Training the CNNs

The VQA architecture should have a separate CNN for each feature. They do not need to be trained in

any particular order, and can be trained in parallel or sequentially. Each CNN should be trained on all of

the images in the training dataset, with the ground truth values for that CNN’s feature used as labels. If,

at the end of training, any CNN’s are still performing badly, the user may need to rethink their choice of

features.

3.7.2 Training the classification components

Once the CNNs have been completely trained, the training data should be run through them once again to

get outputs that are similar to what the CNNs will predict during testing. The feature combinations output

by the CNNs are then used as inputs for the classification components. These feature combinations should

first be passed through the classification knowledge base. Following the axiom learning methodology in

Section 3.5.1, any inputs that the knowledge base cannot classify correctly should be used to learn new

axioms and update the knowledge base. Once this has been done the feature combinations should be

passed through the updated knowledge base. Any that still cannot be classified should be used as training

data for the decision tree. If the knowledge base is complete (i.e. all relevant axioms were found during

manual creation and/or axiom learning), it is possible that it will be able to classify all the inputs. Even

if this is the case it is still not a good idea to leave the decision tree untrained, as there may be some

feature combinations in the testing dataset that were not seen during training and cannot be classified

by the knowledge base. If the classification knowledge base was able to classify all inputs, then the

entire training set of feature combinations should be used to train the decision tree, although only the

predictions generated by the knowledge base will be used in the next step. If testing shows the decision

tree performing much better with training data than with testing data, then pruning may be used to prevent

overfitting, but this was not necessary for the example domains presented in this thesis.

3.7.3 Training the question answering components

The question answering (QA) training dataset consists of classifications made by the classification knowl-

edge base or decision tree, paired with questions. Every image is paired with every question to get all

possible combinations, so the size of the QA training dataset will be equal to the size of the classification

training dataset multiplied by the number of questions. The labels used for learning should answer the
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questions correctly with respect to the ground truth classification, not the classification predictions made

by the architecture. Training should proceed in a similar way to the classification components: axiom

learning is first performed to update the knowledge base; any questions that still cannot be answered by

the knowledge base are used to train the RNN; and if the knowledge base can answer all questions then

the whole dataset should be used to train the RNN, although the knowledge base’s answers will be the

preferred output. Training the RNN for multiple epochs is recommended in order to achieve the best

possible performance. A good target to prevent overfitting is 5% accuracy increase after each epoch; if

this is no longer being achieved, training should stop.

3.7.4 Axiom learning for the planning knowledge base

The planning architecture needs to be used so that unexpected action outcomes can be observed before

axiom learning commences. The number of testing iterations (with one iteration being an attempt to

achieve a goal) is defined by the user, as are the goals and initial conditions of each trial. In general, more

complex domains in which the agent can perform numerous actions will require more iterations in order

to uncover all of the gaps in the agent’s domain knowledge. Thirty iterations is reasonable for simple

domains with only a few possible actions. During testing, the agent should observe the outcomes of

every action it performs. If an unexpected outcome is observed the transition (a state, action, state tuple)

should be saved as training data. Axiom learning can then proceed with this list of transitions. The axiom

learning methodology presented in Section 3.5.1 can only learn state constraints and statics. In the TB

domain state constraint axioms were added to the planning knowledge base to indicate which conditions

made particular box placements unstable. The example given below is a learned axiom that states that

the red box (which is medium sized) would be an unstable placement on top of any tower which has the

green box (which is small) as its base (tower level one is the base of the tower).

holds(unstable placement(red box), I) ← holds(loc(green box, 1), I). (3.21)

In order to make use of this information during planning, the causal law for box placement was designed

such that the box’s location only becomes the next tower level if the placement is not unstable. This

axiom prevents the robot from designing action plans that include unstable block combinations.

holds(loc(Box, Location), I + 1) ← ¬holds(unstable placement(Box), I + 1),

occurs(place(Box, Location), I).
(3.22)

If learning executability conditions would be more useful for the target domain then the methodology

presented in [38] should be used.

Once every component has been trained the architecture will be fully functional and can be used

for the target domain. It is hypothesised that the modular designs of these architectures mean that they

can be successfully combined, and that the use of deep learning for processing numerical inputs such
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as images (arrays of pixel numbers), and knowledge bases and decision trees to provide interpretable

outputs, will make it easy to tune parameters and achieve high performance even with limited training

data. Experimental results supporting these hypotheses are presented in the next chapter.
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4. Experimental setup and results

This section describes the results of experimental evaluation of the proposed architecture. The following

hypotheses are considered:

1. H1: the proposed architecture provides intuitive explanations for classification decisions;

2. H2: the proposed architecture outperforms architectures based on just deep networks when the size

of the training dataset is small;

3. H3: the proposed architecture can be successfully combined with a planning architecture.

4. H4: axiom learning can be used to automatically add relevant axioms to incomplete knowledge

bases, and this improves performance;

These hypotheses were evaluated in the context of the SS, TS, TB and RA domains introduced in Section

3.1. Execution traces are provided in support of hypothesis H1, and quantitative results comparing the

proposed VQA architecture with a deep learning baseline are provided in support of H2. Demonstration

of the functionality of the RA domain, which combines the VQA and planning architectures, is shown in

support of H3. Comparison of both VQA and planning performance with incomplete knowledge bases

before and after axiom learning has been applied are provided in support of H4.

For the VQA domains (SS and TS) accuracy (the percentage of questions that were answered cor-

rectly) was used as the measure of performance. The amount of data used for training varied from 100

images to 4000, and results are reported separately for each training dataset size. In each domain 500

unseen images were used for testing and each image was combined with each testing question. This

process was repeated thirty times and the average of these trials reported in Section 4.2.

The measures for the RA domain’s planning performance were how long the Turtlebot took to deliver

a message and return to the sender, how much computation time was needed, how many times replanning

needed to occur, and how many actions were completed before the task was complete. The average VQA

performance was also calculated, and execution traces showing questions and answers were recorded.

In the planning domain (TB) the agent’s goal was to build towers as high as possible, and tower height

(measured in the number of blocks) and planning time (measured in seconds) were used as performance

measures, with any collapsed tower being considered to have a height of zero.

The following sections describe the experimental results. Section 4.1 describes execution traces that

demonstrate the proposed VQA architecture’s explanation capabilities. Section 4.2 provides quantitative

results comparing the proposed architecture with a deep learning baseline. Section 4.3 presents execution
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traces to demonstrate VQA and planning abilities in the RA architecture, to show that both functionalities

can be achieved simultaneously. Finally, Section 4.4 analyses performance of both VQA and planning

architectures before and after axiom learning.

4.1 Execution traces

The proposed architecture generates explanations with a three-paragraph format. The first paragraph

states what features were extracted from the image, the second states which classifier was used (knowl-

edge base or decision tree), and the third states what classification was made and the reasons why (the

reasons are parsed from either the axiom or the branches used to make the classification). The following

execution traces illustrate the reasoning, explanation generation, and question answering capabilities of

the proposed architecture.

Figure 4.1: Images used as inputs for the execution traces in Section 4.1.

[Question Answering in SS domain]

The input image for this example is that shown on the left in Figure 4.1.

• The question posed: “what is making this structure unstable?”

• The architecture’s answer: “nothing; it is stable.”

• The explanation:

“The CNNs extracted the following features from this image: the structure has five blocks, the

structure has a narrow base, the structure is standing straight, and all of the blocks are in place.
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This example was classified by the knowledge base.

This example was classified as stable because the following conditions were met: the structure is

standing straight and all of the blocks are in place.”

[Question Answering in TS domain]

The input image for this example is that shown on the right in Figure 4.1.

• The question posed: “what is the sign’s message?”

• The architecture’s answer: “uneven surfaces ahead.”

• The explanation:

“The CNNs extracted the following features from the image: the sign is triangle shaped, the sign

is white, the sign has a red border, the sign has no background image, the sign has a bumpy road

symbol, the sign has no secondary symbol, the sign has no cross.

This example was classified by the decision tree.

Branches used to classify this example as a bumpy road sign:

Is main colour white? - true”

Note that although the sign being white is not enough information to determine whether any sign

from the entire dataset is a bumpy road sign or not, the advantage of using the decision tree for only the

subset of data that cannot be classified by the knowledge base is that in that subset less information is

required for classification. In this experiment, bumpy road signs were the only white signs that were not

classified by the knowledge base.

These results show that the proposed architecture is able to generate sensible explanations for its

classification decisions, supporting hypothesis H1.

4.2 Comparison to baseline architecture

Thirty experimental trials were run to evaluate hypotheses H1 and H2. Specifically, the size of the

training dataset was varied and the classification and question answering accuracy measured. A CNN-

RNN architecture was used as the baseline for comparing the proposed architecture to one that only used

deep networks. This is the most common base network used in state of the art architectures, although the

state of the art version usually has additional features. Because these additional features could be applied

to the proposed architecture as easily as to the baseline, comparison to just the baseline architecture was

considered sufficient to show that the proposed architecture improves on state of the art performance for

the type of domain that it was designed for (a specific area of knowledge with limited training data). The
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Figure 4.2: Classification accuracy as a function of number of training samples in SS domain.

Figure 4.3: VQA accuracy as a function of number of training samples in SS domain.

41



Figure 4.4: Classification accuracy as a function of number of training samples in TS domain.

Figure 4.5: VQA accuracy as a function of number of training samples in TS domain.
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results are summarized in Figures 4.2 and 4.3 for the SS domain, and in Figures 4.4 and 4.5 for the TS

domain.

Interestingly, in the relatively simple SS domain, which has only two classes (stable and unstable),

the baseline’s classification performance was higher than that of the proposed architecture (see Figure

4.2). This is because this classification task was simple enough for the deep network to learn, even with

limited training data. For the more complex task of VQA, however, there was insufficient training data

for the data-hungry baseline architecture, and it performed poorly in both the SS and TS domains (see

Figures 4.3 and 4.5). The proposed architecture performed well for VQA because only a subset of the

questions in the dataset were answered by the RNN (the questions paired with images that were classified

by the decision tree), which restricted the RNN’s search space and allowed it to learn sufficiently even

from limited training data.

The statistical significance of the observed VQA performance was calculated by running paired two-

tailed t-tests. It was observed that the VQA performance of the proposed architecture was significantly

better than that of the baseline architecture for all the dataset sizes tested. These results support hypothesis

H2.

To further explore the observed results, a ‘confidence value’ was obtained from the logits layer of

each CNN used to extract a feature from the input image. For each CNN, the confidence value was the

largest probability assigned to any of the possible values of the corresponding feature, i.e., it was the

probability assigned to the most likely value of the feature. These confidence values were considered

to be a measure of the network’s confidence in the corresponding features being a good representation

of the image. If the confidence value for any feature was low (below 50%), the image features were

only used to revise the decision tree (during training), or were processed using the decision tree (during

testing). It was hypothesized that this approach would improve the accuracy of classification and question

answering, but it did not make any significant difference in the experimental trials.

4.3 Architecture combination

In the RA domain the VQA and planning architectures were combined to create an implementation that

had both functionalities. The simulated Turtlebot, equipped with classification, question answering and

planning knowledge bases, was able to navigate through an office building, locate the intended recipient

of a message, deliver the message, detect and reason about objects in its surroundings, and answer ques-

tions about the rooms it had visited. Average results from 30 trials showed VQA performance (after the

VQA components of the combined architecture had been trained on 500 images) to be 82%, and planning

performance is discussed in detail in Section 4.4. The capabilities of the combined architecture are shown

in the following two execution traces. The first used the original planning architecture, while the second

used a planning architecture that had been updated through axiom learning (more details in the following
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Figure 4.6: The images taken by the simulated Turtlebot after delivering a message in Bob’s office.

section).

Figure 4.6 shows the images used for classification and question answering in the first execution

trace. The robot’s goal was to deliver a message from Sarah to Bob, and then return to Sarah to answer

questions about the state of Bob’s location. The robot’s initial location was Sarah’s office. The robot

came up with a plan to move to the kitchen, deliver the message to Bob there, and then return to Sarah’s

office. However, when it moved to the kitchen it observed that Bob was not there, so it replanned to move

to the library, deliver its message, and then return to Sarah’s office via the kitchen. Again, the Turtlebot

did not observe Bob in his expected location (the library), so it had to replan a second time. This time the

robot’s plan was to move to Bob’s office, deliver its message, and then move back through the library and

kitchen to Sarah’s office. The third plan was successful, and after finding Bob in his office and delivering

its message, the Turtlebot examined Bob’s office by rotating and taking the four pictures seen in Figure

4.6. Having returned to Sarah’s office, the robot had the following exchange:

Sarah’s question: “is Bob’s current location cluttered?”
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Figure 4.7: The images taken by the simulated Turtlebot after delivering a message in Sally’s office.

Answer: “No.”

Explanation:

“Bob was found in Bob’s office.

The objects detected were Bob’s chair, Bob’s desk and Bob’s computer.

The room was classified as uncluttered because it usually has three objects and three objects were de-

tected.”

It is interesting to note that though the bookcases in the library are visible through the doorway in

one of the Turtlebot’s images, it does not detect the bookcases as objects. This is because the Turtlebot’s

depth camera has coloured them dark blue to indicate that they are far away, and the CNNs for object

detection have only been trained to detect close by objects as the rooms in the domain are quite small.

Figure 4.7 shows the images used for classification and question answering in the second execution

trace. The robot’s goal was to deliver a message from John to Sally, and then return to John to answer

questions about the state of Sally’s location. The robot’s initial location was the kitchen. The robot
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Figure 4.8: Classification performance in the stability domain before and after axiom learning.

came up with a plan to move to Sally’s office, deliver the message and return to the kitchen. This plan

was successful, and after finding Sally in her office and delivering the message the robot took images to

examine the objects in the room. After returning to the kitchen it had the following exchange:

John’s question: “is Sally’s current location messy?”

Answer: “Yes.”

Explanation:

“Sally was found in Sally’s office.

The objects detected were Sally’s chair, Sally’s desk, Sally’s computer, chair one, and cup one.

The room was classified as messy because chair one belongs in the kitchen and cup one belongs in the

kitchen.”

In this case the robot did not actually detect all the objects correctly. There was also a plate from the

kitchen on Sally’s desk, but it was too flat for the robot to be able to see it. Despite not detecting all of

the objects the robot answered the question correctly.

These results support hypothesis H3.

4.4 Axiom learning

In complex domains it can be difficult to include all the relevant rules in a knowledge base when creating

it by hand. In these domains the best approach is to add all the obvious rules to the knowledge base by

hand, and then use axiom learning to add more complex rules that the user may have missed, resulting in

a complete knowledge base that gives high performance.
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Figure 4.9: VQA performance in the stability domain before and after axiom learning.

Figure 4.10: Classification performance in the traffic domain before and after axiom learning.
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Figure 4.11: VQA performance in the traffic domain before and after axiom learning.

The SS and TS domains were too simple for axiom learning to make a difference, but the advantage

of axiom learning in a complex domain could be seen by removing some of the axioms, thus simulating a

complex domain where it was difficult for the user to find all the relevant axioms. In both these domains

axiom learning was applied to the classification knowledge base after some of the classification axioms

had been removed. Figures 4.8, 4.9, 4.10, and 4.11 show classification and VQA performance in the sta-

bility and traffic domains. Performance was tested before and after axiom learning, with ‘Original KB’

referring to the knowledge base before axiom learning had been performed, and ‘Learned KB’ referring

to the knowledge base after the learned axioms had been added. These figures show the averaged results

of ten trials. In each trial, one quarter of the classification axioms in the knowledge base were randomly

selected to be removed, thus simulating a complex domain in which the human designer could not find

all the relevant axioms. This handicapped knowledge base is what is refered to in the figures as ‘Original

KB’. The statistical significance of the observed classification and VQA performance was calculated by

running paired two-tailed t-tests. It was observed that performance before axiom learning was signifi-

cantly better than performance after axiom learning. An example of axiom learning and generalisation

from the stability domain is given below.

The two automatically learned axioms

structure(stable)← num blocks(3),¬structure(narrow base), structure(lean). (4.1)

and

structure(stable)← num blocks(3),¬structure(narrow base),¬structure(lean). (4.2)
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generalise to

structure(stable)← num blocks(3),¬structure(narrow base). (4.3)

Axiom learning Tower height (boxes) Planning time (seconds)

Before 2.5 155

After 3.6 124

Table 4.1: TB domain planning performance (averages of 30 trials) before and after axiom learning.

The complex and dynamic TB domain was used to test axiom learning for planning knowledge bases.

The results can be seen in Table 4.1. Before axiom learning was used to learn stability rules the robot

took a longer time to plan and came up with plans that resulted in shorter towers than after. These results

indicate that after adding automatically learned rules to the knowledge base the robot was able to make

more sensible planning decisions, coming up with stable box combinations that resulted in higher towers

and fewer collapses. Restricting the number of block combinations that could be attempted also reduced

planning time.

Some examples of the axioms it learned are:

holds(unstable placement(red box), I) ← holds(loc(green box, 1), I). (4.4)

holds(unstable placement(blue box), I) ← holds(loc(yellow box, 1), I). (4.5)

The first axiom states that an unstable placement would be the result of placing the red box when the

green box is at tower level one (which is the base of the tower). The second axiom states that an unstable

placement would be the result of placing the blue box when the yellow box is at the base of the tower.

These axioms are sensible because they prohibit placing a block on top of a tower with a smaller block

as its base, which would usually be unstable. With enough of these rules added to the knowledge base

the robot will never come up with an action plan that results in a commonly unstable box combination.

The RA domain was also used to evaluate the effects of axiom learning. Its planning task was to

find particular individuals and deliver messages to them. There were four employees in its simulated

office world, and each one spent most of their time in their assigned workplace (their office). Axiom

learning was used in this domain to learn statics that encode the location of each employee’s workplace,

e.g. workplace(john,johns office). These were included in the knowledge base to allow the simulated

Turtlebot to more accurately predict where each person would be, and thus waste less time searching for

them when trying to deliver a message. A default axiom was included to make use of the information:

holds(loc(P,L), 0) ← not default negated(P,L), workplace(P,L). (4.6)

49



This axiom means that the Turtlebot will assume that a person’s initial location is their workplace unless

the default has been negated. There are two conditions that can cause the default to be negated:

default negated(P,L) ← obs(loc(P,L2), true, I), L! = L2. (4.7)

default negated(P,L) ← obs(loc(P,L), false, I). (4.8)

The first of these two axioms means that the default assumption should be ignored if the person in

question is observed to be in a location other than their workplace, and the second axiom means that the

default assumption should be ignored if the workplace is observed to not contain the person.

Axiom learning Plans Actions Execution time Planning time Planning time

(per trial) (per trial) (seconds per trial) (seconds per trial) (seconds per plan)

Before 3.5 8 273 17.23 5.08

After 1 5 184 3.88 3.88

Table 4.2: RA domain planning performance (averages of 30 trials) before and after axiom learning.

Thirty paired trials were run. For each paired trial the same goal and initial conditions were used to

test planning performance before and after axiom learning had occurred. The results can be viewed in Ta-

ble 4.2. Axiom learning was able to generate a static encoding the workplace of every employee included

in the domain. Before axiom learning the Turtlebot often looked in the wrong location and had to replan,

resulting in an average of 3.5 plans calculated per trial. After axiom learning the Turtlebot always went

straight to the message recipient’s workplace so no replanning was needed. This also resulted in fewer

actions being executed per trial, as before axiom learning unnecessary actions would be executed while

the Turtlebot searched rooms the message recipient wasn’t in. Axiom learning improved both execution

and planning time. Planning time was calculated as both per trial (this value was improved through the

reduction in replanning) and per individual plan (this value was improved because the Turtlebot could

assume each worker was in their office and thus didn’t need to consider every possibility).

In each of the RA experiments the recipient of the message was in their office, which meant the

Turtlebot was able to complete its message delivery tasks much more efficiently when it knew where

each person’s workplace was. This was considered a reasonable representation of employee behaviour as

though the office workers would go to the kitchen during their lunch breaks and would take trips to the

bathroom, during working (i.e. not on break) hours they would almost always be in their offices, and it

was assumed that coworkers would mainly require the robot’s message delivery services during working

hours.

These results show that axiom learning can be used to automatically add any missed axioms to a

knowledge base, improving performance. This supports hypothesis H4.
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Conclusions

Deep learning is an important machine learning technique that can be used for a huge variety of appli-

cations. Currently, deep learning algorithms work well when enough training data is provided, but per-

formance for complex tasks falls dramatically when the dataset size shrinks to a few thousand samples

or less. The internal functioning of neural networks is difficult to understand, making deep learning an

uninterpretable technique that some people are reluctant to trust. A new architecture has been designed to

break the VQA task down into parts and apply deep learning only to the sub-tasks where they were really

needed (image processing, answering questions for unexpected feature combinations). Non-monotonic

logic and decision tree induction were used to provide interpretable outputs for classification and ques-

tion answering. This resulted in an architecture that had minimal training data requirements, interpretable

outputs, and high performance. Its modular design made it easy to combine with other architectures. Ex-

perimental results showed that the proposed architecture outperformed an architecture based on just deep

networks when the size of the training dataset was small, and the proposed architecture provided intuitive

explanations for classification decisions. Experiments with planning and axiom learning verified that in

complex domains using axiom learning to add to a user-created knowledge base improved performance,

and that the proposed architecture could be successfully combined with a planning architecture.

This architecture opens up multiple directions for future work. It would be interesting to explore the

use of this architecture in other domains with datasets of increasing size and complexity (in terms of

the features and the questions). It would also be useful to include different deep network structures in

the architecture, using the explanatory answers to further understand the internal representation of these

networks. The current axiom learning methodology applies to state constraints and statics, and an alter-

native methodology for executability conditions was referred to, but in future work a new methodology

could be developed for causal laws. An additional improvement that could be made is to use online

learning - in which testing data is used to iteratively update the training dataset - to improve the proposed

architecture’s performance over time.
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