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ABSTRACT

Real-world domains characterized by partial observability and non-
determinism frequently make it difficult for a robot to operate with-
out any human feedback. However, human participants are unlikely
to have the time and expertise to provide elaborate and accurate
feedback. The deployment of mobile robots to interact with hu-
mans in dynamic domains hence requires that the robot learn from
multimodal sensory cues and high-level natural-language interac-
tions with human participants. This paper describes a novel frame-
work for robots to incrementally learn multimodal models com-
posed of visual and verbal vocabularies to describe domain objects.
The visual vocabulary consists of learned probabilistic models of
object properties such as color, shape and size. Probabilistic graph-
ical models and lexical tools are applied on human verbal cues to
populate the verbal vocabulary with object property labels and cat-
egory labels that specify the relative importance of objects. The
robot also learns association models that enable the description of
visual observations with words allowing for more natural human
robot interaction. Furthermore, the robot uses the multimodal mod-
els to identify novel objects and augment object descriptions by
posing natural language queries for human feedback.

Categories and Subject Descriptors

I.2.9 [Artificial Intelligence]: Robotics

General Terms

Algorithms, Experimentation

Keywords

Robotics::Intelligence for human-robot interaction, Robotics:: Ma-
chine learning for robotics

1. INTRODUCTION
Enabling robust human-robot interaction (HRI) in dynamic do-

mains is an open research problem [13, 29]. Although sophisticated
sensory input processing algorithms have enabled the use of mobile
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robots in many application domains [6, 15, 23], robots still lack the
ability to robustly sense the environment and interact with human
participants in domains characterized by partial observability, non-
deterministic action outcomes and unforeseen changes. The sen-
sory cues (e.g., vision and speech) are sensitive to environmental
factors (e.g., illumination and background noise) and the informa-
tion extracted by sensory input processing algorithms is unreliable.
In addition, the lack of time and expertise frequently makes it in-
feasible for humans to provide elaborate and accurate feedback.
The robot hence needs to judiciously acquire and utilize context-
dependent high-level verbal cues from human participants. Robust
HRI in dynamic domains hence poses formidable challenges re-
lated to adaptive sensory processing, contextual information under-
standing and learning from human cues.

This paper describes a framework for robust HRI that enables a
robot to use multimodal sensory cues to incrementally learn object
models, categorize objects and acquire human inputs as needed.
Specifically, the framework enables the robot to learn multimodal
models of real-world objects based on visual and verbal vocabu-
laries. The robot processes images to incrementally learn a vocab-
ulary of object properties that is used to represent domain objects.
The robot also analyzes verbal human inputs describing specific as-
pects of the scene to learn a verbal vocabulary to describe domain
objects. Learned associations between the visual and verbal vocab-
ularies enable the robot to provide natural descriptions of subse-
quent visual inputs and acquire human feedback as needed. This
paper hence makes the following key contributions:

• A probabilistic bootstrap learning algorithm enables the robot
to incrementally learn a visual vocabulary of object proper-
ties such as color, shape and size.

• Probabilistic graphical models and lexical tools are used to
learn a verbal vocabulary of labels that represent object prop-
erties and relative importance of the objects.

• An association is learned between the visual and verbal vo-
cabularies to enable the robot to map visual properties to
words, and resolve identified ambiguities by posing natural
queries for human feedback.

All algorithms are evaluated on a robot interacting with a human
to describe objects in a tabletop scenario. The remainder of the
paper is organized as follows. Section 2 summarizes related work,
while Section 3 describes the proposed multimodal learning frame-
work. Experimental results are discussed in Section 4, followed by
conclusions in Section 5.

2. RELATEDWORK
Sophisticated sensory input processing and decision-making al-

gorithms have enabled the deployment of robots and agents to in-
teract with humans in many application domains [15, 24, 27]. For



instance, the HUMAINE project [27] seeks to develop an integrated
framework for emotion-oriented computing and describe the emo-
tional responses in human-machine interaction. Pineau et al. [24]
developed a hierarchy of partially observable Markov decision pro-
cesses (POMDPs) for behavior control on a robot nursing assistant
at a hospital. Hoey et al. [15] also used a POMDP hierarchy to de-
velop a vision-based monitoring and prompting system for people
with dementia engaged in hand-washing. However, the hierarchy
underlying these systems had to be manually specified.
There has been considerable work on cognitive architectures [2,

9, 20, 23] that build computational models to study (and under-
stand) human-level reasoning, and to enable knowledge acquisition
and reasoning on virtual agents and mobile robots. Large research
consortia are focusing on cognitive HRI [8, 9], where informa-
tion obtained from different sensory cues (e.g., vision and speech)
are bound together based on predetermined rules. However, many
of these schemes are computationally expensive, require manual
encoding of a significant amount of domain knowledge, and lack
proper schemes for inference when dealing with information asso-
ciated with varying levels of uncertainty.
Many HRI algorithms have focused on enabling robots to op-

erate autonomously based on sensory inputs [5, 11], or extensive
manual training and domain knowledge [3, 14]. Since dynamic
domains make it difficult for a human observer to provide elabo-
rate feedback, researchers are enabling robots to acquire and use
limited human input based on need and availability [26]. How-
ever, these methods do not model the unreliability of human in-
puts and require elaborate knowledge of the task and domain, lim-
iting their use to simple simulated domains or specific real-world
tasks. There has also been considerable work on integrating mul-
timodal cues within an appropriate architecture for HRI. For in-
stance, Perzanowski et al. [23] modeled human-level communi-
cation to integrate gesture recognition and speech understanding
for multimodal HRI. More recently, Kennedy et al. [17] integrated
computational cognitive models, spatial representations and sen-
sory cues (gestures and speech) for human-robot collaboration in
a reconnaissance task, while Aboutalib and Veloso [1] used multi-
ple visual and action cues for object recognition. However, adap-
tive sensory processing, speech understanding and learning from
human cues continue to be challenges for robust HRI. Our frame-
work seeks to address these challenges by enables a robot to learn
multimodal associations between sensory cues, building rich object
(and domain) descriptions that enable high-level object classifica-
tion and natural-language interactions.

3. PROPOSED FRAMEWORK
This section describes the proposed framework that learns ob-

ject descriptions from multimodal sensory cues, as shown in Fig-
ure 1. Section 3.2 describes the probabilistic bootstrap learning al-
gorithm for incrementally populating the visual vocabulary, while
Section 3.3 describes the algorithm based on graphical models and
lexical tools to learn a verbal vocabulary of labels for object prop-
erties. Section 3.4 describes the algorithm for learning associations
between these vocabularies and identifying situations where human
input is necessary. Furthermore, we illustrate the use of the as-
sociations to learn a high-level classifier that predicts the relative
importance of scene objects. We begin with a description of the
experimental scenario.

3.1 Tabletop Scenario
The algorithms are illustrated in a scenario where a human and a

robot observe and describe simple tabletop objects. The scenario,
though simplistic, presents the challenges we seek to address, and

Figure 1: Overview of the multimodal learning framework.

enables us to isolate and analyze the effect of individual factors.
The proposed algorithms are applicable to more complex domains.
Figures 2(a)–2(d) show examples of the candidate objects, which
are characterized by properties such as color, shape and size.

The robot learns incrementally and simultaneously from the sen-
sory cues that consist of images from a color camera and verbal
cues from a human observer. Section 3.2 describes the probabilis-
tic bootstrap learning algorithm that enables the robot to incremen-
tally learn a visual vocabulary of relevant object properties such
as color, shape and size. Regions of interest (ROIs) in subsequent
images result in probability distributions over the property (class)
labels. A human participant observing the scene in Figure 2(b) may
provide a verbal input of the form: “the small green circle is not

typical”. As described in Section 3.3, graphical models and lexi-
cal tools are used to process the text corresponding to this input to
extract candidate property labels (e.g., small, green and circle) and
category labels (e.g., not standard). Finally, Section 3.4 describes
an algorithm to learn associations between the verbal and visual
vocabularies, enabling the robot to provide natural-language labels
to subsequent sensory cues. In addition, feature vectors consist-
ing of probability distributions over visual and verbal vocabularies
(i.e., class labels) are used to learn a mapping to object category
labels. In this paper, objects are characterized by three properties:
color, shape and size; and two categories: normal, i.e., typical, and
suspicious, i.e., needs investigation. For ease of explanation, the
description assumes that the robot first learns the vocabularies and
then classifies test objects—learning can however be done continu-
ously. To make it easier to establish correspondence between mul-
timodal cues, we also (currently) assume that objects are viewed
sequentially during learning.

3.2 Visual features
This section describes the use of visual cues to learn the visual

vocabulary composed of object property models.

3.2.1 Visual Property Descriptions

To build a visual vocabulary to describe objects, the robot needs
an approach to learn models of object properties from images. Con-
sider an image where the salient regions of interest (ROIs) corre-
sponding to objects have been extracted, and consider a single ROI.
Each ROI pixelm is a point in a three-dimensional color space, i.e.,
a vector 〈m1, m2, m3〉 of values along the color channels (e.g.,
RGB). In this paper, the color property of an object is modeled as
a distribution of the corresponding image pixels in the RGB color
space. A disjunctive representation is used to model color distribu-
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Figure 2: Images of the tabletop scenario and sample objects.

tions as a Gaussian mixture model (GMM) [4] or a 3D histogram:

p(m) ∼
K

X

i=1

wiN (µi,Σi) or ≡
hist(b1, b2, b3)

hist
(1)

where the color distribution is modeled as the weighted sum of K

Gaussians or a 3D histogram in color space. The parameters of
the GMM, i.e., wi, µi, Σi and K, are computed by Expectation-
Maximization [4] on the image pixels being considered. To build a
3D histogram, the range of pixels values along the three channels
are grouped into bins, and (b1, b2, b3) are the bin indices corre-
sponding to the color values m = (m1, m2, m3). The histogram
is normalized to obtain a probability distribution. The disjunctive
representation provides a good trade-off between ease of represen-
tation and computational efficiency. A GMM or a histogram can be
learned from one or more images (of the same object) and repre-
sents an entry in the visual vocabulary.
The shape property seeks to capture the external contour of the

object in the ROI. The pixels corresponding to the boundary of the
object in the ROI are therefore extracted and the contour is mod-
eled using the seven Hu invariant moments [9, 16]. These moments
{smi, i ∈ [1, 7]} are robust to changes in image scale, rotation,
translation and reflection, e.g., the first moment (sm1) is similar to
the moment of inertia around the ROI’s centroid and the seventh
moment is skew invariant. Each unique shape description repre-
sents an entry in the visual vocabulary, which can be used to model
different shapes.
Finally, the size property measures the relative size of the object

in the image. This is represented by computing the number of pix-
els within the ROI under consideration and dividing it by the total
number of pixels in the image, creating a unique size description
entry in the visual vocabulary.

3.2.2 Bootstrap Learning and Matching

Given the visual feature descriptions described above, this sec-
tion describes the bootstrap learning approach for autonomously
and incrementally learning unique models of visual properties to
populate the visual vocabulary.
Consider the incremental learning of color-based entries in the

visual vocabulary. For ease of explanation, assume that N unique
entries have been learned for color distribution-based descriptions,
i.e., there are N color property classes: Ci; i ∈ [1, N ]. Let the
robot now process the ROI in a new image. As described in Sec-
tion 3.2.1, Equation 1 is used to learn a model pnew(m) of the color
distribution in the ROI. The robot compares this learned color dis-
tribution model with the existing N unique color description mod-
els. For the GMM, this comparison measures the degree of overlap
between pnew(m) and pj(m), j ∈ [1, N ]. For histogram models,
the distance between the new distribution and the existing distribu-

tions can be measured using the Jensen-Shannon measure:

JS(a,b) =
KL(a,m) + KL(b,m)

2
(2)

KL(a,b) =
X

i

(ai · ln
ai

bi

), m =
a + b

2

where a and b are the distributions to be compared and KL(a,m)
is the KL-divergence measure between distributions. This mea-
sure is robust to sudden spikes in the distributions [28]. If the new
distribution is a close match with one of the existing color prop-
erty descriptions, it is merged with the existing description using
GMM-merging or histogram-merging techniques [28]. If a close
match is not found, a new color property class created, i.e., a new
entry is created in the visual vocabulary.

Next, assume that M shape property descriptions: Shj , j ∈
[1, M ] have been learned. The shape description corresponding to
the ROI extracted in a new image smi,new; i ∈ [1, 7] is compared
with the existing M shape descriptions using a distance measure
in the seven-dimensional space of moments—Equation 2. A new
shape property class is created, i.e., a new entry is created in the vi-
sual vocabulary, if the observed shape is not a close match with any
of the existing descriptions. Given that the ROI-size just measures
the area of the image covered by the ROI, new size descriptions
are created if the observed ROI size is significantly (> 1.5 times)
larger or smaller than L existing size models (Szj ; j ∈ [1, L]). All
size values within a range are merged together.

Assume that the robot has learned models forN ,M , andL color,
shape and size property classes in its visual vocabulary, using the
bootstrap learning approach. Any object is now described using the

vocabulary entries by matching the property distributions in an im-
age with the learned property models to obtain a feature vector that
describes objects as a probability distribution over the vocabulary.

Consider the color distribution ptest extracted from a ROI in
the test image. The similarity between this distribution and the
learned color property models is computed as the degree of over-
lap with the existing GMMs or the JS distance to the existing his-
tograms (Equation 2). This measure is used to obtain a probability
distribution over the color-based entries in the vocabulary, i.e., a
N -dimensional vector of match probabilities: 〈mpc1 , . . . , mpcN

〉.
Similar match probabilities are obtained by measuring the simi-
larity between the shape property description smi,test; i ∈ [1, 7]
of the test image ROI with the M learned shape property mod-
els. The shape-based comparison provides an M -dimensional vec-
tor: 〈mpsh1

, . . . , mpshM
〉. To obtain match probabilities based on

ROI-size, the test image ROI size is compared on a linear scale be-
tween the largest and smallest learned size property models. The
net visual feature vector for the test object is a combination of the
individual match probability vectors over the visual vocabulary:

mpc1 , . . . , mpcN
, mpsh1

, . . . , mpshM
, mpsz1

, . . . , mpszL
(3)

The robot learns associations between this feature vector and the



verbal feature vectors, as described in Section 3.4. The robot also
uses the entropy in the match probability to identify ambiguous test
objects, e.g., for the color-based match probability vector:

H(C) = −
N

X

i=1

mpci
log(mpci

) (4)

If the match between color properties of the object in the test im-
age ROI and the learned color property models is ambiguous, this
entropy measure will have a large value. Similar entropy measures
are computed based on shape and size, and the maximum of these
entropies is used to determine the need for human inputs.

3.3 Verbal Features
As stated in Section 3.1, the verbal cues consist of transcripts of

human descriptions of image ROIs, i.e., sentences of the form: “the
small red triangle looks quite standard”. The robot is also given
the dictionary of object category labels: normal and suspicious.
The verbal vocabulary for describing objects is the set of labels for
object properties such as color, shape and size, i.e., a dictionary of
labels such as red, green, circle, triangle and large. This vocab-
ulary is learned by isolating words or phrases in the verbal inputs
which are annotated. Verbal features are then learned by computing
the semantic interpretation of each of these verbal properties.

3.3.1 Verbal Property Descriptions

Extracting verbal vocabulary from verbal cues involves tagging
individual words or phrases with object properties. The property la-
bels are COL, SIZ, SHA, COM for color, size, shape and comment

where comment refers to the category labels in the text. The tag-
ging is done according to the IOB2 convention [25] where B, I and
O are used to indicate that a word is at the beginning, inside or out-
side a property label. For instance, the three words looks quite nor-
mal that represent the comment property in a sentence, are tagged
B_COM, I_COM, I_COM and all words that do not correspond to
any specific property are tagged O.
In addition to the property tags, Part of Speech tags (POS tags)

of the individual words in the annotated data are generated auto-
matically using the Stanford Log-linear POS Tagger [30] with the
tags belonging to the Penn Treebank tag set [21]. Common POS
tags are noun, adjective, verb, adverb, determiner, which are de-
noted by: NN, JJ, VBZ, RB, DT. Figure 3 illustrates the assignment
of POS and object property tags for a sample sentence.
The property tags and POS tags are used to learn a Conditional

Random Field (CRF) [4, 19, 18] that can tag new annotations with
their verbal property tags. A CRF is a partially directed graph
whose nodes correspond to Y

S

X where Y is a set of target vari-
ables and X is a set of observed variables. The graph is parame-
terized as a set of factors, φ1(D1), ..., φm(Dm) in the same way as
a Markov network. However, rather than encoding the distribution
P (Y,X), the network encodes a conditional distribution as follows:

P (Y|X) =
1

Z(X)
P̃ (Y,X) (5)

P̃ (Y,X) =

m
Y

i=1

φi(Di)

Z(X) =
X

Y

P̃ (Y,X)

The POS tags and words are modeled as the observed variables
(X) and the object property tags SIZ, SHA, COL, COM are the tar-
get variables (Y) used for tagging words in the annotation. The
CRF model is learned using the CRF Toolkit [10]. A small set of
annotated sentences are manually labeled with verbal property tags

and provided as input to the toolkit along with the corresponding
words and POS tags. However, the CRF model bootstraps off of the
available information (similar to the visual vocabulary). As prop-
erty tags are identified in subsequent sentences, they are used as
automatically labeled training data. The candidate verbal tags are
processed using a lexical tool (WordNet[22], see below) to identify
verbal vocabulary entries, i.e., items to be placed in the verbal dic-
tionary. The verbal dictionary will therefore consist of entries (i.e.,
labels) for color, shape and size.

3.3.2 Learning Semantic Interpretations

Given the verbal vocabulary entries, the semantic content of the
words is then extracted using a lexical database to generate verbal
features corresponding to any object. Consider the color property.
As stated above, the verbal vocabulary for color will consist of en-
tries such as red, blue, green, yellow. WordNet [22, 12], is a large
lexical database of English with words grouped into synsets or cog-
nitive synonyms. Each synset expresses a distinct concept and the
words in the synsets are connected through different relationships
such as synonyms, antonyms, hypernyms and hyponyms.

When a word is tagged with an object property, the meaning of
the word is expressed as a semantic distance with the different pos-
sible dictionary values for the property. Color values such as red,
blue and green have the same hypernym chromatic_color and this
is an instance of a is-a relationship where red is a chromatic color.
Once a word is identified as a color property in a new sentence,
the semantic distance between the word and the possible entries for
color in the dictionary are computed and this distribution represents
the color-based verbal feature for this sentence. Similar semantic
distances are computed by matching size and shape property tags
in the sentence with the entries in the size and shape dictionaries
(vocabulary). For instance, given the sentence: “this is a gigantic
object”, a distribution will be obtained over learned size-based vo-
cabulary entries (e.g., small, medium, large), and the best match
is likely to be with large. Figures 4(a)–4(b) show how WordNet
is used to semantically link words in the annotation with synsets
of words in the dictionary. Thus words in the annotated text are
semantically interpreted using WordNet and the distributions over
possible values of color, shape and size are computed. Similar to
Equation 3, a verbal feature vector is generated as a distribution
over verbal dictionary entries. However, unlike the visual features,
a match is also obtained between words in the annotated text with
the given category labels (normal and suspicious), i.e., the ver-
bal feature represents a sentence using a vocabulary composed of
object properties and category labels.

3.4 Algorithm
We propose that combining visual and verbal descriptions of ob-

jects leads to more natural and robust human-robot interaction. As-
sociations are hence learned between visual and verbal vocabular-
ies to describe each object as a joint feature vector. In addition, a
set of feature vectors, along with the category labels, are used to
build a joint model that classifies objects as normal or suspicious.
Algorithm 1 shows the different stages involved in learning and
classification. As stated earlier, learning and classification can oc-
cur simultaneously and continuously after an initial learning phase.

The visual vocabulary is learned as described in Section 3.2 from
images of various objects (lines 2-13 in Algorithm 1). The vo-
cabulary is populated incrementally by learning models of distri-
butions of object properties such as color, shape and size. The
learned property descriptions are matched with existing descrip-
tions. Depending on the degree of match, the learned descriptions
are merged with existing descriptions or new vocabulary entries are



Figure 3: Part of speech and object property tags for words in a sentence.

(a) (b)

Figure 4: Using WordNet to compute semantic distances. The colors red, blue, green and yellow all have the same hypernym

chromatic color and this is an example of a is-a relationship. The adjective large does not have a hypernym but instead has several

synonyms and similar words, a few of which are shown in this figure.

created (line 8). After some vocabulary entries are learned for ob-
ject properties, an object can be characterized as a feature vector,
i.e., a distribution over the learned vocabulary entries—Equation 3.
The verbal vocabulary entries are learned based on the verbal de-

scriptions corresponding to the images used to learn the visual vo-
cabulary (lines 14-18). Some annotated text is generated manually
to train a CRF model (Equation 5) that is used to identify candidate
verbal dictionary items. A lexical tool is used to identify vocabu-
lary entries corresponding to object properties. In addition to the
property tags, the object category tags (corresponding to dictionary
items: normal and suspicious) are also extracted.
Next, an association is learned between visual and verbal fea-

tures (line 19 in Algorithm 1), i.e., the distributions over the visual
vocabulary entries are mapped to the corresponding distributions
over the verbal vocabulary entries. An object is now characterized
using feature representations over visual and verbal vocabularies. If
an annotation for an object has the word red in it, the corresponding
visual feature distribution over the visual vocabulary’s color entries
is associated with the word red. Each entry in the verbal dictionary
corresponding to color words (see Section 3.3.1) is hence mapped
to one or more visual feature distributions, i.e., every property entry
in the verbal dictionary is associated with a set of class distributions
over the visual vocabulary. This visual-verbal association is useful
because different objects with the same property (e.g., color) may
not have identical distributions over the visual classes, e.g., due to
illumination changes. However, different verbal property tags for
the same color are likely to be clustered together, resulting in the
corresponding visual feature distributions being annotated with the
same verbal dictionary label. When the visual features are con-
sidered, the object only has a distribution over the visual property
classes. The actual name of the property and its semantic meaning
are known only when the verbal features are computed.

The feature vectors (considered individually and together) and
category tags (normal and suspicious) are also used to learn a
Support Vector Machine [4] classifier (with radial basis functions)
that classifies subsequent visual and/or verbal features (line 20).

The learned models and associations are used for classification
(lines 21-30). When a new object without a verbal annotation is
seen, its visual features are computed as and mapped to appropri-
ate labels from the verbal dictionaries for each property. This map-
ping is done by computing the distance between the visual feature
distribution for the new object and the distributions associated with
each verbal label, using the JS distance measure (Equation 2). For
instance, the distance between the color-specific entries of the vi-
sual feature (of the test object) and the set of feature distributions
associated with each color red, blue, green, etc. in the verbal space
is computed. The object is then assigned the label of distributions
that are most similar to it. If a good match is not found with any
of existing verbal class (e.g., with Equation 4), human input can be
requested by posing specific queries. Once the verbal label is deter-
mined, the visual and verbal features are used in the joint classifi-
cation model to determine object category labels, which can (once
again) be used to pose natural language queries to solicit human
feedback over “suspicious” objects.

4. EXPERIMENTAL SETUPANDRESULTS
This section describes the experimental setup and results. The

data for the experiments consists of 40 objects in the tabletop sce-
nario described in Section 3. Each input image consists of one
object, resulting in the extraction of a single ROI—images in more
complex scenes will result in multiple ROIs. The 640 × 480 im-
ages are captured by a monocular color camera on a wheeled robot.
The objects are characterized using color, shape and size properties.
The objects used in the experiments had colors that mapped to four



Algorithm 1Multimodal Learning and Inference

1: Learning Scheme:

{Visual Learning}
2: for i = 1 to Nimg do

3: Extract Nsr,i salient regions in image Ii.
4: for j = 1 to Nsr,i do

5: Extract visual properties (color, shape, size) of ROIj .
6: Compute probability distribution of match with existing

property classes.
7: if detectNewObject() then
8: Populate new vocabulary entries and obtain human in-

put if necessary.
9: else

10: Merge with appropriate object property distributions.
11: end if

12: end for

13: end for

{Verbal Learning}
14: Get Nver sentences corresponding to human verbal descrip-

tions.
15: for i = 1 to Nver do

16: Extract verbal property tags and comment tags in STi.
17: Compute distribution over dictionary entries for properties

and comments.
18: end for

{Multimodal mapping}
19: Extract co-occurrence patterns of visual and verbal descrip-

tions of object properties.
20: Learn multimodal models of object properties and categories.

21: Classification/Inference:

22: for i = 1 to Ntest do

23: Extract salient regions from Ii.
24: for j = 1 to N do

25: Extract visual property distributions from ROIj .
26: Compute match probabilities with learned property

classes.
27: Use visual class probability distributions to obtain verbal

class distributions.
28: Classify feature vectors of visual and verbal class distri-

butions to obtain object category labels.
29: Draw attention or acquire human inputs for objects with

ambiguous labels.
30: end for

31: end for

verbal dictionary terms: red, blue, green or yellow—objects had
different shades of these colors. Object shapes (similarly) mapped
to three verbal dictionary terms: rectangle, circle and triangle and
sizes mapped to small, medium or large. As with colors, there were
minor differences between objects that mapped to the same verbal
shape and size. There is typically only one instance of each possi-
ble combination of object property labels (e.g., large, green, circle).
Any object can hence be characterized as a combination of feature
vectors learned independently. This approach simplifies learning
but presents a considerable challenge when novel objects have to
be labeled and classified during evaluation.
Each object is also described by a sentence (human verbal cue)

that provides information about object properties. The sentence
also includes an object category description (normal or suspicious).
These category labels are used for learning the SVM classifier and
serve as ground truth to evaluate the learned classifier.

The following hypotheses were evaluated: (I) visual vocabu-
lary entries and visual features are learned successfully from ob-
jects in images; (II) semantic interpretations of object properties
are learned successfully from verbal cues; (III) the association be-
tween visual and verbal vocabularies results in successful label-
ing of novel visual features; and (IV) multimodal models of object
properties and categories are learned successfully, and used to label
and categorize objects in test images.

All images and sentences in the dataset were considered to eval-
uate hypotheses I and II. Visual property descriptions were ex-
tracted from images as described in Section 3.2.1. New entries
were added to the visual vocabulary for each of the object proper-
ties by bootstrapping off of the available information, as described
in Section 3.2.2. Multiple (20) experimental trials were conducted
by presenting the objects in different sequential order. In each trial,
the robot was able to successfully acquire the different color, shape
and size class models to populate the visual vocabulary—in many
cases, the robot learned a good model of each property class after
observing just one instance of that class. The learned vocabulary
terms were also used to generate visual features for objects, i.e., dis-
tributions over the visual vocabulary entries. Visual features were
learned correctly for an object even if its property labels had never
been observed together, e.g., visual feature was computed for a red
triangle even though the color (red) and shape (triangle) had never
been observed together.

To evaluate hypothesis II, verbal vocabulary entries were learned
from all annotated sentences, as described in Section 3.3. The
CRF model was learned (and incrementally revised) and used with
WordNet to obtain the correct verbal vocabulary entries. Learning
was accomplished successfully when sentences were presented in
different sequential order. In addition, semantically similar cues
were grouped under the same verbal vocabulary entry.

Figure 5: Mapping of visual features to verbal labels for the

object’s color property. The distance is computed between the

distribution over all color classes for the object in the center (a

red circle) and those of the already labeled objects. The closest

match is to the objects with color label red.

To evaluate hypothesis III, the mapping between visual and ver-
bal features was done after learning the individual vocabularies. In
this case, 50% of the available objects were presented sequentially
to populate the vocabularies and generate some visual feature dis-
tributions and the corresponding verbal vocabulary entries. The
remaining 50% of the images were used to generate visual fea-
tures that need verbal property labels. As stated in Algorithm 1, the
visual feature is assigned object property labels by grouping the
labels corresponding to the closest match obtained for each object



Features used Classification accuracy percentage

Visual+ Verbal + Category 97.5

Visual 75

Verbal 72.5

Visual + Verbal 77.5

Table 1: Accuracy results for object category classification. The

results shown are for five-fold cross validation.

property. Figure 5 shows an example of this labeling process using
just the color property. The feature distribution over color classes
for the object under consideration is closest in distance to the group
of objects labeled with color red. Similar performance was ob-
tained over repeated trials. The feature vectors were also used to
identify instances where the test objects did not closely match any
of the existing property labels.
To evaluate hypothesis IV, the visual and verbal features for dif-

ferent objects, along with the verbal category labels, were used to
learn a SVM classifier [7]. The learning and classification was done
on the 40 objects with five-fold cross validation, and results are
summarized in Table 1. In these experiments, certain object prop-
erty combinations were considered to be suspicious in the training
data, e.g., red rectangle and red circle—the classifier’s ability to
accurately detect these combinations was evaluated. The results
show that the category features play an important role in the clas-
sification with the best results obtained when they are included. In
these experiments, the text in the annotation either implies a cate-
gory or negates a category. For instance, the phrase looks standard
has the word standard which indicates it is normal and the phrase
does not look standard is an example of negation, which implies
that the object is suspicious. We believe that more complex struc-
tures in the annotations may make inference and classification more
difficult. Also, the category features provide absolute information,
whereas the visual and verbal features are more complex represen-
tations of the object that are harder to learn. Yet another reason for
the drop in performance when only the visual and verbal features
are considered is that object property labels are learned indepen-
dent of each other. The combinations of property labels (for size,
color and shape) of objects in the test data are not necessarily seen
in the training data. For instance, a small red rectangle seen during
training is not necessarily in the test set. The test set may contain
objects that have one or even two of the same properties but not all
(e.g., large red rectangle, small red circle etc.). The classifier thus
has to learn category labels for property combinations based on the
occurrences of individual property labels. This makes classification
more challenging and is the reason for most of the errors reported
in Table 1. The presence of comment features helps improve clas-
sification performance by explicitly identifying the object property
label combinations that are normal or suspicious. However, we
do observe that combining the visual and verbal features results in
better classification. In addition, learning the individual properties
separately helps provide partial labels for novel objects that share
some properties with the objects seen before, resulting in more spe-
cific queries. Thus, a framework combining visual and verbal cues
substantially improves the robot’s ability to describe, model and
classify domain objects.

5. CONCLUSIONS AND FUTUREWORK
This paper describes a framework for robots to exploit multi-

modal cues to learn rich descriptions of objects in the domain, re-
sulting in more natural human-robot interaction. Images and hu-
man (verbal) descriptions of objects were used to learn visual and

verbal vocabularies of object properties. The learned vocabularies
were then used to generate visual and verbal feature vectors for ob-
jects in the form of probability distributions over the corresponding
vocabulary entries. The learning process is incremental and au-
tonomous, i.e, it allows for new object properties to be identified
and modeled. In addition, associations are learned between the vi-
sual and verbal vocabularies to provide richer object descriptions.
To illustrate the use of these associations, objects characterized by
the multimodal features were also assigned labels corresponding
to one of two categories. A set of (category) labeled multimodal
feature vectors were used to learn a classifier that predicted cate-
gory labels of novel objects. The proposed approach also provides
a mechanism to generate candidate verbal labels corresponding to
novel visual features, which can be used to formulate specific nat-
ural language queries for human input.

Future work will include more complex objects with a richer,
more sophisticated annotation vocabulary. In addition, natural lan-
guage processing algorithms will be developed to formulate queries
using the verbal feature descriptions of objects. Furthermore, corre-
spondence between visual and verbal cues will be learned automat-
ically. The long-term goal is to enable robust and natural human-
robot interaction in complex real-world domains.
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