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Abstract—
During the initial trials of a manipulation task, humans tend

to keep their arms stiff in order to reduce the effects of any
unforeseen disturbances. After a few repetitions, humans per-
form the task accurately with much lower stiffness. Research in
human motor control indicates that this behavior is supported
by learning and continuously revising internal models of the
manipulation task. These internal models predict future states
of the task, anticipate necessary control actions, and adapt
impedance quickly to match task requirements. Drawing inspi-
ration from these findings, we propose a framework for online
learning of a time-independent forward model of a manipu-
lation task from a small number of examples. The measured
inaccuracies in the predictions of this model dynamically update
the forward model and modify the impedance parameters
of a feedback controller during task execution. Furthermore,
our framework includes a hybrid force-motion controller that
provides compliance in particular directions while adapting the
impedance in other directions. These capabilities are evaluated
on continuous contact tasks such as pulling non-linear springs,
polishing a board, and stirring porridge.

I. MOTIVATION

Robot manipulation in dynamically changing environ-
ments is a challenging open problem. A robot arm stirring
porridge, for instance, has to adapt its stiffness as the
resistance offered by the porridge varies as a function of
the viscosity of the fluid. A robot arm polishing a table has
to adapt its stiffness to the frictional forces as it attempts
to follow a desired motion pattern on the surface of the
table; it must also maintain a suitable force along the surface
normal while offering some compliance, e.g., when the table
is tilted or moved up. Existing work on robot manipulation
is unable to achieve the desired behavior in such tasks.
These methods learn or compute stiffness values based on
large labeled training datasets or comprehensive knowledge
of the domain dynamics, impose unrealistic assumptions or
hardware requirements, or use a state representation that
makes it computationally expensive to estimate the stiffness
parameters. On the other hand, research in human motor
control indicates that when performing a new manipulation
task, humans initially use higher arm stiffness to accurately
follow the desired trajectory in the presence of unforeseen
external disturbances. With sufficient experience, humans
perform the task accurately with much lower stiffness. This
behavior is achieved by building internal models of the task
dynamics to predict the configurations of the object and the
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hand, and the forces, during task execution [1], [2], [3], [4].
Studies in psycho-physics also indicate that humans learn to
vary stiffness during manipulation [5], [6]. Our framework
draws inspiration from such research to make a significant
departure from existing literature on robot manipulation. It
makes the following key contributions:

• A forward model of any given manipulation task is
learned from a small number of examples and revised
incrementally during task execution.

• Impedance parameters are defined as a state-dependent,
time-independent property in task space. The measured
error in the state predicted by the forward models is
used to adapt these parameters during task execution.

• A hybrid force-motion controller contextually separates
the directions in which the arm has to be stiff or
compliant based on the task(s) at hand.

We evaluate these capabilities on three challenging contin-
uous contact tasks: (i) pulling a combination of springs of
different stiffness to a particular height and moving them in
a desired pattern; (ii) polishing boards with different surface
friction based on a desired motion pattern; and (iii) stirring
porridge based on a desired motion pattern in the presence
of changing viscosity. We show that our framework supports
learning and generalization from limited training examples,
and rapid adaptation of impedance parameters for different
related tasks and environments. We discuss related work
in Section II and describe our framework in Section III.
Experimental results are discussed in Section IV, and the
conclusions are in Section V.

II. RELATED WORK

Many existing methods for robot manipulation use ma-
chine learning algorithms to compute suitable values of the
impedance parameters for the task at hand [7], [8], [9], [10],
[11]. These methods either represent the desired stiffness
profiles as a time series or as a task-specific policy, and need
large labeled training datasets or comprehensive knowledge
of the robot’s dynamics and other mathematical models. It
is often difficult to provide such training datasets or accurate
domain knowledge. Research in classical control has devel-
oped many methods for adapting stiffness to achieve precise
movement, e.g., hybrid force control [12], parallel force
control [13], and impedance control [14]. These approaches
require accurate knowledge of the system’s dynamics and
precise feedback schemes, which are difficult to provide in
practical domains. Other methods have varied stiffness from
the perspective of the object being manipulated [15], [16],
[17]. These methods have mostly been designed for grasping



Fig. 1: Block diagram of proposed framework

and require accurate analytic models of the object; it is
challenging to provide such models in dynamic domains.
Many methods also make unrealistic assumptions such as
quasi-static action, zero slippage, and point contacts, and
require explicit representation of intrinsic parameters such
as friction, mass, and coefficient of restitution [18].

A robot can use a variable impedance controller to change
the impedance parameters to match the desired motion
profile [14]. It is possible to achieve accurate motion and
better rejection of perturbances by using a higher impedance
(i.e. stiffness), but being very stiff expends more energy and
makes it difficult to be compliant to external forces. Existing
variable impedance control methods are time-dependent or
include joint space parameters as a part of the state descrip-
tion [7], [19]. This dependence makes the task model out
of sync with task execution in the presence of unforeseen
perturbances, limiting the ability to adapt impedance.

Forward models have been used widely to predict the
behaviour of the robot [20], [21] or the objects being manip-
ulated [22]. The main challenge in building such models is
the selection of state features to successfully learn a policy
that predicts forces from the current state.

III. APPROACH

In our framework (Figure 1), the human designer either
provides a desired motion pattern (i.e., profile) or moves the
robot arm along the motion pattern for any given task. The
robot learns a forward model of the task from the demonstra-
tion or a small number of trials trying to achieve the motion
profile. The learned model predicts the force experienced
in the next state and determines a feed-forward term in
the control command. The prediction error measured during
task execution revises the forward model and the gain (i.e.,
impedance) parameters of a feedback (PD) motion controller
that provides the feedback term in the control command.
A hybrid force-motion controller separately controls force
along the direction(s) in which compliance is desired.

A. Basic Formulation

We formulate impedance control in the task space of the
robot. The use of task (i.e., Cartesian) space controllers
(with task-specific parameters) is independent of the type

of manipulator. They abstract multiple equivalent joint space
trajectories into a task-space motion profile. A task-space
controller is typically designed to make the robot behave
as if a mass-spring-damper were attached between the end-
effector tip and the motion way-point. Shaping a robot’s
inertia to behave like a mass-spring-damper system without
resulting in incorrect impedance behaviour is challenging; it
imposes the impractical requirement of accurately measuring
the external forces acting on the robot [23]. In practice, the
desired impedance behaviour is limited to designing stiffness
and damping parameters of the controller while keeping
the inertia unchanged, resulting in a compliance control
problem [23]. Since arbitrarily varying stiffness and damping
parameters may result in instabilities [20], we use empirically
estimated bounds for these parameters in our experiments.

In the basic formulation, the forward model maps the
control command ut, and measured force ft to a predicted
force ft+1 to be experienced in the resultant state. The force
vector typically includes frictional forces along the plane of
motion and the force along the surface normal. In Section III-
D, we describe our hybrid force-motion controller, which has
a PD controller with fixed gains to control the force along the
direction in which compliance is desired. The basic motion
controller thus has a feed-forward term and a feedback term,
which reduces the number of training samples for variable
impedance control [24]. The controller equation is:

ut = Kp
t ∆xt + Kd

t ∆ẋt + kt (1)

where ut is the control command to the robot (i.e., task
space force) at time t, Kp

t and Kd
t are the (positive definite)

stiffness and damping matrices of the feedback controller; kt
is the feed-forward term provided by the forward model; and
∆x and ∆ẋ are the errors in the end-effector position and
velocity at each instant. During task execution, the forward
model’s predictions determine kt, and the prediction error
controls Kp

t and Kd
t (Section III-C).

B. Learning and Using the Forward Model

The forward model is learned over a few trials as the
robot attempts to follow the desired sequence of points (i.e.,
profile) in the task space for any given task. To create a
time-independent forward model, a Gaussian Mixture Model
(GMM) is fit over points of the form p = [St−1, ft], where
St can be any combination of features that uniquely represent
the robot’s state for the task, and ft is the force felt at
the end-effector at time t. St can contain information about
end-effector position (xt), velocity (ẋt), forces (ft), etc. We
explored two representations for St. The first is of the form
St = [ẋt, ft]. The second, motivated by studies of motor
control [4], is of the form St = [ẋt, ft, ut] where, ut is the
task space control command. This is similar to the “efferent
copy” mechanism in animal motor control, where a copy
of movement-producing signals are used by internal forward
models to predict the effects of actions.

To incrementally update the GMM’s parameters (and
create new components when needed) during task execution,
we used the Incremental GMM (IGMM) method [25], [26],



[27]. IGMM internally uses a variant of the Expectation-
Maximisation (EM) algorithm to fit the model and maximize
the following likelihood function:

L(θ) = p(X|θ) =

T∏
n=1

p(Xn|θ) =

T∏
n=1

 M∑
j=1

p(Xn|j)p(j)


(2)

where θ = (µj , σj , pj) for j = 1...M are the parameters
of the M components of the GMM. X = (X1, ..., XT )
represents the points to be fit, with Xt = [St−1, ft]. Each
point contains information about the previous end-effector
state, along with the current force. So, when the learned
model is used during task execution, the force for the next
time instant, (ft+1|St), is predicted as a function of the
robot’s current state using Gaussian Mixture Regression
(GMR) [28].

C. Varying Feedback Gains

Many manipulation tasks can be accomplished using a
very high stiffness (Kp

max), but this expends energy. Also,
if the robot has to perform a task in free-space, accurate
trajectory following can be achieved with a much lower
stiffness (Kp

free). If the learned forward model is accurate,
the feed-forward term should cancel out the external forces,
reducing motion to that in free-space. Similar to human
behaviour with a familiar manipulation task, the feedback
gains can then be closer to Kp

free. The feedback gains at
each step (Kt) of the controller (Equation 1) are given by:

Kp
t = Kp

free + F (epred,t−1)(Kp
max −Kp

free) (3)

where epred,t is the forward model’s prediction error at time
t, and F (x) : x → [0, 1]. With this formulation, the robot
will be more compliant (stiff) when the model’s predictions
are more accurate (inaccurate). The damping term is updated
using the known constraint of the damping factor for an
critically-damped system [29]:

Kd
t =

√
Kp

t

4
(4)

D. Hybrid Force-Motion Controller

Some manipulation tasks require compliance in some
directions when an unexpected force is experienced. A robot
following a motion profile to polish a planar surface must
maintain contact force along the surface normal. If the robot
experiences unexpected (e.g., frictional) forces along the
plane, it has to become stiffer to follow the motion profile.
However, if the surface were suddenly raised, the formulation
described above would predict incorrect forces and increase
stiffness, resulting in damage to the robot or the surface
as the robot pushes down hard on the surface. We use
a hybrid force-motion controller to intuitively separate the
“compliant” and “stiff” directions. Such controllers define
artificial constraints on the robot’s degrees of freedom. These
constraints specify the desired values for velocities in the k
directions of motion, and the forces in the remaining 6− k
directions for contact reaction. Through force control along

the directions in which compliance is desired, and motion
control in the other directions, the robot can maintain the
required normal force while following the trajectory on the
surface. In our framework, these directions are currently
defined manually for each task and considered to provide
contextual information. The revised controller equation is:

ut = Kp
t ∆xt + Kd

t ∆ẋt + kt + ufc (5)

where ufc specifies part of the command signal produced by
the direct force control.

IV. EXPERIMENTAL SETUP AND RESULTS

We experimentally evaluated the following hypotheses
about the capabilities of our framework:
H1: Using feed-forward model along with stiffness adaption

improves trajectory tracking performance.
H2: Adding efferent copy as the input to the forward model

creates a better model of task dynamics, resulting in
improved trajectory tracking.

H3: Updating the forward model online supports adaptation
to new and changing environments.

where H1 tests the effectiveness of adapting stiffness based
on the accuracy of the model; H2 compares the choices
of the feature vector (Section III-A); and H3 assesses if
the framework can adapt to new environments. The root
mean square (RMS) measure is used to quantify the error
in achieving the desired motion profile, and suitable plots
provide a qualitative indication of performance. Since our
approach is different from popular approaches for such
manipulation tasks (e.g., based on deep learning), we do
not provide an experimental comparison but discuss the
advantages of our approach in Section II and Section V.

We used three tasks to evaluate the hypotheses; we hence-
forth refer to them as “nonlinear spring pulling”, “board
polishing” and “porridge stirring”. We used a 7-DoF Sawyer
robot for our experiments; a video can be viewed online1.
The forward model is learned with the feature vector p =
[St−1, ft], and St = [ẋt, ft] except for testing H2 (Section
III-B). The forward model learns the probability distribution
of feature vectors; GMR conditions on St to predict ft+1.

The first task involved pulling springs (attached to the
end effector) to a particular height and then moving along a
desired trajectory (Figure 2, left). Due to the non-linear force
response to extension, the end effector experiences different
changes in force in different directions. The baselines for
comparison used constant low impedance and constant high
impedance. The low impedance parameters were sufficient
to move the end-effector along the desired trajectory in
the absence of springs (Kp

free), and the high impedance
parameters (Kp

max) were sufficient for pulling the spring in
the absence of the forward model.

We conducted multiple trials with the forward model
learned in the first trial and improved subsequently; results
are shown in Figures 4– 5. We observe that the prediction
accuracy of the forward model improves over the trials and

1https://youtu.be/hbzZuO1xal8

https://youtu.be/hbzZuO1xal8


Fig. 2: Left: (Non-linear spring pulling) the objective is to
pull a combination of springs to a desired height and then

along a motion pattern; Right: (Porridge stirring) Sawyer is
attached to a Moog HapticMaster which emulates an

environment whose viscosity increases as it moves (in X-Z
plane).

Fig. 3: (Board-polishing) Left: Surface 1 with low friction;
Right: Surface 2 with higher friction.

Fig. 4: (Non-linear spring pulling) Position tracking.

the position is tracked accurately; Table I quantifies the
errors with no models (i.e., with constant low stiffness),
high stiffness, or with the learned and revised forward
models. Accuracy is better with the forward-model than in its
absence. Performance improves further when the impedance
parameters are updated online; just using the feed-forward
term is not enough to perform tasks that involve unexpected
forces acting on the system since the model is imperfect.

To further evaluate H1, we explored the board polishing
task; the robot had to polish a surface of unknown friction
coefficient by moving its end-effector (a whiteboard eraser)
along a given trajectory while applying 10N downward
force—see Figure 3. Here, a hybrid force-motion controller
offers compliance along the surface normal (the z-axis).

Fig. 5: (Non-linear spring pulling) Force prediction.

Condition X (m) Y (m) Z (m)

no models 0.017± 0.009 0.015± 0.009 0.038± 0.010

high stiffness 0.012± 0.011 0.009± 0.007 0.023± 0.011

with learning 0.010± 0.010 0.006± 0.00 0.004± 0.00

TABLE I: (Non-linear spring pulling) Trajectory tracking
errors along the three axes.

Fig. 6: (Board polishing) Surface 1 position tracking. Red:
target; Pink: constant stiffness Kp

free; Black: constant
stiffness Kp

max; Blue: adapting impedance without efferent
copy; Green: adapting impedance with efferent copy.

While moving, the robot has to learn to predict the frictional
forces that it experiences hampering it smooth motion. The
initial model is learned by making the robot follow a
trajectory (an epicycle) that is (intentionally) considerably
different from the one it has to follow during task execution
(sine wave).

Figure 6 shows that in the absence of the forward model,
the robot is unable to follow the desired trajectory since
it does not know the interaction forces. Using the feed-
forward model improves tracking performance, with a further
improvement when online impedance adaptation is used.
The performance of the framework is comparable with that



Fig. 7: (Board polishing) Surface 2 position tracking. Red:
target; pink: constant stiffness Kp

max; Green: surface 1
model without adaptation; Blue: online adaptation of

previous model.

(a) Surface 1

(b) Surface 2

Fig. 8: (Board polishing) Force prediction.

of a high stiffness controller while requiring much smaller
impedance parameters—Figures 8a and 9a. The average
RMS errors in trajectory tracking are summarized in Table II
with low stiffness (“no models”), high stiffness, or with the
learned (and continuously updated) forward models. These
results support the validity of H1.

Next, to evaluate H2, we conducted trials of board polish-

(a) Surface 1

(b) Surface 2

Fig. 9: (Board polishing) Stiffness adaptation

Condition X (m) Y (m)

no models 0.091± 0.042 0.054± 0.010

high stiffness 0.027± 0.011 0.007± 0.014

efferent copy 0.036± 0.024 0.008± 0.011

with learning 0.038± 0.023 0.008± 0.014

TABLE II: (Board Polishing) Surface 1: trajectory
tracking errors along X and Y axes.

ing task with the efferent copy in the feature vector of the
forward model. Results in Table II (“efferent copy”) indicate
that there is no significant improvement in performance in
comparison with the forward model that does not use the
efferent copy. We believe this is because the forward model
is able to obtain enough information for force prediction
from the current end-effector velocity and forces, making
the information encoded in the efferent copy redundant. This
observed performance, and the fact that adding dimensions
to the state-space makes the learning more computationally
demanding, led us to not use the efferent copy in the
subsequent experiments.

To evaluate H3, we focused on the ability to generalize
and adapt. The results with the board polishing task indicate
that the framework generalizes across different trajectories
since the model was learned using a trajectory different from
that used during task execution. This is a key advantage of
learning the forward models in task-space instead of joint-

Condition X (m) Y (m)

high stiffness 0.027± 0.014 0.007± 0.012

reused model 0.084± 0.039 0.023± 0.022

with learning 0.035± 0.022 0.006± 0.001

TABLE III: (Board Polishing) Surface 2: trajectory
tracking errors along X and Y axes.



Condition X (m) Z (m)

no models 0.031± 0.015 0.035± 0.018

high stiffness 0.012± 0.009 0.014± 0.012

forward model 0.037± 0.017 0.026± 0.010

forward model with 0.014± 0.008 0.009± 0.007
stiffness adaption

TABLE IV: (Porridge stirring) Trajectory tracking errors
along X and Z axes.

space. Next, adaptability to new forces was tested by per-
forming the same (board polishing) task using a surface with
significant different friction (Figure 3, right). Figures 7, 8b,
and 9b show that when the learned model was used for
this surface without online improvement, the robot was not
able to follow the trajectory accurately. However, if the
learned model is revised during task execution, it quickly
achieves performance similar to that with the first surface.
The RMS errors in trajectory tracking are summarised in
Table III with high stiffness, learned model that is reused
with revision (“reused model”), or with the learned and
continuously updated forward model (“with learning”). This
capability of the framework to generalise to different surfaces
and trajectories is the key advantage of using a task-space,
time-independent variable impedance control framework.

Next, the adaptability of the framework to environments
that change during task performance is tested with the
porridge stirring task. The viscosity of porridge changes as
it is stirred. For the experiment on a real robot, the changes
in viscosity are emulated on a MOOG HapticMaster [30].
Specifically, the viscosity (damping factor) of the environ-
ment is increased continuously (in X-Z plane) until it reaches
a maximum predefined value. The end-effector of the Sawyer
is attached to the end-effector of the HapticMaster (Figure 2,
right). The Sawyer has to move its end-effector along a
predefined motion trajectory while adapting to the viscous
resistance from the environment.

Figure 10 indicates that using constant impedance pa-
rameters is not enough for tracking the desired trajectory
(shown in red) accurately, even with the maximum allowed
stiffness Kp

max (black). Similarly, using just the feed-forward
term predicted by the forward model without impedance
adaptation is insufficient for such dynamically changing
environments (shown in green), owing to the dynamics of
the environment that are not known to the robot. However,
when online impedance adaptation is enabled, the robot is
able to follow the trajectory more accurately (shown in
pink). The trajectory tracking errors during task execution
are summarised in Table IV with low stiffness, high stiffness,
constant forward model, or with a continuously updated for-
ward model. These results further establish the effectiveness
of the framework. Next, Figure 11 indicates that the force
predictions (by forward model) are much more accurate
towards the end of the task when the environment finally
becomes static as the change in damping saturates. The
model has (by then) learned to accurately predict the effects
of that damping factor on force. As a result, the impedance

Fig. 10: (Porridge stirring) Position tracking (X-Z axes)

Fig. 11: (Porridge stirring) Force prediction

parameters are smaller, as shown in Figure 12. Note that the
stiffness values are still lower than the high stiffness value
(Kp

max).
We also ran trials that examined the ability of the hybrid

force-motion controller to provide compliance along the
surface normal with the board polishing task. Specifically,
we ran trials in which the board was moved up or tilted
during task execution. We (qualitatively) observed that the
robot was able to provide compliance along the surface
normal in each such trial. We do not include any quantitative



Fig. 12: (Porridge stirring) Stiffness adaptation

results corresponding to these experiments but this situation
is included in the accompanying video demonstration.

V. DISCUSSION AND CONCLUSIONS

Variable impedance control is vital for reliable and safe
robot manipulation. Learning impedance parameters directly
is difficult and requires a large, labeled, training dataset. In
this paper, we described a framework inspired by findings
in human motor control. Our framework incrementally and
continuously learns a time-independent, task-space forward
model of any given manipulation task, using the model to
predict interaction forces. The prediction error is used to
revise the forward model and the impedance parameters for
feedback control.

The framework was tested on three distinct tasks: non-
linear spring pulling, board polishing, and porridge stirring.
Other studies have used models created using knowledge
of domain mechanics to make predictions about robot and
object motions [22], [31]. However, they make unrealistic
assumptions such as point contacts, friction cone approxima-
tions, and no slippage, unlike our method. Our initial studies
with a linear spring provided insights on why the forward
model (by itself) will not suffice, especially in the presence
of previously unseen forces. We then introduced the task-
space variable impedance feedback controller. One of the
techniques proposed in [32] learns a state-dependent stiffness
but the learning relies heavily on multiple demonstrations
through an expensive special-purpose hardware device.

A key challenge (in our framework) was to choose suitable
feature vectors to representing task state. We explored two
distinct representations as described in Section III. Experi-
mental results indicated that the use of the efferent copy as
input to the forward model does not produce a marked im-
provement (over the other representation) but this hypothesis
deserves further exploration in the context of other tasks. We
did notice that the use of the end effector velocity instead
of position as a feature in the state vector helped generalize
across different trajectories and surfaces. Existing approaches
such as [7] and [19] would fail to provide such generalization
due to the explicit dependence on time for representing force
and impedance parameters. Experimental results thus also
demonstrate the advantages of learning forward models in
the task space in comparison with existing work that learns
forward models in the joint space [20], [8]. In addition, a
crucial difference in comparison with other approaches for
variable impedance control [16], [17], [15] is that we do not

use analytic models that require accurate knowledge of the
system dynamics.

The porridge stirring task was the most challenging task
we explored in this paper. It is unlike many other tasks con-
sidered by existing work in that it involved dynamic changes
during task execution. Also, the factor that changes, i.e., the
viscosity of the environment, opposes motion, the forces that
the robot experiences are a function of the velocity rather
than position. At the same time, this task provides a con-
trolled emulation of a dynamically changing environment.
The successful stiffness adaptation with good performance in
this task thus provides strong evidence about the capability
of our framework. Some existing approaches [20], [21]
attempt to learn an action-effect correlation, usually from
demonstrations provided by an expert or from experience
obtained during trials [33], [10]. However, these methods
requires explicit mathematical representations of the task,
robot, and the objects involved.

Overall, the experimental evaluation provided promising
results strongly indicating the ability of our framework
to learn forward models and achieve task-space, variable
impedance control in different continuous contact tasks.
Future work will further examine the capabilities of this
framework on other robots performing different tasks, and
explore the extension of this framework to tasks that require
the manipulator to make and break contacts.
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