
Non-monotonic Logical Reasoning and Deep Learning for
Explainable VisualQuestion Answering
Heather Riley

Electrical and Computer Engineering
The University of Auckland, New Zealand

hril230@aucklanduni.ac.nz

Mohan Sridharan
School of Computer Science

University of Birmingham, United Kingdom
m.sridharan@bham.ac.uk

ABSTRACT
State of the art visual question answering (VQA) methods rely heav-
ily on deep network architectures. These methods require a large
labeled dataset for training, which is not available in many domains.
Also, it is difficult to explain the working of deep networks learned
from such datasets. Towards addressing these limitations, this pa-
per describes an architecture inspired by research in cognitive
systems that integrates commonsense logical reasoning with deep
learning algorithms. In the context of answering explanatory ques-
tions about scenes and the underlying classification problems, the
architecture uses deep networks for processing images and for gen-
erating answers to queries. Between these deep networks, it embeds
components for non-monotonic logical reasoning with incomplete
commonsense domain knowledge and for decision tree induction.
Experimental results show that this architecture outperforms an
architecture based only on deep networks when the training dataset
is small, provides comparable performance on larger datasets, and
provides intuitive answers to explanatory questions.

CCS CONCEPTS
•Computingmethodologies→Nonmonotonic, default reasoning
and belief revision; Logic programming and answer set programming;
Scene understanding; Neural networks;

KEYWORDS
Non-monotonic logical reasoning, deep networks, explainable vi-
sual query answering

ACM Reference Format:
Heather Riley and Mohan Sridharan. 2018. Non-monotonic Logical Rea-
soning and Deep Learning for Explainable Visual Question Answering. In
6th International Conference on Human-Agent Interaction (HAI ’18), Decem-
ber 15–18, 2018, Southampton, United Kingdom. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3284432.3284456

1 INTRODUCTION
Sophisticated algorithms developed for fundamental computer vi-
sion problems such as face recognition, gesture recognition, and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HAI ’18, December 15–18, 2018, Southampton, United Kingdom
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5953-5/18/12. . . $15.00
https://doi.org/10.1145/3284432.3284456

obstacle avoidance, are increasingly being used in critical appli-
cation domains such as healthcare and autonomous navigation.
Consider an autonomous car driving on a busy road. Any error
made by the car’s computational system, e.g., in recognizing traf-
fic signs, can result in serious accidents and decrease the level of
trust of humans in autonomous cars. In general, it is likely that
humans interacting with an autonomous system designed for com-
plex domains will want to know why and how the system arrived
at particular conclusions; this “explainability” will be especially
important as humans build trust in the operation of such systems.
Understanding the operation of these systems will also help human
designers improve the performance of these systems. Despite con-
siderable progress in recent years, explainable learning and decision
making in autonomous systems continue to be open problems.

Visual question answering (VQA) is an example of a complex task
that inherently requires explainable learning and reasoning. Given
an image of a scene and a natural language question about the image
as inputs, the desired output is an accurate answer to the question.
In this paper, we focus on answering explanatory questions about
images of input scenes and an underlying classification problem. For
instance, a system recognizing traffic signs may be posed questions
such as “what does this traffic sign mean?”, or “how should a driver
respond to this sign?”, and a system estimating the stability of
configurations of blocks on a tabletop, may be asked “why is this
structure unstable?” or “what would make the structure stable?”.
We assume that these questions have been transcribed into text,
and that answers to questions will also be provided as text.

Deep networks (arguably) represent the state of the art for VQA,
and for many perception and control problems in which their per-
formance often rivals that of human experts. However, these deep
networks are computationally expensive to train, and require a large
number of labeled training samples to learn an accurate mapping
between input and output in complex domains. It is not always pos-
sible to satisfy these requirements, especially in dynamic domains
where the desired mapping may change over time. Furthermore,
the use of deep networks makes it more challenging to explain the
observed performance of the corresponding system. Research in
cognitive systems, on the other hand, indicates that explainable
reasoning can be achieved while solving complex problems by rea-
soning with commonsense (prior) knowledge and learning from
experience. Inspired by this research, the architecture described in
this paper exploits the complementary strengths of reasoning with
commonsense domain knowledge, inductive reasoning, and deep
learning, to address the limitations of deep network architectures.
It has the following components:

• Convolutional Neural Networks (CNNs) extract concise vi-
sual features from input images of scenes of interest.

https://doi.org/10.1145/3284432.3284456
https://doi.org/10.1145/3284432.3284456

• Non-monotonic logical reasoning with the extracted features
and incomplete, commonsense domain knowledge is used
for classification and for answering explanatory questions.
• Feature vectors not classified by commonsense reasoning are
used to train a decision tree classifier whose output, along
with the visual features, train a Recurrent Neural Network
(RNN) to answer explanatory questions.

We illustrate and evaluate our architecture in the context of two
domains: (i) estimating the stability of configurations of simulated
blocks on a tabletop; and (ii) recognizing different traffic signs in
a benchmark dataset of images. Experimental results show that
our architecture outperforms an architecture based only on deep
networks when the training dataset is small, provides comparable
performance on larger datasets, and provides intuitive explanations
for both the classification output and answers to queries.

2 RELATEDWORK
Current state of the art approaches for VQA are based on deep
learning [9, 14–16, 27]. These approaches train neural network ar-
chitectures with different configurations of layers (e.g., convolution,
pooling layers) on labeled data, to capture the mapping between the
input(s) (e.g., images, verbal input) and the desired output(s) (e.g.,
class labels or explanations). Although deep networks have demon-
strated the ability to model complex non-linear mappings between
inputs and outputs for different pattern recognition tasks, they
are computationally expensive and require large training datasets.
They also make it rather difficult to understand the internal rep-
resentations, identify changes that will improve the performance
of the deep networks, or to transfer knowledge acquired in one
domain to other related domains. It is also challenging to accurately
measure performance or identify dataset bias, e.g., deep networks
have been shown to answer questions about images based on sim-
ilar question-answer (training) samples without reasoning about
the images [8, 21, 27]. There is on-going research to address each
of these problems, e.g., to actively reduce bias in training data or
reduce the amount of training data to prevent overfitting [1, 7].
However, enabling efficient learning and accurate explanations
with deep network architectures continues to be an open problem.

2.1 Explainability
Researchers have developed models to understand the internal rea-
soning of deep neural networks. One recent approach uses the
gradient in the last convolutional layer of a convolutional neural
network (CNN) to compute the relative contribution (or weight)
of each neuron to the classification decision made [18]. Although
this approach helps explore the internal representation, the rela-
tive weights of neurons do not provide an intuitive explanation
of the CNN’s operation. Researchers have also developed general
approaches for understanding the predictions of any given ma-
chine learning algorithm [10, 17]. They obtain an explanation by
analyzing a learned model or by constructing a simpler model that
captures the essence of the learned model. A recent approach for
VQA introduced a captioning model to generate an image’s descrip-
tion, reasoned with the caption and the question to answer the
question, and used the caption to explain the answer [11]. However,

these algorithms do not support the use of domain knowledge to
speed up learning or to provide intuitive explanations.

2.2 Reducing Training Data Requirements
The data required to train a deep network can be reduced by focus-
ing on data relevant to the task at hand. One recent approach for
VQA uses a Long Short-Term Memory (LSTM) network to map the
question to an encoded vector, extracts a feature map from the input
image using a CNN, and uses a neural network to compute weights
for feature vectors from image regions based on their relevance to
the question. A stacked attention network is trained to map the
weighted feature vectors and question vector to the answer [25].
Researchers have also developed a co-attentional model that uses
information from the question to identify relevant image regions,
and uses information from the image to identify relevant words
in the question [13]. In other work, active learning has been used
to reduce the amount of annotations required in the dataset [12].
A model trained on an initial training set is revised iteratively by
expanding the training set with image-question pairs involving
concepts it is uncertain about, with an “oracle” (human annotater)
providing the answers. Although this approach has been shown to
reduce annotation time by ≈ 20%, the database needs to include just
as many images and questions as in the absence of this approach.

2.3 Reasoning with Knowledge
In computer vision, robotics and other applications, learning from
data can often be made more efficient by reasoning with prior
knowledge about the domain. In the context of VQA, reasoning
with domain knowledge (about scene objects) has been used to an-
swer common questions about scene objects, significantly expand-
ing the range of natural language questions that can be answered
without making the training data requirements impractical [24].
However, this approach does not reduce the amount of data re-
quired to train the corresponding deep network. Another approach
for VQA directly used a knowledge base to answer questions and
did not consider the corresponding images as inputs [5]. One re-
cent promising approach for VQA used physics engines and prior
knowledge (of domain objects) to realistically simulate and explore
different situations. These simulations guided the training of deep
network models that anticipate action outcomes and answer ques-
tions about hypothetical situations [23].

In summary, deep networks are the state of the art for VQA (and
many other tasks), but it is difficult to provide efficient learning
and intuitive explanations with such networks. To address these
problems, we use reasoning with commonsense knowledge and
inductive learning to guide deep learning, as described below.

3 ARCHITECTURE
Figure 1 is an overview of our architecture that provides answers to
explanatory questions about scenes and an underlying classification
problem. The architecture is designed to minimize training effort
(i.e., training time and number of training samples) and improve
accuracy—it may be viewed as having three components.

(1) CNN-based feature extractors are trained and used to map
any given image to a vector of image features.

Image

Question

CNNs

Classification
knowledge

base

Input
classified? No Decision tree

Classification

Yes

VQA knowledge
base

RNN

Classification

AnswerExplanation

Explanation
generator

Answer set

Branches
used

Inputs:

Outputs:

Answer set

Feature vector

Figure 1: Overview of the components of the proposed architecture that combines the principles of deep learning, non-
monotonic reasoning, and decision-tree induction.

(2) A component that chooses between two methods to classify
the vector of image features. First, Answer Set Prolog (ASP) is
used to reason with incomplete domain knowledge in order
to assign a class label and explain this decision. If ASP-based
reasoning is unable to classify the image, a decision tree
classifier is trained and used to map the feature vector to a
class label and explain the classification.

(3) A component to answer explanatory questions about the
scene. If ASP-based reasoning is used for classification, it is
also used to answer these questions. If the decision tree is
used for classification, an RNN is trained to map the decision
tree’s output, the image features, and the question, to the
corresponding answer.

This architecture exploits the complementary strengths of deep
learning, non-monotonic logical reasoning, and decision tree in-
duction. Reasoning with commonsense knowledge guides learning,
e.g., the RNN is trained on (and processes) input data that cannot
be processed using existing knowledge. The CNNs can be replaced
by other image feature extractors. Also, although the CNNs and
RNN are trained in an initial phase in this paper, these models
can be revised over time if needed. The overall architecture and
methodology are generic and can be applied to other domains. We
hypothesize that embedding logical reasoning and the decision tree
classifier between the CNNs and RNN makes the decisions more
interpretable, and makes learning more time and sample efficient.
We illustrate and evaluate the architecture’s components and the
methodology using the following two running examples:

(1) Structure Stability (SS): this domain has different struc-
tures, i.e., different arrangements of simulated blocks of dif-
ferent colors and sizes on a tabletop, e.g., see Figure 2. We
generated 2500 such images using a physics-based simulator.
The relevant features of the domain include the number of

Figure 2: Illustrative images of structures of blocks of differ-
ent colors and sizes from physics-based simulator.

Figure 3: Illustrative images of traffic signs from the Bel-
giumTS dataset [22].

blocks, whether the structure is on a lean, whether the struc-
ture has a narrow base, and whether any block is displaced
(placed so far to the side) such that it is not well balanced on
top of the block below. The objective is to classify structures
as being stable or unstable, and to answer explanatory ques-
tions such as “why is this structure unstable?” and “what
needs to happen to make the structure stable?”.

(2) Traffic Sign (TS): this domain focuses on recognizing traffic
signs from images—see Figure 3. We used the BelgiumTS
benchmark dataset [22] with≈ 7000 real-world images (total)
of 62 different traffic signs. This domain’s features include
the primary symbol/sign in the middle, secondary symbol,
shape (e.g., circle, hexagon), color (main, border), background

Figure 4: Illustrative example of the CNN architecture used
for feature extraction in our architecture. CNNs for individ-
ual features may have have different numbers of convolu-
tional and pooling layers.

image etc. The objective is to classify the traffic signs and
to answer explanatory questions such as “what is the sign’s
message?” and “how should the driver respond to this sign?”.

3.1 CNN for Feature Extraction
The first component of the architecture maps input images to con-
cise features representing the objects of interest. For our example
domains (SS and TS), semi-automated annotationwas used to obtain
the relevant features from images of different scenes. The features
for each domain were selected based on domain expertise.

To minimize the need for training data, and to simplify the train-
ing of CNNs, we (i) train a separate CNN for each of the desired
features to be extracted from an image; and (ii) start with a ba-
sic CNN architecture and incrementally make it more complex as
needed. The number of CNNs is thus equal to the number of fea-
tures to be extracted from each image, and the structure of the CNN
trained for each feature may be different. The basic CNN architec-
ture has an input layer, a convolutional layer, a pooling layer, a
dense layer, a dropout layer, and a logit layer. Additional convo-
lutional and pooling layers are added until the feature extraction
accuracy converges (or exceeds a threshold). For more complex fea-
tures, we also explore fine-tuning previously trained CNN models
instead of starting from scratch. One CNN architecture learned for
feature extraction in our example domains has three convolutional
layers and pooling layers, as shown in Figure 4. In this work, these
CNNs were trained in an initial phase and then used for testing.

3.2 Classification with ASP or Decision Tree
Once the feature vector has been extracted from an image, it needs
to be assigned a domain-dependent class label. In our architecture,
we assign this class label using non-monotonic logical reasoning
or a decision tree-based classifier.

ASP-based Inference: ASP, a declarative programming para-
digm, is used to represent and reason with incomplete common-
sense domain knowledge. ASP is based on stable model semantics,
and supports default negation and epistemic disjunction, e.g., un-
like “¬a” that states a is believed to be false, “not a” only implies
a is not believed to be true, and unlike “p ∨ ¬p” in propositional
logic, “p or ¬p” is not tautological. Each literal can thus be true,

false or unknown, i.e., the agent does not have to believe anything
that it is not forced to believe. ASP can represent recursive defi-
nitions, defaults, causal relations, special forms of self-reference,
and language constructs that occur frequently in non-mathematical
domains, and are difficult to express in classical logic formalisms [6].
Also, unlike classical first-order logic, ASP supports non-monotonic
logical reasoning, i.e., it can revise previously held conclusions (or
equivalently reduce the set of inferred consequences) based on new
evidence, aiding in the recovery from errors due to the incomplete
knowledge. Approaches that reason with domain knowledge are
often criticized for requiring considerable prior knowledge, and
for being unwieldy in large, complex domains. However, modern
ASP solvers support efficient reasoning in large knowledge bases,
and are used by an international research community for cognitive
robotics [4, 26] and other applications [3]. Furthermore, existing
work can be used to incrementally and interactively learn (or revise)
such symbolic domain knowledge [20].

An ASP program (Π) has a sorted signature Σ and axioms. The
signature Σ includes sorts, statics, i.e., domain attributes that do not
change over time, and fluents, i.e., domain attributes whose values
can be changed. For instance, in the SS domain, Σ includes sorts
such as block , color , and size , and sorts of the TS domain include
siдn, main_color , other_color , main_symbol , other_symbol etc. Σ
also has the sort step for temporal reasoning. Statics and fluents in
our example domains (SS, TS) include:

num_blocks (struc,num), block_color (block, color), (1)
block_size (block, size)
primary_symbol (siдn,main_symbol)

primary_color (siдn,main_color)
secondary_symbol (siдn,other_symbol)

These relations are described in terms of their arguments’ sorts.
In addition, predicate holds (f luent , step) implies that a particular
fluent holds true at a particular timestep.

The axioms ofΠ encode rules governing domain dynamics. Some
axioms in our example domains (SS, TS) include:

unstable (S) ← block_displaced (S) (2a)
stable (S) ← num_blocks (S, 2), (2b)

¬struc_type (S, lean)
siдn_type (TS,no_parkinд) ← primary_color (TS,blue), (2c)

primary_symbol (TS,blank)

where Statement 2(a) says that any structure with a block that is
displaced significantly is unstable, and Statement 2(b) says that
any pair of blocks that does not have a significant lean is stable.
Statement 2(c) says that a traffic sign that is blue and blank is a
no parking sign. We also encode defaults that hold in all but a few
exceptional circumstances, e.g., “structures with two blocks of the
same size are usually stable”.

The accuracy of the inferences drawn from the encoded knowl-
edge depends on the accuracy and extent of knowledge encoded in
the ASP program, but encoding comprehensive domain knowledge
is difficult. The decision of what (and how much) knowledge to en-
code is made by the designer (i.e., domain expert). Also, in dynamic
domains, Π includes actions with their preconditions and effects; a

history of observations and executed actions is also considered. We
leave the exploration of these capabilities for future work and do
not describe them here; see [6] for more details.

Once the features extracted from an input image are encoded as
the initial state of the domain, the ground literals in an answer set
obtained by solving Π represent the beliefs of an agent associated
with Π. All reasoning (e.g., planning) can be reduced to computing
answer sets of Π [6]. We use the SPARC system [2] to compute
answer set(s) of ASP programs. The relevant literals in the answer
set provide the class label and an explanation for this choice.

Decision Tree Classifier: If ASP-based inference cannot clas-
sify the feature vector extracted from an image, it is classified using
a decision tree classifier learned from such training examples. We
use a standard implementation of a decision tree that uses the Gini
measure to compute information gain and identify the features to
split on at each level of the tree. Since the decision tree’s search
space is quite specific (samples not classified by ASP-based reason-
ing), it does not need to generalize as much as it would have to
if it had to process every training (or test) sample in the dataset.
Also, although overfitting is much less likely, it is still possible;
pruning can then be used to minimize the effects of overfitting.
Figure 5 shows part of a learned decision tree classifier; specific
nodes used to classify a particular example are highlighted. These
“active” nodes can be used to provide an explanation for the class
label assigned to a specific image under consideration.

3.3 Answering Explanatory Questions
The third component of the architecture provides two methods
for answering explanatory questions. The available inputs are the
transcribed question, vector of image features and the classification
output. The human designer provides use pre-determined templates
for questions and their answers, e.g., we use fixed keywords and a
controlled vocabulary. Any given question is transcribed, parsed
and matched with these templates to obtain a relational represen-
tation. Examples of questions in the SS domain include: “is this
structure stable/unstable?”, “ what is making this structure sta-
ble/unstable?”, and “what would need to be changed to make this
structure stable/unstable”. Examples of questions in the TS domain
include: “what sign is this?”, “what is the sign’s message?”, and
“how should the driver respond to this sign?”.

The first method for answering explanatory questions is based
on the understanding that if the feature vector (extracted from the
image under consideration) is classified using ASP-based reasoning,
then there is sufficient knowledge in the ASP knowledge base to
answer explanatory questions about the scene. To support such
question answering, we augment the signature Σ and axioms in sys-
tem description D. For instance, we add sorts such as query_type ,
answer_type , and query, and suitable relations to represent ques-
tions, answers, and and more abstract attributes (e.g., of structures
of blocks, traffic signs etc). We also include axioms such as:

many_blocks (S) ← unstable (S), ¬base (S,narrow), (3)
¬struc_type (S, lean), block_displaced (S)

which implies that if a structure (of blocks) is not on a narrow
base, does not have a significant lean, and does not have blocks
significantly displaced, then any instability is because there are

too many blocks stacked together. We also ensure that a question
does not result in multiple answers that contradict each other. Once
the program Π has been augmented, we can (as before) compute
answer set(s) of Π. For any given question, the answer set(s) are
parsed to extract literals that are used to construct the answers
based on the pre-determined templates.

The second method for providing answers to explanatory ques-
tions is used if the decision tree is used to classify the vector of
image features. ASP-based reasoning’s inability to classify the fea-
ture vector is taken to imply that there is insufficient knowledge
in the ASP program to answer explanatory questions about the
scene. In this case, an LSTM network-based RNN is trained and
used to answer explanatory questions. This RNN takes as input the
feature vector, classification output, and a vector representing the
transcribed and parsed query. The output (provided during training)
is in the form of answers in the predetermined templates. As with
the CNN for feature extraction, the network architecture is built
incrementally during training. We begin with a single hidden layer
and increase complexity until the accuracy exceeds a threshold.
We also provide the option of adding a stack of LSTMs if adding
individual layers does not improve network accuracy significantly.
In our example domains, the RNN constructed to answer explana-
tory questions had as many as 24 hidden layers and uses a softmax
function to provide one of about 50 potential answer types.

4 EXPERIMENTAL SETUP AND RESULTS
In this section, we describe the results of experimentally evaluating
the following hypotheses about the capabilities of our architecture:

(1) H1: the proposed architecture outperforms architectures
based on just deep networks when the size of the training
dataset is small;

(2) H2: the proposed architecture does at least as well as an ar-
chitecture based on deep networks as the size of the training
dataset grows; and

(3) H3: the proposed architecture provides intuitive answers to
explanatory questions about the scene.

These hypotheses were evaluated in the context of the SS and
TS domains introduced in Section 3. We provide execution traces
in support of hypothesis H3, and include quantitative results in
support of H1 and H2. For the quantitative experimental compari-
son, we use accuracy (precision) as the performance measure. The
accuracy of the answers to explanatory questions was evaluated
heuristically by computing whether the answer mentions all image
attributes relevant to the classification problem. This relevance was
established by a human expert, which was the lead author of this
paper for the results reported below.

In the initial setup phase, we used two-thirds of the available data
to train the deep networks and other computational models, using
the remaining one-third for testing. For each image, we randomly
chose from the set of suitable questions. We repeated this process
multiple times and report the average of these trials below.

4.1 Execution Traces
The following execution traces illustrate our architecture’s ability
to reason with commonsense knowledge and learned models to
provide intuitive answers for explanatory questions.

Figure 5: Part of a decision tree constructed for classification. Nodes used to classify a particular example are highlighted.

Figure 6: Images referenced in Execution Example 1 and 2.

Execution Example 1. [Question Answering in SS domain]
Consider a scenario in the SS Domain in which the input (test)
image is that shown on the left in Figure 6.
• The question posed is: “what is making this structure stable?”
• The architecture’s answer: “It has a small number of blocks,
a wide base, and the blocks are well balanced.”
• This answer is based on the following features extracted by
CNNs from the image: (i) three blocks; (ii) wide base; (iii)
standing straight; and (iv) all blocks in place.
• The extracted features were converted to literals. Since ASP-
based inference could not provide a conclusive answer about
stability based on these literals, the example was classified
using the trained decision tree (as being stable)1. Figure 5
shows some of the features used to obtain this class label.
These features are also used to explain the classification
output.
• The decision tree output, image feature vector and question,
were processed by the previously trained RNN to provide
the answer type and the particular answer described above.

1ASP-based inference was able to classify (as being stable) and answer questions about
the image in the center of Figure 6.

Execution Example 2. [Question Answering in TS domain]
Consider a scenario in the TS Domain in which the input (test)
image is that shown on the right in Figure 6.

• The question posed is: “what is the sign’s message?”
• The architecture’s answer: “please yield to cross traffic.”
• As an explanation for this answer, the architecture identifies
that the CNNs extracted the following features of the sign
in the image: (i) it is inverted-triangle shaped; (ii) main color
is white and other (i.e., border) color is red; (iii) it has no
background image; and (iv) it has a blank symbol and no
secondary symbol.
• These features were converted to literals and used in ASP-
based inference. In this case, ASP-based inference classifies
the sign correctly (as “yield sign”).
• The output literals in the corresponding answer set were
inserted into a suitable template to provide the particular
answer described above.

These (and other such) execution traces support hypothesis H3.

4.2 Experimental Results
To quantitatively evaluate hypotheses H1 and H2, we ran experi-
mental trials in which we varied the size of the training dataset. In
these trials, baseline performance was provided by a CNN-RNN ar-
chitecture, with the CNNs processing images to extract and classify
features, and the RNN providing answers to explanatory questions.
The corresponding results are summarized in Figures 7 and 8 for
the SS domain, and in Figures 9 and 10 for the TS domain. We make
some observations based on these figures:

• The performance of the proposed architecture is better than
an architecture based on just deep networks when the size
of the training set is small, especially when we consider the
ability to answer explanatory questions.

Figure 7: Classification accuracy as a function of the number of training samples in the SS domain.

Figure 8: VQA accuracy as a function of the number of training samples in the SS domain.

• The classification accuracy increases with the size of the
training set2. This is especially true if the variability (of
the features) of the domain is limited. For instance, in the
relatively simpler SS domain, the CNN (on its own) performs
better than our (more sophisticated) approach even with
small training sets—see Figure 7.
• VQA performance, on the other hand, does not improve
just by increasing the size of training set, even in simpler
domains, e.g., see Figure 8. This is because VQA performance
also depends on the complexity of the explanatory questions.
For more complex domains, the VQA accuracy does not
really increase significantly just by increasing the size of the
training set, e.g., see Figure 10.

We explored the statistical significance of the observed VQA per-
formance by running paired two-tailed t-tests. We observed that
the VQA performance of the proposed architecture was signifi-
cantly better than that of the baseline architecture; this is more

2We also ran experiments with larger datasets, which we do not report in this paper.

pronounced in the TS domain that is more complex than the SS
domain. Also, although the baseline architecture provides better
classification performance, the difference is (for the most part) not
statistically significant.

To further explore the observed results, we obtained a “confi-
dence value” from the logits layer of each CNN used to extract a
feature from the input image. For each CNN, the confidence value is
the largest probability assigned to any of the possible values of the
corresponding feature, i.e., it is the probability assigned to the most
likely value of the feature. These confidence values are considered
to be a measure of the network’s confidence in the corresponding
features being a good representation of the image. If the confidence
value for any feature was low, the image features were only used to
revise the decision tree (during training), or were processed using
the decision tree (during testing). We hypothesized that this ap-
proach would improve the accuracy of classification and question
answering, but it did not make any significant difference in our ex-
perimental trials. Furthermore, although we do not discuss it here,
we used our architecture on a physical robot collaborating with a

Figure 9: Classification accuracy as a function of number of training samples in TS domain.

Figure 10: VQA accuracy as a function of number of training samples in TS domain.

human to jointly manipulate and describe structures of blocks on a
table, i.e., in scenarios similar to the SS domain.

5 CONCLUSIONS
Visual question answering (VQA) combines challenges in computer
vision, natural language processing, and explainability. In addition
to improving trust in the use of machine learning algorithms in
critical application domains, explainability helps design better al-
gorithms. State of the art algorithms for VQA are based on deep
learning; these are computationally expensive, require large train-
ing datasets, and make it difficult to support explainability. Inspired
by research in cognitive systems, the architecture described in this
paper exploits the complementary strengths of deep learning, non-
monotonic logical reasoning with commonsense knowledge, and
decision tree induction. Experimental results indicate that the pro-
posed architecture outperforms an architecture based on just deep
networks for smaller training datasets, provides comparable perfor-
mance as the dataset grows larger, and provides intuitive answers
to explanatory questions.

The architecture opens up multiple directions of future work.
First, we will explore the use of our architecture in other domains
with datasets of increasing size and complexity (in terms of the
features and the questions). Second, we will explore different deep
network structures in our architecture, using the explanatory an-
swers to further understand the internal representation of these
networks. Furthermore, we are interested in combining the VQA
architecture with our cognitive architectures for knowledge repre-
sentation, reasoning and learning [19, 20], thus enabling a robot to
represent, reason, and learn while collaborating with humans in
complex domains.

ACKNOWLEDGMENTS
The authors thank Ales Leonardis for feedback on the architecture
described in this paper. This work was supported in part by the US
Office of Naval Research Science of Autonomy award N00014-17-1-
2434, and the Asian Office of Aerospace Research and Development
award FA2386-16-1-4071.

REFERENCES
[1] A. Agrawal, D. Batra, D. Parikh, and A. Kembhavi. 2017. Don’t Just Assume; Look

and Answer: Overcoming Priors for Visual Question Answering. In International
Conference on Computer Vision and Pattern Recognition. Honolulu, USA.

[2] Evgenii Balai, Michael Gelfond, and Yuanlin Zhang. 2013. Towards Answer Set
Programming with Sorts. In International Conference on Logic Programming and
Nonmonotonic Reasoning. Corunna, Spain.

[3] Esra Erdem, Michael Gelfond, and Nicola Leone. 2016. Applications of Answer
Set Programming. AI Magazine 37, 3 (2016), 53–68.

[4] Esra Erdem and Volkan Patoglu. 2012. Applications of Action Languages to
Cognitive Robotics. In Correct Reasoning. Springer-Verlag.

[5] Ulrich Furbach, Ingo Glöckner, Hermann Helbig, and Björn Pelzer. 2010. Logic-
Based Question Answering. KI - Künstliche Intelligenz 24 (2010), 51–55.

[6] Michael Gelfond and Yulia Kahl. 2014. Knowledge Representation, Reasoning and
the Design of Intelligent Agents. Cambridge University Press.

[7] Y. Goyal, T. Khot, D. S. Stay, D. Batra, and D. Parikh. 2017. Making the V in VQA
Matter: Elevating the Role of Image Understanding in Visual Question Answering.
In International Conference on Computer Vision and Pattern Recognition. Honolulu,
USA, 6325–6334.

[8] A. Jabri, A. Joulin, and L. van der Maaten. 2016. Revisiting Visual Question
Answering Baselines. In European Conference on Computer Vision. Amsterdam.

[9] Aiwen Jiang, Fang Wang, Fatih Porikli, and Yi Li. 2015. Compositional Memory
for Visual Question Answering. Technical Report. Available at: https://arxiv.org/
abs/1511.05676.

[10] Pang Wei Koh and Percy Liang. 2017. Understanding Black-box Predictions via
Influence Functions. In International Conference on Machine Learning (ICML).
Sydney, Australia, 1885–1894.

[11] Qing Li, Jianlong Fu, Dongfei Yu, Tao Mei, and Jiebo Luo. 2018. Tell-and-Answer:
Towards Explainable Visual Question Answering using Attributes and Captions.
Technical Report. Available at: https://arxiv.org/abs/1801.09041.

[12] T. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D.
Ramanan, C. Zitnick, and P. Dollar. 2014. Microsoft COCO: Common Objects in
Context. In European Conference on Computer Vision.

[13] Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh. 2016. Hierarchical
Question-Image Co-Attention for Visual Question Answering. In Advances in
Neural Information Processing Systems. Barcelona, Spain.

[14] Mateusz Malinowski, Marcus Rohrbach, and Mario Fritz. 2017. Ask Your Neurons:
A Deep Learning Approach to Visual Question Answering. International Journal
of Computer Vision 125 (2017), 110–135. Issue 1-3.

[15] Issey Masuda, Santiago Pascual de la Puente, and Xavier Giro i Nieto. 2016. Open-
Ended Visual Question-Answering. In International Conference on Computer
Vision and Pattern Recognition. Las Vegas, USA.

[16] Supriya Pandhre and Shagun Sodhani. 2017. Survey of Recent Advances in Visual
Question Answering. Technical Report. Available at: https://arxiv.org/abs/1709.
08203.

[17] Marco Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Why Should I Trust
You? Explaining the Predictions of Any Classifier. In ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD). San Francisco, USA,
1135–1144.

[18] R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. 2017.
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Local-
ization. In International Conference on Computer Vision. Venice, Italy, 618–626.

[19] Mohan Sridharan, Michael Gelfond, Shiqi Zhang, and Jeremy Wyatt. 2018. REBA:
A Refinement-Based Architecture for Knowledge Representation and Reasoning in
Robotics. Technical Report. Availble at: http://arxiv.org/abs/1508.03891.

[20] Mohan Sridharan and Ben Meadows. 2018. Knowledge Representation and
Interactive Learning of Domain Knowledge for Human-Robot Collaboration. In
International Conference on Advances in Cognitive Systems. Stanford, USA.

[21] Damien Teney and Anton van den Hengel. 2016. Zero-Shot Visual Question
Answering. Technical Report. Available at: https://arxiv.org/abs/1611.05546.

[22] Radu Timofte, Markus Mathias, Rodrigo Benenson, and Luc Van Gool. 2013.
Traffic Sign Recognition - How far are we from the Solution?. In International
Joint Conference on Neural Networks (IJCNN). Dallas, USA, 1–8.

[23] Misha Wagner, Hector Basevi, Rakshith Shetty, Wenbin Li, Mateusz Malinowski,
Mario Fritz, and Ales Leonardis. 2018. Answering VisualWhat-If Questions: From
Actions to Predicted Scene Descriptions. In Visual Learning and Embodied Agents
in Simulation Environments (VLEASE) Workshop at ECCV. Munich, Germany.
Available on arXiv: https://arxiv.org/abs/1809.03707.

[24] Peng Wang, Qi Wu, Chunhua Shen, Anton van den Hengel, and Anthony R. Dick.
2017. Explicit Knowledge-based Reasoning for Visual Question Answering. In
International Joint Conference on Artificial Intelligence. Melbourne, Australia.

[25] Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, and Alexander J. Smola. 2016.
Stacked Attention Networks for Image Question Answering. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA, 21–29.

[26] Shiqi Zhang, Mohan Sridharan, and JeremyWyatt. 2015. Mixed Logical Inference
and Probabilistic Planning for Robots in Unreliable Worlds. IEEE Transactions on
Robotics 31, 3 (2015), 699–713.

[27] Ted Zhang, Dengxin Dai, Tinne Tuytelaars, Marie-Francine Moens, and Luc Van
Gool. 2017. Speech-Based Visual Question Answering. Technical Report. Available
at: https://arxiv.org/abs/1705.00464.

https://arxiv.org/abs/1511.05676
https://arxiv.org/abs/1511.05676
https://arxiv.org/abs/1801.09041
https://arxiv.org/abs/1709.08203
https://arxiv.org/abs/1709.08203
http://arxiv.org/abs/1508.03891
https://arxiv.org/abs/1611.05546
https://arxiv.org/abs/1809.03707
https://arxiv.org/abs/1705.00464

	Abstract
	1 Introduction
	2 Related work
	2.1 Explainability
	2.2 Reducing Training Data Requirements
	2.3 Reasoning with Knowledge

	3 Architecture
	3.1 CNN for Feature Extraction
	3.2 Classification with ASP or Decision Tree
	3.3 Answering Explanatory Questions

	4 Experimental Setup and Results
	4.1 Execution Traces
	4.2 Experimental Results

	5 Conclusions
	References

