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Abstract— Mobile robots equipped with multiple sensors are
increasingly being used in specific real-world applications [1],
[2], [3], [4], primarily because of the ready availability of
high-fidelity sensors [5], [6]. A robot equipped with multiple
sensors, however, obtains information about different regions
of the scene, in different formats and with varying levels of
uncertainty. One open challenge to the widespread deployment
of robots is the ability to fully utilize the information obtained
from each sensor in order to operate robustly in dynamic
environments. This paper presents a probabilistic approach
for autonomous multisensor information fusion on a humanoid
robot. The robot exploits the known structure of the environ-
ment to autonomously model the expected performance of the
individual information processing schemes. The learned models
are used to effectively merge the available information. As
a result, the robot is able to localize mobile obstacles in its
environment. The algorithm is fully implemented and tested on
a physical robot platform.

I. INTRODUCTION

The ready availability of high-fidelity sensors at moderate

costs [5], [6] has resulted in the deployment of mobile

robots in specific real-world applications [1], [2], [3], [4], [7].

The widespread deployment of mobile robots equipped with

multiple sensors requires the ability to operate autonomously

in dynamic environments by adapting to environmental

changes. There has been significant research on autonomous

learning from sensory input [2], [4], [8], and processing

management on mobile robots [1], [9]. However, the ability

to autonomously exploit the complementary properties of

the sensors to effectively merge and exploit the available

information, is still lacking. Each sensor mounted on a robot

typically provides information on different regions of the

scene, with varying levels of uncertainty. The visual input

from a color camera, for instance, is a low-cost and high-

bandwidth source of information as compared to the range

input from a laser range finder. Visual input is however

more noisy and the visual information processing algorithms

are typically computationally expensive. The problem is

more pronounced on humanoid robot platforms, where the

sophisticated algorithms for motion control and balance [10],

[11] make it a challenge to efficiently merge the information

obtained from the different sources.

Information fusion on mobile robots has been extensively

researched in a range of applications [2], [12], [13], [14].

However, a major shortcoming of existing methods is that

manually encoded heuristic constraints specify when and

how the information obtained from each sensor is given

precedence. In the DARPA grand challenges, for instance,

the decision-making was primarily based on range and GPS

information, while the visual input was predominantly used

for only close-range obstacle avoidance [2], [4]. Such an

approach that does not utilize all the available information,

is likely to be at a disadvantage in dynamic environments.

This paper advocates a probabilistic approach to effec-

tively merge the information obtained from multiple sensors,

and describes an instance of this approach for the task of

detecting and localizing mobile obstacles in a humanoid

robot’s environment. It makes the following significant con-

tributions: (a) an approach that enables a robot to use the

environmental structure to model and hence predict the per-

formance of algorithms that process the sensory inputs, and

(b) a probabilistic approach that uses the learned models to

robustly combine the information obtained from the different

sources. Furthermore, the robot is able to better exploit

the rich information encoded in color camera images. All

algorithms are fully implemented and tested on a humanoid

robot platform (Aldebaran Naos [15]).

The remainder of the paper is organized as follows. Sec-

tion II describes the test domain and the proposed approach,

while Section III describes the experimental results. Sec-

tion IV provides a brief overview of some related methods,

and the paper concludes with Section V.

II. TEST PLATFORM AND PROPOSED APPROACH

This section first describes the experimental domain cho-

sen to evaluate the proposed approach. This is followed

by a description of the available information sources, the

challenge task and the algorithm that effectively merges the

available information in order to address the challenge task.

A. Test Platform

The humanoid robot platform used in our experiments is

the Aldebaran Nao [15], a 58cm tall robot with 23 degrees of

freedom—five in each arm and leg, two in the head, and one

at the pelvis. The primary sensors are the monocular color

cameras in the forehead and the nose. Only one camera can

be used at a time i.e. stereo capabilities do not exist. Each

camera has a 58o diagonal field of view, and provides images

at a maximum resolution of 640×480—the 320×240 or the

160 × 120 images can be used for faster processing. There

are two ultrasound sensors in the chest, one each on the left

and the right with a 60o field of view. The robot is also



equipped with accelerometers, bump sensors, microphones,

loudspeakers, LEDs and Wi-Fi for communicating with other

robots or an off-board PC. However, all processing for vision,

locomotion, localization and team coordination is performed

in real-time (30Hz) on board the robot, using the x86 AMD

GEODE 500MHz CPU that runs embedded Linux.

A standard application scenario for the Naos is RoboCup,

an international research initiative with the stated goal of

creating, by the year 2050, a team of humanoid robots that

can beat the champion human team in a game of soccer on an

outdoor soccer field [16]. The Standard Platform League [17]

Fig. 1: Images of the Nao [15] and the soccer field.

of RoboCup has a team of humanoid robots (three per team)

playing a competitive game of soccer on a 6m× 4m indoor

soccer field. Figure 1 shows some images of the Nao and

the soccer field. The robot soccer framework is a good test

platform because it presents many of the challenges that need

to be addressed for deploying humanoid robots in the real-

world (e.g. autonomous vision, motion, coordination). At the

same time, the framework provides a moderate amount of

structure that makes the domain tractable to solutions.

B. Proposed Approach

The goal is to exploit the available information and

effectively fuse the information obtained by the individual

sensor processing schemes. The processing schemes under

consideration are:

• Ultrasound (US): each ultrasound sensor provides a read-

ing of object distance within a 60o cone, up to a maximum

distance of ≈ 150cm. The bearing information is limited

to object presence on the left and/or the right.

• Vision–Color (VC): Since many objects in the domain

(robots, goals, field etc) are color-coded, color segmented

image regions are used as a source of information.

• Vision–SIFT (VS): In order to extract maximum informa-

tion from the images, the popular SIFT (Scale Invariant

Feature Transform) algorithm [18] is used to characterize

objects using image gradient features.

The challenge task in this paper is to localize the mobile

obstacles in the environment, i.e. to compute the distance

and bearing of the obstacles relative to the robot—bearing

is the angle with respect to the axis pointing straight ahead.

In the robot soccer domain, the major “obstacles” are the

other robots (opponents and teammates). Collision with other

robots can cause physical damage and provide the opponents

with an advantage (the rules of the game penalize robots that

collide with each other). Teammates are considered obstacles

despite the Wi-Fi communication because the communica-

tion is typically delayed and noisy.

Each robot has a uniform of a specific color—robots in

one team are red while those on the other team are blue.

As seen in Figure 1, the uniform is characterized by four

large regions (head, shoulders, chest) and being able to see

at least three of these regions arranged in a specific pattern

can be used to detect a robot. However, such a pattern

can be seen only from specific viewpoints, and up to a

distance of ≈ 2m. In addition, since the robot uses only one

camera at a time the distance to the object is computed by

analytically comparing the known object size and the size of

the detected pattern (in pixels) in the image. Segmentation

errors can affect the size of the detected uniform pattern

and introduce noise in the computed distances. The bearing

values are based on the offset of the detected pattern from

the image center and are more robust to segmentation errors.

The SIFT algorithm, on the other hand, characterizes objects

(a) (b)

Fig. 2: (a)-(b) Images with some gradient features superimposed.

of interest by image gradient features that are known to be

robust to scale, orientation and illumination changes [18].

Given such feature representations of the target object (in this

case robots), recognition in test images can be achieved up

to a distance of ≈ 4m. Though the bearing can be computed

based on image offsets, the distance cannot be computed

accurately because the gradient features are not arranged in

a unique pattern. Figure 2 shows images with the gradient

features superimposed.

Scheme Distance Bearing
FOV (cm) Accuracy FOV Accuracy

Ultrasound (US) 20 to 150 high 80o low

Vision-Color (VC) 20 to ≈ 200 medium 190o high

Vision-SIFT (VS) 20 to ≈ 400 low 190o high

TABLE I: The field of view (FOV) and accuracy of distance and
bearing computed with the processing schemes. Vision has a larger
FOV because the robot pans its head while moving forward.

Table I shows that the three processing schemes have com-

plementary characteristics. Typically, heuristic constraints are

imposed (manually) on when and how the information from

each of these sources should be used. Instead, we enable

the robot to learn models that can predict the performance

of the individual schemes. Section III describes how the

models of the expected error in each processing scheme,

and the SIFT model of the target objects, can be learned.

Once these models have been learned, the information form

the processing schemes can be merged using the algorithm

summarized in Algorithm 1.

Since the obstacle estimates need to be maintained across

a sequence of frames (time steps), each estimate is associated

with a Kalman filter [19]. The first step is the “time update”



of the Kalman filters (UpdateExistingEstimates(), line

2), which adjusts the existing estimates to account for the

robot’s motion since the previous update. It also removes

estimates that correspond to obstacles that have not been

seen for some time. Each processing scheme is then used

to compute the distances and bearings to the obstacles

(CurrentObstacles(), lines 3–5). The US scheme can only

provide limited bearing information (left, right or both), and

the V S scheme cannot provide distances to obstacles.

Algorithm 1 Multisensor Information Merging

Require: Learned models that predict the error in range

distance and bearing for measurements from each in-

formation source.

Require: Learned SIFT model of the target object (in this

case, robots).

1: repeat

2: UpdateExistingEstimates()
3: {dus, dir} = CurrentObstaclesus()
4: {dc, θc} = CurrentObstaclesvc()
5: {θs} = CurrentObstaclesvs()
6: ResolveCurrentEstimates()
7: MergeWithExistingEstimates()
8: until end of the game

The next step (ResolveCurrentEstimates(), line 6) first

groups the individual distances and bearings from the current

frame—for instance, the distances and bearings obtained

from US are grouped with similar values computed using

V C. In the case of processing schemes that provide partial

information (e.g. V S only provides bearing), grouping is

done based on the available information. This grouping is ac-

complished using the expected errors in the measured values.

For instance, if the difference between the bearing computed

using V C and the bearing computed using V S is more than

the expected error in the individual measurements, they are

not grouped together. This “threshold” can be tuned to detect

obstacles at different resolutions, and more sophisticated data

association can be performed [20] if required. After the

grouping, values within a group are merged to obtain an

estimate for each obstacle in the current frame:
dj =

∑

i

wj
d,id

j
i (1)

θj =
∑

i

wj
θ,iθ

j
i

where wd,i and wθ,i are the weights associated with the dis-

tances and bearings obtained from the ith source (US, V C,

V S). The merged distance and bearing to the jth obstacle in

the current frame (dj and θj) are the weighted averages of

the values from the individual schemes. However, V S cannot

measure distance, and US provides limited bearing:

θj = wθ,us{w
j
θ,vcθ

j
vc + wj

θ,vsθ
j
vs} (2)

wd,vs = 0, wθ,us =

{

−1 if only right US triggers

+1 otherwise

The weights represent the degree of trust associated with

each processing scheme. They are obtained by normalizing

the certainty associated with each scheme:

wi =
piIi

∑

j pjIj

(3)

pd,i ∝ 1/fd,i, pθ,i ∝ 1/fθ,i

f(x) = a0 +

N
∑

k=1

akxk : N ∈ [1, 3], x = d or θ

where I is the indicator function, and pi ∈ [0, 1] is the

certainty associated with a measurement from the ith source.

The certainty depends on the expected error, which in turn

is a function of the measured distance or bearing. It is also

possible to use a joint function of distance and bearing and

learn the associated parameters.

The grouping process used in line 6 is also used to match

the estimates from the current frame with the estimates from

prior frames. The matched estimates are merged and the new

estimates are added during the “measurement-update” of the

Kalman filters (MergeWithExistingEstimates(), line 7).

The prior estimates without matches in the current frame are

retained until they are removed during a subsequent “time

update” (line 2). The measured values can be input to the

Kalman filters without the initial merging (Equation 1), but

the measurements would still need to be matched with the

prior estimates. In addition, using the estimated measurement

errors in the Kalman filter noise models requires manual

tuning and does not provide the desired accuracy.

The experiments below focus on localizing mobile obsta-

cles. However, even when the tasks and processing schemes

are different, learned models for the individual processing

schemes and target object representations can be used to

perform information fusion robustly.

III. EXPERIMENTAL SETUP AND RESULTS

This section describes the approach to learn the models

required in Algorithm 1, and then describes the experiments

conducted to evaluate the proposed approach.

A. Error Models and Visual Representation

The vision system on the humanoid robot follows a

specific sequence: input images are color segmented using a

color map that maps image pixels to numerical color labels.

Contiguous segmented pixels of the same color are grouped

into regions that are used to detect objects based on heuristic

constraints—see [13] for details.

The information obtained from the processing schemes

can be merged autonomously if it were possible to predict

the error in the measurements obtained from the individual

schemes—a measurement with a lower error is assigned a

larger weight in Equation 3. Most mobile robot environments

have a moderate amount of structure, which can be used

to automate tasks that usually require manual supervision.

The robot soccer domain has color-coded objects at known

positions. Based on prior work where this knowledge was

exploited to learn the color map autonomously [8], we enable

the robot to learn the required error models.

Obstacles are placed at fixed positions on the field that

are known to the robot. The robot uses the cues from the



visual processing sequence described above to move through

a sequence of poses (position+orientation) that it can reach

with high accuracy, for instance points on the center line of

the field. At each such pose, the robot compares the actual

distance and bearing values against the measured values

to compute the measurement errors. The error values are

collected and used to train a function approximator that

models the measurement error as a function of the measured

distance (or bearing), and computes p ∈ [0, 1] as the certainty

of the measured values (Equation 3). Polynomial regression

functions are used to approximate these errors (Equation 3),

and the parameters of these functions (degree, coefficients)

are learned using the collected statistics. Similar performance

is achieved using more popular function approximators (e.g.

neural networks [21]) but the polynomial functions require

fewer samples for parameter estimation.

At each pose, the robot also projects on to the image the

known positions of the obstacles within the camera’s field of

view. The image gradient (SIFT) features extracted from the

corresponding image regions are used to generate a training

database of features that represents the robot, and a similar

database is created for the background i.e. the environment.

During testing, a Nearest Neighbor classifier [21] compares

features extracted from the images with those in the training

database in order to classify features and detect obstacles.

B. Experimental Results

Given the learned models, the test hypothesis is that the

combination of the processing schemes (using Algorithm 1)

performs better than the individual processing algorithms.

We are primarily interested in evaluating the detection and

localization accuracy, and the experiments were designed

appropriately. Given the different field of view of the in-

dividual sensors, the test cases were chosen to make the task

as challenging as possible.

Similar to the training phase, the robot moved through a

fixed sequence of poses with the obstacles placed at different

points on the field. In our scenario, a detection accuracy

< 100% reflects the inability of the robot to find the obstacles

(i.e. there are no false positives). The localization errors

were hence computed only when the obstacles were detected

correctly. When an obstacle is detected using the processing

scheme being evaluated, the robot stopped and performed

additional trials, measuring the relative distance and bearing

of the detected obstacles. The corresponding ground truth

values were provided manually, except when the robot is

well-localized and knows the global position of the obstacle

it has detected. The difference between the estimated and

ground truth values provide the error values summarized in

Table II. The first three rows of Table II correspond to the

individual processing schemes: ultrasound (US), vision-color

(VC) and vision-SIFT (VS). The last row corresponds to the

results obtained with our algorithm, i.e. US+VC+VS. Each

entry in the distance-error and bearing-error columns was

computed over ≈ 20 different obstacle positions, with 15
trials at each position.

The entries in the last column (labeled “Accuracy”) in

Table II were computed by capturing several images as the

robot moved through the sequence of poses to compute

the distance and bearing errors. The robot logged ≈ 400
images for each processing scheme, with more than half

the images containing the obstacles. Some of these images

corresponded to situations where the obstacles were outside

the angular and/or distance-based field of view of one or

more schemes. These images were hand-labeled to provide

the ground truth i.e. the presence or absence of obstacles, and

used to compute the detection accuracy of each processing

scheme. For the task of localizing moving obstacles in the

Scheme Error Accuracy(%)
Distance (cm) Bearing (deg)

Ultrasound (US) 6.5 ± 3.6 −− 70

Vision-Color (VC) 17.5 ± 8.7 8.5 ± 4.0 81.5

Vision-Sift (VS) −− 9.1 ± 4.5 85.5

US + V C + V S 9.2 ± 5.1 8.8 ± 4.3 91.5

TABLE II: The distance and bearing errors, and the detection
accuracy of the processing schemes. Proposed approach is more
robust than the individual processing schemes.

robot soccer domain, an error of ≤ 10cm in distance and

≤ 10o in bearing, along with a detection accuracy > 90%
would be sufficient to operate robustly. The results in Table II

are analyzed by comparing them to these target values.

The processing scheme based on ultrasound information

(row 1 in Table II) computes the distances very accurately

but the bearing information is very limited. In addition, it

cannot detect obstacles beyond a certain distance (≤ 150cm)

and outside the 60o cone for each sensor. Hence, though the

detection accuracy is almost 100% within its detection zone,

the overall accuracy over the range of test cases is only 70%.

When the obstacles are detected using just the color

information (row 2 in Table II), the error in distance estimates

is higher (compared to US) because distance computation

based on image region sizes is noisy. The bearing estimates

are however reasonably accurate. The detection accuracy is

not good because the uniform pattern cannot be detected

from all viewpoints, and at large distances (> 200cm).

When the obstacles are detected using just the SIFT-

based processing scheme (row 3 in Table II), the bearing

estimates are statistically similar to those obtained using

color information. The expected error in bearing does not

change much as a function of the measured bearing, and the

scale and orientation invariance results in a higher detection

accuracy than the color-based scheme. The robots can now

be detected at different viewpoints and up to a distance

of ≈ 400cm. The scheme fails when the obstacles are a

significant distance away from the robot, or if very few SIFT

features are detected on the obstacles (e.g. strong highlights).

However, obstacle distances cannot be computed reliably.

Though not included in Table II, combining ultrasound

with one of the vision-based techniques does provide an

improvement, but either the detection accuracy is low (e.g.

US+VC), or the distance computation is inaccurate or in-

feasible (e.g. US+VS with the obstacle outside the FOV of

the ultrasound sensors). However, when all three processing



schemes are merged together (final row in Table II), the

system is able to exploit the complementary features of the

individual schemes. The localization errors are within the

desired limits, and the detection accuracy is above the desired

value. The distance errors are higher than those obtained with

just the US scheme because the ultrasound sensors can help

reduce distance errors only when the obstacle is within its

field of view. Furthermore, the proposed approach is better

than an ad-hoc information fusion approach with a distance

error of ≈ 14.1± 6.6cm and a detection accuracy of ≈ 85%
after extensive manual tuning over many hours. These results

show that the proposed approach is more robust than the

individual schemes.

Scheme Time/frame (msec)

US 33.3

VC 33.3

VS 125 ± 52

US + VC + VS 37.2

TABLE III: Computation time per frame for each processing
scheme. With some approximations, the combined scheme can
function at close to frame rate.

Next, Table III compares the running times of the process-

ing schemes. The ultrasound-based and color-based process-

ing schemes individually take very little computational effort,

resulting in real-time operation (30Hz = 33msec/frame)

when executed in conjunction with the existing modules

(vision, localization, team coordination etc). Our SIFT im-

plementation operates on low-resolution images to reduce

the processing time, but the SIFT-based approach is still

computationally expensive. However, if SIFT-based approach

is applied at a reasonable frequency (e.g. once every 10

frames), the combined approach can operate at close to

frame rate (on average). The incorporation of the Kalman

(a) (b)

(c) (d)

Fig. 3: (a)-(d) Image results: detected obstacles are enveloped in
pink boxes superimposed on segmented images.

filter-based tracking of obstacles provides two benefits: (a) it

propagates belief for a few frames after the last sighting of

an obstacle, making it robust to intermittent noisy measure-

ments; and (b) it can be used to incorporate the velocity

of moving obstacles and account for the relative motion

between the robot and the obstacle. The overall detection

and tracking performance is hence observed to be statistically

similar to that reported in Table II.

Some qualitative results of the robot’s performance are

shown in Figure 3. The detected obstacles are enveloped in

rectangular bounding boxes (in pink when viewed in color)

that are superimposed on the segmented images.

IV. RELATED WORK

Humanoid robots, and mobile robots in general, are in-

creasingly being equipped with multiple sensors and used

in practical applications [1], [2], [3], [4]. Since the sensors

have different capabilities and the environment changes

dynamically, it is essential that all the available information

be used effectively.

In recent times, the DARPA challenges [2], [3], [4] have

had robot vehicles equipped with several sensors (lasers,

cameras, GPS etc) navigating autonomously in the real-world

domains such as deserts and urban roads. However, most

of the decision-making was based on input from the range-

finders and GPS, and visual input was predominantly used

only for close-range obstacle avoidance. In related work,

Wellington et al. [12] used lasers and cameras to find the true

ground height and hence traversability of vegetation-covered

regions. Rankin et al. [14], on the other hand, merged stereo

vision and thermal signatures to detect drop-offs at night.

Murarka et al. [22] utilized stereo and range information

to detect drop-offs on a robot wheelchair. However, these

methods fail to explicitly model the errors associated with

each information source—information fusion is typically

based on manually specified heuristics.

Sensor fusion has been extensively studied in the field of

networks and multiagent systems [23]. Several approaches

have also been proposed for specific tasks such as image

registration, using state-estimation methods such as Kalman

filters or Bayesian networks [20], [21]. However, most of

these strategies use heuristics that require manual supervision

when applied to robot domains. Some methods are also

computationally expensive for robot domains.

On humanoid robots, localization and object tracking is

accomplished using the probabilistic state estimation tech-

niques used in other robot domains (e.g. Kalman filters and

Monte Carlo methods) [24]. Research in the RoboCup frame-

work [25] and the humanoid robotics community has resulted

in several innovative techniques for challenges specific to

humanoid robot platforms. For instance, robust techniques

have been developed to address the challenges of robot

control and balance [10], [11]. Approaches have also been

proposed for sensor-based navigation, for instance using

stereo-vision [26]. Humanoid robots are also increasingly be-

ing used for human robot interaction studies [27]. However,

as with other mobile robot platforms, there is a need for

an efficient strategy to fully utilize the available information

in order to operate robustly in dynamic environments. This



paper presents an approach that addresses an instance of this

information fusion challenge.

V. CONCLUSIONS AND FUTURE WORK

Developments in sensor technology have resulted in

the deployment of mobile robots in applications such as

medicine and autonomous navigation [1], [2], [4]. A major

challenge for a robot equipped with multiple sensors, is the

ability to efficiently merge the information obtained from

each sensor through different processing schemes, in order

to operate robustly in dynamic environments.

In this paper we have presented an instance of such

multisensor information fusion using range and visual in-

formation. The robot is able to autonomously learn models

that predict the performance of the schemes that process

the visual input (from a color camera) and range input

(from ultrasound sensors). The learned models are used in a

probabilistic approach that effectively merges the information

obtained from the different sources. In the robot soccer

domain, we have shown that a humanoid robot is able

to detect and localize obstacles more robustly than what

could have been accomplished in the absence of such an

information fusion scheme.

In multirobot settings (e.g. robot soccer, disaster rescue),

information merging can have other advantages. Information

communicated by teammates can be merged to obtain robust

estimates about areas that are hidden from the robot’s field

of view, which would prove very useful in disaster rescue

scenarios [7]. In robot soccer, if the robot knows the global

position of one of its teammates (e.g. the teammate com-

municates its pose with high certainty), relative distance and

bearing to this teammate can help the robot localize itself

in the global frame of reference. Furthermore, when the

communication is delayed or noisy, such information fusion

schemes may enable robots to coordinate better.

Currently the robot learns its errors models (and object

models) in a separate training phase. However, the robot can

bootstrap such that the learned models are updated over time

in response to environmental changes. Obstacles and other

objects that are found to be stationary can even be used

as “fixed markers” that enable a robot to localize when the

initial set of field markers (e.g. goals) are not visible.

This paper shows the feasibility of effectively using

the available information for robust performance on a hu-

manoid robot. The long-term goal is to enable robots to

autonomously learn environmental models, effectively merge

information obtained from different sources, and operate

robustly in real-world application domains.
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