
In International Workshop on Humanoid Soccer Robots (HSR-10),

Nashville, USA, December 7 2010.

Online Detection of Instability for Robust

Teamwork in Humanoid Soccer Robots

Kshirabdhija Nadarajan ∗1, Mohan Sridharan ∗2

∗1Department of Electrical and Computer Engineering

Iowa State University

Ames, IA 50011, USA
kshira90@iastate.edu

∗2Department of Computer Science

Texas Tech University

Lubbock, TX 79409, USA
mohan.sridharan@ttu.edu

Abstract— Humanoid robots are increasingly being used in
several domains as a result of the development of sophisticated
algorithms for challenges related to vision, locomotion and team
coordination. RoboCup is one such research initiative with the
stated goal of creating a team of humanoid soccer robots that can
beat the human soccer champion team on an outdoor soccer field
by the year 2050 [1]. In order to achieve this goal, it is essential to
enable a team of humanoid robots to collaborate effectively. In the
Standard Platform League (SPL) of RoboCup [2], the instabilities
induced by collisions, slippages and falls pose a major challenge
to effective collaboration and provide a significant advantage
to the opposing team. This paper presents an approach that
enables a humanoid robot to autonomously learn a model based
on sensory inputs to detect instabilities. The detected instabilities
are communicated to teammates and incorporated in the team
coordination strategy, resulting in a quick re-organization of the
roles of the robots and more effective team coordination. All
algorithms are implemented and tested on the Aldebaran Nao
robot platform [3] in the robot soccer domain.

I. INTRODUCTION

Developments in sensor technology and sensory input pro-

cessing algorithms have resulted in the deployment of mobile

robots in applications such as navigation, disaster rescue and

health care [4], [5], [6], [7]. In recent years, there has been con-

siderable interest in the design and deployment of humanoid

robots in human-robot interaction scenarios [5]. Researchers

have developed sophisticated methods for challenges in vision,

locomotion (e.g., motion control, dynamic balancing) and team

coordination on humanoid robots [8], [9], [10], [11]. However,

the ability to accurately sense the environment and collaborate

with other robots still remains an open problem.

RoboCup is a popular research initiative where teams of

robots play a competitive game of soccer in simulated and

physical robot leagues. In the Standard Platform League (SPL)

of RoboCup [2], teams of three humanoid robots play soccer

on an indoor soccer field. Typically, the robots in a team

dynamically determine their roles (e.g., attacker, defender,

supporter) based on the state of the game. The rules enforce

strict penalties for collisions with other robots. However,

despite the development of sophisticated methods for dynamic

balancing and for detecting opponents [10], [12], collisions

and slippage cannot be eliminated. In addition, recovering

from falls or related instabilities takes a considerable amount

of time. Unless the other robots in the team quickly re-organize

themselves to account for the unstable robot, the opposing

team can exploit the situation to their advantage.

In this paper, the term “instability” includes collisions and

slippages that cause the robot to wobble, and the serious

situations such as falls, i.e., all cases that can damage the robot

and provide advantages to the opposing team. In the humanoid

robotics community, researchers typically use models learned

offline based on sensory inputs (e.g., accelerometers, cameras)

to determine when the robot has fallen or to detect obsta-

cles [10], [11]. During online operation, the robot executes

predefined motion patterns to recover from falls or to avoid

obstacles. However, although the robot is able to detect falls

and communicate this information to teammates, detecting

other instabilities accurately is a challenge. The robot can

perform dynamic balancing routines to offset the effects of

instabilities only if the instabilities are detected in the early

stages. In addition, different predictive models need to be

trained for different walks performed by a robot on different

surfaces, and generating manually labeled samples can be very

time-consuming. Furthermore, the learned models have to be

revised over time to account for any degradation in the data

provided by the sensors, and the output of the predictive model

has to be incorporated in the team coordination strategy. The

proposed approach addresses the above-mentioned challenges

through the following significant contributions:

• It enables a humanoid robot to autonomously generate

labeled sensory input vectors, which are used to learn and

revise a model that detects instabilities robustly.

• It enables the robot to use the communicated instances of

instabilities (from its teammates) in the team coordination

strategy, in order to achieve effective collaboration.

All algorithms are tested on a humanoid robot platform

(Aldebaran Naos [3]) in the robot soccer domain.

The remainder of the paper is organized as follows. Sec-

tion II describes the proposed approach and the test plat-

form. Section III describes the experimental setup and results,



followed by a review of related work (Section IV) and the

conclusions (Section V).

II. TEST PLATFORM AND PROPOSED APPROACH

This section describes the robot test platform, followed by a

description of the proposed approach that detects instabilities

to achieve better team collaboration.

A. Test Platform

The Aldebaran Nao humanoid robot [3] is used as the test

platform in this paper. The 58cm tall robot has 23 degrees of

freedom; five in each arm and leg, two in the head, and one

at the pelvis. The primary sensors are the monocular color

cameras in the forehead and nose, each with a 58o diagonal

field of view and a maximum resolution of 640 × 480. There

are two ultrasound sensors in the chest, one each on the

left and the right with a 60o field of view. In addition, the

robot has accelerometers and gyroscopes in its body and bump

sensors in its feet, which may be used for collision avoidance,

Furthermore, the robot has microphones, loudspeakers and

LEDs that are primarily used for debugging purposes, and

Wi-Fi to communicate with other robots or an off-board PC.

One application domain for the Nao is RoboCup, an inter-

national research initiative with the stated goal of creating a

team of humanoid robots that can beat the champion human

soccer team on an outdoor soccer field, by the year 2050. The

Standard Platform League [2] of RoboCup has teams of Naos

playing soccer on an ≈ 6m×4m indoor soccer field. Figure 1

shows images of the robot and the soccer field.

Fig. 1: The Nao [3] robot and the robot soccer field.

The robot soccer domain presents many of the challenges

that need to be addressed for deploying a humanoid robot

in the real-world (e.g. vision, motion, localization and team

coordination), while providing a moderate amount of struc-

ture that makes the domain tractable to solutions. However,

all processing for vision, locomotion, localization and team

coordination is to be performed in real-time (30Hz) on board

the robot, using an x86 AMD GEODE 500MHz CPU that

runs embedded Linux. One major challenge in the domain is

the ability to adapt team coordination strategies to account for

instabilities. In addition, the sensory inputs are not completely

reliable. For instance, the ultrasound sensors frequently fail to

report the presence of obstacles in the robot’s path, making

collisions all the more likely. The proposed approach that

addresses these challenges is described below.

B. Proposed Approach

This section first describes the method that enables the

humanoid robot to autonomously learn a classification model

to detect occurrences of instabilities. It then summarizes how

this information is used in the team coordination strategy.

Fig. 2: The Nao robot’s body axes [3].

The Nao is equipped with a three-axis accelerometer, which

provides values in the range ±2G along three axes, and a

two-axis gyroscope—the body axes are shown in Figure 2.

The proposed approach learns a predictive model using the

accelerometer and gyroscope values. The input is hence a

stream of five-dimensional vectors of the form:

input stream = {st}t=1:T (1)

st = 〈a1,t, a2,t, a3,t, g1,t, g2,t〉

where the sensory input vector at time t, i.e., st consists of

the accelerometer values: {a1,t, a2,t, a3,t} and the gyroscope

values: {g1,t, g2,t}. The data from these sensors represents

the relative position and hence the stability of the robot’s

body. Our experiments indicate that using the proposed input

vector provides much better performance than using just the

accelerometers or the gyros. Note that this input vector does

not include the force sensors or bump sensors that exist in

the feet of the Nao robot. Though these sensors can be used

to detect contact with the ground or other objects, they are

typically too noisy to provide any useful information for the

task of detecting instabilities robustly.

As with most sensory inputs on a mobile robot, the values

obtained from the accelerometers and gyros are noisy. Prior

research has shown that using a time series of data samples can

help smooth out the noise. The input data stream is therefore



smoothed (i.e., averaged) along each dimension using an

impulse response filter of the form:

vs,t =
k

n
vs,t−1 +

n − k

n
vt,new (2)

where the smoothed value at time t, i.e., vs,t is determined

as a function of the smoothed value in the previous time

instant (vs,t−1) and the new raw observation obtained at time

t, i.e., vt,new. The smoothed, i.e., the running average value is

computed based on a window of n frames, and the parameter

k can be modified to vary the effect that the raw observation

vt,new has on the smoothed value.

Though the smoothing operation helps reduce the noise in

the input data stream, the challenge with using these sensory

values to obtain a predictive model is that it is time-consuming

to get a sufficient number of labeled samples corresponding

to the stable and unstable conditions. In addition, the sensory

values can be different on each robot, and they can change over

time even on a specific robot as a result of repeated use. There

is hence a need to automate the collection of labeled data to

learn a suitable predictive model. In the proposed approach,

the data collection is automated by exploiting the fact that the

accelerometer and gyro values corresponding to instabilities

are significantly different from the values obtained when the

robot is stationary or engaged in a stable motion, at least along

one of the five dimensions of the input vector.

Consider Figure 3(a), which shows a the plot of the

(smoothed) accelerometer values along the x-axis (“AccX”)

over a period of time. While the robot is walking normally,

the AccX values are close to the default value. The two large

deviations in the observed values correspond to two instances

where the robot displayed signs of instability. Figure 3(b)

shows the corresponding accelerometer values along the y-

axis. The AccY plot shows deviations at similar points in the

sequence but they are not as substantial as those along the

x-axis. This specific data sample was generated when a hu-

manoid robot slipped on the ground to cause a tilt (of its body)

in the x-z plane. The key observation is that most instabilities

result in measurably significant deviations in at least one of

the observed accelerometer or gyro values, though the extent

of deviation differs for the different instabilities. The robot can

therefore autonomously generate labeled samples by looking

for significant deviations along one or more dimensions of

the 5D input vectors. When such a deviation is observed,

the values within a fixed interval in all five dimensions are

considered to represent unstable samples—the size of the

interval is based on the size of the window used in Equation 2.

An example of this automatic labeling is shown in Figure 3(c).

Though the automatic labeling introduces some false positives

and false negatives, this error is offset by the elimination of

the effort involved in manually labeling the samples.

Once the robot has collected sufficient data samples corre-

sponding to the two classes, the next step is to learn a predic-

tive model that helps it classify subsequent samples as stable

or unstable, thereby determining instances where the robot’s

motion is unstable. As mentioned above, the input vectors are

points in 5D space, and the unstable class includes collisions,

slippages and falls. As a result, the data collected by the

robot is sampled from a complex distribution in 5D space. A

robust classification scheme is therefore required to accurately

partition this space. In this work, two different schemes are

explored to learn the desired classifier: a decision-tree [13]

and a Support-Vector Machine (SVM) [13], [14]. Experimental

results show that the SVM-based model performs much better,

and hence the corresponding theory is summarized below.

Given a set of training samples (i.e., instance-label pairs):

(xi, yi), i ∈ [1, l], where xi ∈ Rn and y ∈ {0, 1}l, SVMs

compute the solution to an optimization problem, as defined

by the following equation [15]:

minw,ξ

1

2
w

T
w + C

l∑

i=1

ξi (3)

Subject to yi(w
T φ(xi) + b) ≥ 1 − ξi, ξi ≥ 0

where the function φ maps the input instances xi to higher-

dimensional space. In the current work, the sensory input

vectors form the instances xi, while the labels y consist of

stable and unstable, represented as ’0’ and ’1’ respectively.

The SVM algorithm attempts to find linear hyperplanes that

best separate the instances in this higher-dimensional space.

The term w represents the normal to the hyperplane. The term

C is the penalty for the error in classification, while ξi are the

slack variables that represent the degree of misclassification

for each individual instance. The input values are scaled in

order to learn a more appropriate model—see [15] for details.

In SVM algorithms, the mapping of points to higher di-

mensions is typically performed using a kernel function that

is defined by the following equation:

K(xi,xj) = φ(xi)
T φ(xj) (4)

Some of the basic kernels used in SVM models are: linear,

polynomial, radial basis functions (RBF) and sigmoid. The

SVM model learned in this work is based on the RBF kernels:

K(xi,xj) = exp(−γ‖xi − xj‖
2), γ > 0 (5)

where γ is a kernel parameter. RBF kernels are used because

they are experimentally found to provide the best performance.

The kernel projects the labeled instances to a higher dimen-

sion, and the hyperplane that best separates these instances

is computed. New instances are then classified based on their

location relative to this hyperplane.

Once an SVM model has been learned by each robot, it is

used to predict occurrences of instabilities based on sensory

inputs that have been smoothed as shown in Equation 2. When

a robot detects that its motion is unstable, it: (a) tries to

take corrective action; and (b) communicates the instability

to its teammates. Currently, the robot chooses the corrective

action from a set of predefined options, based on the task it is

pursuing. For instance, it stops moving if it is not engaged

in chasing the ball. More sophisticated dynamic balancing

strategies [9] can be included here. In addition, the robot

ensures the validity of the learned model by periodically



0 50 100 150 200

−10

−5

0

5

10

Frame number

A
c

c
e

le
ro

m
e

te
r 

v
a

lu
e

s
 (

m
/s

2
)

AccX vs. Frame number

 

 

X−axis

(a) AccX Plot.

0 50 100 150 200

−10

−5

0

5

10

Frame number

A
c

c
e

le
ro

m
e

te
r 

v
a

lu
e

s
 (

m
/s

2
)

AccY vs. Frame number

 

 

Y−axis

(b) AccY Plot. (c) Computed Bounds.

Fig. 3: (a) Sample plot of the accelerometer values along the x-axis; (b) Sample plot of the accelerometer values along the y-axis; (c)
Computed intervals corresponding to the situation when the robot is unstable.

revising it with more current labeled samples. Furthermore,

any undetected instability that leads to a fall (i.e., radically

different sensor values) automatically triggers a getup routine

and causes a new model to be learned.

In addition to the corrective action, each robot also uses

the communicated instances of instability (from teammates)

in its coordination strategy. The robots in our team perform

different roles such as: attacker, supporter, defender, keeper,

and combinations of these roles such as: attacking supporter

and defensive supporter. Each robot (other than the goal

keeper) dynamically determines its current role based on

its estimate of the state of the game and the information

provided by the teammates. The data communicated among

teammates includes: (a) ball position; (b) robot pose (position

and orientation); (c) opponent poses (if detected); and (d)

current role and state. The robot’s state includes information

about the robot’s actions (e.g., kicking). The role assignment

has some simple constraints to ensure that the other team

does not gain any advantage. For instance, there is always

at least one robot chasing the ball. In addition, if a robot

has not heard from its teammate for a long period of time

or receives information that the teammate has had a fall, it

assumes that the corresponding teammate does not exist and

suitably revises its role choices. See [11] for details on the

dynamic role assignment. However, other instabilities (e.g.,

wobble due to slippage) occur more frequently than falls, and

the goal of this work is to robustly detect these instabilities

and achieve effective collaboration.

In order to incorporate the stability information in the com-

municated data, the corresponding data structure is augmented

with an entry that corresponds to the “physical state” of

the robot. The physical state is currently represented using

a single number that denotes the stability of the robot, i.e.,

{0, 1} for {stable, unstable}. However, the framework can

be readily extended to accommodate a probabilistic estimation

of stability. As a result of this augmentation, each robot

communicates detected instances of instabilities to its team-

mates. In order to give the teammate a chance to correct

its instability (and to filter spurious detections of instability),

a robot changes its coordination strategy only if a set of

consecutive communicated vectors from a teammate indicate

an instability. The robot responds to this situation by assuming

the absence of the corresponding teammate. This modification

to the existing coordination strategy results in robust operation

in the presence of different types of instabilities.

III. EXPERIMENTAL SETUP AND RESULTS

This section describes the experimental setup and the exper-

imental results. The goal is to evaluate two hypotheses: (H1)

the learned predictive model accurately detects occurrences of

instabilities in the robot’s state; and (H2) the communication

of such instabilities between teammates and the incorporation

of this information in the coordination strategy results in robust

operation in the presence of instabilities.

In order to test H1 (the first hypothesis), experiments

were conducted in the natural game environment, with the

humanoid robot playing soccer on the Standard Platform

League soccer field. The robot therefore performs all the

normal actions such as walking, kicking, falling down and

recovering from a fall. While playing the game, the robot

collects the corresponding accelerometer and gyroscope values

in the form of 5D vectors—Equation 1. The collected values

are filtered to smooth out the noise, as described in Equation 2,

with n = 20. The robot analyzes the smoothed data stream

for significant deviations along any of the five dimensions,

and assigns appropriate labels to the input vectors: {0, 1} for

{stable, unstable}. Within a short period of time, the robot is

able to collect many labeled samples. If the robot does not get

sufficient unstable samples, it is possible to artificially place

obstacles in the robot’s path to induce the desired instabilities.

However, no human intervention was required during the

experiments to induce instabilities or modify the labels. In

addition, bias is eliminated by selecting the same number of

samples from each of the two classes to learn the predictive

models. As mentioned in Section II-B, two different schemes

were used: a decision-tree classifier and a SVM classifier.

The J48 scheme [16] was used to learn the decision-tree

classifier, while the libSVM code [15] was used to learn the

SVM classifier after scaling the input values appropriately.

The algorithms were revised to enable real-time execution on

the humanoid robot. The learned predictive models were then



Approach False positives (%) False negatives (%)

J48 decision trees 5.7 8.1

RBF SVMs 0.5 0.7

TABLE I: False positive and false negatives using the two different
classification schemes. SVM-based classifier performs much better.

used to perform online classification of the smoothed sensory

input vectors on the robot.

In order to make the experiments more challenging, trials

were conducted on three different Nao robots while performing

different types of walks (i.e., different walk parameters) in

different directions at different speeds. The trials also included

different surfaces (robot soccer field, tiled floor and carpeted

floor). The robot autonomously learned appropriate models

for the different walks and surfaces, and these models were

evaluated on instabilities induced by injecting obstacles in the

robot’s path. The results averaged over a set of ≈ 200 (total)

trials are shown in Table I.

The results in Table I show the false-positive and false-

negative rates of the classification schemes, i.e., smaller num-

bers in the table indicate a better classification scheme. In

other words, the SVM-based scheme performs much better

than the decision-tree classifier, with hardly any false positives

or false negatives. In addition, even the observed errors did

not occur for more than a frame at a time. The robot therefore

does not take any unnecessary corrective action. The SVM

technique provides good performance because it uses a RBF

kernel to project data into a higher dimension where it is easier

to separate the vector clusters corresponding to stable motion

from those corresponding to the instabilities. Figures 4(a)–4(d)

show snapshots taken during an experimental trial—the robot

is pushed in different directions and the LEDs in the chest

and eyes are turned on to indicate the instability. Currently

the robot stops its motion or performs predefined motions

to compensate for the instabilities, but more sophisticated

balancing strategies can also be used.

Next, a multirobot coordination task was setup in order

to test H2, i.e., the hypothesis that using the communicated

estimates of instabilities results in better coordination. First,

a team of two robots was tasked with playing soccer with

stationary opponents, i.e., two robots were placed at fixed

points on the field. The performance of the team was evaluated

by computing the number of goals scored over a period of five

minutes. Once a goal was scored, the robots were informed and

the ball was placed at the center of the field. The results over a

set of 15 trials were averaged to obtain the numbers reported

in Table II. The trials were first run without the proposed

approach, i.e., the robots did not take corrective action for

instabilities and did not use the communicated instabilities in

the decision-making process. However, occurrences of falls are

detected (the robot performs a getup routine), communicated

and used in the decision-making. Then the trials were repeated

with the robot using the proposed approach. As shown in the

first row of Table II, detecting different types of instabilities

and using the communicated instances of instabilities in the

coordination strategy results in better performance—the team

scores twice as many goals.

Situation Goal difference
Default approach New approach

Stationary opponents 3 6

Moving Opponents 1 4

TABLE II: Results of using the proposed strategy in a multirobot
scenario. The team scores more goals when the communicated
estimates of instabilities are included in the coordination strategy.

Next, a similar set of trials were run with a team of two

robots playing against moving opponents, i.e., another team

of two robots. Each trial now lasted ten minutes and the

difference in the goals scored by the two teams was used

as a measure to evaluate the performance. Once again, the

trials were first conducted without the proposed strategy, i.e.,

both teams used the same software. In this case, there was no

significant difference in the performance of the two teams, as

noted in Table II. Next, the robots in one team were allowed to

use the proposed approach to detect instabilities and to include

it in the team coordination strategy. This team is now able to

coordinate better despite instabilities caused due to collisions

or slippages. As shown in Table II, this team ends up scoring a

significantly larger number of goals against the opponents who

used the default coordination strategy. The results documented

above show that the proposed strategy enables each robot

to robustly detect (and account for) instabilities, and that it

enables a team of robots to use the communicated estimates

of instabilities to revise the coordination strategy.

IV. RELATED WORK

There has been a significant amount of research on stable

locomotion and team coordination for mobile robots. For

instance, Fierro et al. [17] proposed an architecture using

vision and other sensors to build a control system for robust

multirobot coordination. The work described in this paper can

be used in conjunction with such architectures to improve

the robot’s real-time performance while collaborating with

other robots. In the robot soccer setting, most teams follow

a collaborative strategy that involves assigning roles to robots

dynamically based on the state of the game [10], [11].

On legged robots, stability continues to be a major require-

ment for robust coordination. Mericli et al. [18] proposed a

method that used temporal accelerometer readings and inter-

preted them in the frequency domain to identify unstable states

on quadruped robots (Aibos). On the other hand, Quinlan et

al. [19] described an approach based on traction monitoring

for collision detection on legged robots. Their method used the

joint positions and calculated the deviations from the expected

values to determine the occurrence of collision. However, joint

values are typically noisy and not a good factor to differentiate

between normal motion and small instabilities. There has

also been considerable work on designing omni-directional

walks that are more stable [10]. However, the occurrence of

collision and slippage cannot be avoided. Instability is all the

more important on biped platforms because recovery from

falls can be a time-consuming process. More recently, Mericli

and Veloso [20] proposed an approach based on real-time

corrective feedback, which can be mapped to the changes



(a) Image 1 (stable). (b) Image 2 (unstable). (c) Image 3 (unstable). (d) Image 4 (unstable).

Fig. 4: (a) Snapshot of a robot during a stable walk; (b)-(d) Three snapshots of the detected instabilities. Here the robot is pushed in different
directions as it is walking on the field. Detected instabilities are indicated by lighting up the LEDs in the eyes and chest.

in sensor values when the robot is unstable. In dynamic

domains such as robot soccer, supervised learning is not the

most appropriate approach because different models may be

required for different robots and different surfaces. This paper

therefore presents an approach that enables a humanoid robot

to autonomously learn predictive models based on samples

collected online, and to use these models in the team coordi-

nation strategy.

V. CONCLUSIONS

Stable motion is a key requirement for humanoid soccer

robots. However, given the dynamic nature of the domain,

collisions, slippages and other instabilities cannot always be

avoided despite extensive research in stable bipedal locomo-

tion and collision avoidance. In addition, the time spent in

recovering from such instabilities can provide a significant

advantage to the opponents, unless the other robots in the team

re-organize themselves appropriately to perform the desired

roles. This paper described a method that enables a humanoid

robot to learn a predictive model in order to robustly detect

all occurrences of instabilities. The robot automatically gen-

erates labeled samples to learn the parameters of this model.

Furthermore, each robot uses the communicated estimates of

such instabilities in the team coordination strategy.

The SVM models learned in this work use the data obtained

from the accelerometers and gyroscopes. The input vector can

be augmented to include other sensors such as the ultrasound

sensors (or even vision). The robot will then build a model

that detects and avoids situations that are likely to result in a

collision or fall, and responds to the unavoidable instabilities

caused by collisions and slippages. The goal would be prevent

the falls that cause physical damage and require a time-

consuming recovery process. A dynamic balancing strategy

can also be incorporated to enable smoother recovery from

such instabilities. Using such a rich representation of sensory

inputs and a better recovery scheme will also contribute

towards a more robust team coordination strategy. Ultimately,

the goal is to enable a team of humanoid robots to collaborate

effectively in the presence of a variety of instabilities and

changes in the environment.

ACKNOWLEDGMENT

The authors would like to thank the members of the TT-UT

Austin Villa team for their efforts in developing the soccer-

playing software used to run the experiments reported in this

paper. This research was supported in part by the ONR Science

of Autonomy award N00014-09-1-0658.

REFERENCES

[1] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa, “Robocup:
The Robot World Cup Initiative,” in ICRA, February 1997, pp. 340–347.

[2] SPL, “The robosoccer standard platform league,” 2008, www.tzi.de/spl/.
[3] Nao, “The aldebaran nao robots,” 2008, www.aldebaran-robotics.com/.
[4] J. Casper and R. R. Murphy, “Human-robot interactions during urban

search and rescue at the wtc,” in Transactions on SMC, 2003.
[5] M. A. Goodrich and A. C. Schultz, “Human-Robot Interaction: A Sur-

vey,” Foundations and Trends in Human-Computer Interaction, vol. 1,
no. 3, pp. 203–275, 2007.

[6] J. Hoey, P. Poupart, A. Bertoldi, T. Craig, C. Boutilier, and A. Mihailidis,
“Automated Handwashing Assistance for Persons with Dementia using
Video and a Partially Observable Markov Decision Process,” Computer

Vision and Image Understanding, vol. 114, no. 5, pp. 503–519, 2010.
[7] S. Thrun, “Stanley: The Robot that Won the DARPA Grand Challenge,”

Journal of Field Robotics, vol. 23, no. 9, pp. 661–692, 2006.
[8] J. Pratt and B. Krupp, “Design of a Bipedal Walking Robot,” in

Proceedings of the SPIE, 2008.
[9] J. Rebula, F. Canas, J. Pratt, and A. Goswami, “Learning Capture Points

for Humanoid Push Recovery,” in ICHR, 2007.
[10] T. Röfer and Others, “B-human team report and code release,”

2010, only available online: http://www.b-human.de/file download/33/
bhuman10 coderelease.pdf.

[11] T. Hester, M. Quinlan, and P. Stone, “UT Austin Villa 2008: Standing on
Two Legs. Technical Report UT-AI-TR-08-8,” The University of Texas
at Austin, Tech. Rep., 2008.

[12] M. Sridharan and X. Li, “Autonomous Information Fusion for Robust
Obstacle Localization on a Humanoid Robot,” in International Confer-

ence on Humanoid Robots, 2009.
[13] C. M. Bishop, Pattern Recognition and Machine Learning. Springer-

Verlag New York, 2008.
[14] C. Cortes and V. Vapnik, “Support-Vector Networks,” Machine Learning,

vol. 20, no. 3, pp. 273–297, 1995.
[15] C.-C. Chang and C.-J. Lin, LIBSVM: A Library for Support Vector Ma-

chines, 2001, software available at: http://www.csie.ntu.edu.tw/∼cjlin/
libsvm.

[16] R. J. Quinlan, C4.5: Programs for Machine Learning. Morgan
Kaufmann, 1993.

[17] R. Fierro, A. Das, J. Spletzer, J. Esposito, V. Kumar, J. P. Ostrowski,
G. Pappas, C. J. Taylor, Y. Hur, R. Alur, I. Lee, G. Grudic, and
B. Southall, “A Framework and Architecture for Multi-Robot Coordi-
nation,” International Journal of Robotics Research, vol. 21, no. 10-11,
pp. 977–995, October-November 2002.

[18] T. Mericli, C. Mericli, and H. L. Akin, “A Robust Statistical Collision
Detection Framework for Quadruped Robots,” in RoboCup 2008: Robot

Soccer World Cup XII. Berlin, Heidelberg: Springer-Verlag, 2009, pp.
145–156.

[19] M. J. Quinlan, C. L. Murch, R. H. Middleton, and S. K. Chalup,
“Traction Monitoring for Collision Detection with Legged Robots,” in
RoboCup 2003 Symposium. Springer, 2003, pp. 374–384.

[20] C. Mericli and M. Veloso, “Biped Walk Learning Through Playback
and Corrective Demonstration,” in International Conference on Artificial

Intelligence, 2010.


