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Abstract. An open challenge to the widespread deployment of mobile robots in

the real-world is the ability to operate autonomously in dynamic environments.

Such autonomous operation requires full utilization of the relevant sensory inputs

to adapt to environmental changes. Despite being a rich source of information, vi-

sion is however, still under-utilized in robot domains because of the sensitivity to

environmental changes and the computational complexity of visual input process-

ing algorithms. This paper enables a mobile robot to better utilize the visual input to

navigate safely in dynamic environments—it describes a novel algorithm that: (a)

uses local image gradient cues to characterize target objects reliably and efficiently;

and (b) uses temporal correspondence of visual cues for robust localization and

tracking of environmental obstacles. Furthermore, the information extracted from

these visual cues is merged effectively with information obtained from other visual

cues and range sensors, using autonomously learned error models of the different

information processing schemes. All algorithms are fully implemented and tested

on a humanoid robot in dynamic indoor environments.

Keywords. Machine Learning and Adaptivity, Perception, Humanoid Robotics,

Robust Sensor Fusion.

1. Introduction

The ready availability of high-fidelity sensors [3] and the development of sophisti-

cated algorithms has resulted in the deployment of mobile robots in several applica-

tions [2,5,14,23]. However, one key challenge to the widespread deployment of mobile

robots is the ability to operate autonomously by adapting to environmental changes. Each

sensor mounted on a mobile robot has a limited field of view, and the sensory inputs can

be processed using algorithms with different levels of uncertainty. Images from a camera,

for instance, are a richer source of information than range finders. However, the visual

input is more noisy and the visual information processing algorithms are computation-

ally expensive. As a result, the high-level decisions in many robot applications are still

based on non-visual sensory inputs [23]. In addition, it is not feasible for a robot to pro-

cess all the sensory inputs and still respond in real-time to dynamic changes such as the

movement of objects or a change in the illumination. At the same time, relevant sensory

inputs need to be utilized in order to respond autonomously to such changes. A body

of impressive work exists on vision-based learning—see [20] for a survey, and planning

of visual processing [21]. However, very few methods are computationally efficient, au-
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tonomous and able to model the uncertainty of robot domains. Similarly, though sen-

sor fusion has been studied in different fields [1,13], many robot domains use manually

specified heuristics for merging sensory inputs [23].

The above-mentioned challenges are offset by the presence of a moderate amount

of structure in many robot domains, which can be used to operate autonomously. Our

prior work enabled a mobile robot to learn error models of different sensory input pro-

cessing algorithms, and to use these models to effectively merge the extracted informa-

tion [19]. However, color was used as the primary visual feature to characterize objects

of interest. This paper enables a mobile robot to better utilize visual input by: (a) using

a combination of an efficient gradient feature detector (MSER [8]) and a reliable feature

descriptor (SIFT [7]) to characterize target objects; and (b) using temporal visual cues to

robustly localize and track the desired objects. The local, temporal and color-based vi-

sual cues are merged with range information, using the existing autonomous information

fusion scheme. All algorithms are implemented on humanoid robots (Naos [11]) for safe

navigation in dynamic environments.

The remainder of the paper is organized as follows. Section 2 briefly reviews some

related work. Section 3 presents the proposed method based on local and temporal visual

cues, in addition to the overall information fusion strategy. The experimental setup and

results are described in Section 4, followed by the conclusions in Section 5.

2. Related Work

This section describes related work on the use of local and temporal visual cues, in

addition to instances of integrated robots systems deployed in real-world applications.

Vision research has resulted in the development of several methods that use local

visual cues for tasks such as object recognition [4] and robot localization [17]. These

approaches are based on local gradient descriptors designed to be invariant to scale,

orientation, affine transformations and illumination [7,8,9]. A recent comparison of these

techniques [25] has shown that SIFT [7] provides the most reliable performance, while

MSER [8] provides the highest efficiency. Other recent methods such as FERN [12] have

used simpler features for efficient operation, but require extensive training.

Mobile robots are increasingly being deployed in real-world applications such

as disaster rescue and human-robot interaction [2,5,14,23]. This deployment is a re-

sult of sophisticated algorithms, for instance for the control and balance of humanoid

robots [15,16]. Specific algorithms have also been designed to enable mobile robots to

use image gradients [17], stereo input [6] and other visual cues [20]. The visual informa-

tion is typically fused with range information, based on sensor fusion research in fields

such as networks and multiagent systems [1,13]. However, high-level decisions in many

robot applications are still based on non-visual sensors because the visual input is sensi-

tive to environmental changes, and visual input processing algorithms are computation-

ally expensive. However, prior work has shown that a robot can use visual input to au-

tonomously adapt to environmental changes [20], and that incorporating temporal cues

results in robust performance in tasks such as navigation [10]. This paper therefore uses

temporal and local image cues to robustly characterize and localize the desired target

objects, in order to navigate safely in dynamic indoor environments.

3. PROPOSED APPROACH

This section describes the test scenario and robot platform, the proposed approach to

characterize and localize target objects, and the information fusion scheme.
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(a) Overall Test Scenario. (b) Robot Soccer Domain. (c) Robots.

Figure 1. (a) The overall human-robot collaboration scenario; (b) The robot soccer framework; and (c) Robot

platforms: wheeled and humanoid.

3.1. Test Scenario and Robot Platform

The work described in this paper is part of a project that enables mobile robots to monitor

the elderly in indoor scenarios—Figure 1(a). This scenario requires processing manage-

ment (i.e. tailoring sensing and processing to the task) and bootstrap learning (i.e. learn-

ing and adaptation using sensory inputs). This paper presents an instance of bootstrap

learning using local and temporal visual cues.

Though the scenario uses both robot platforms shown in Figure 1(c), the experiments

reported in this paper use the Nao [11], a 58cm tall humanoid robot with 23 degrees of

freedom—see Figure 1(b). The primary sensors are two color cameras, though only one

camera can be used at a time. Each camera has a 58o diagonal field of view and provides

images at a resolution of 640 × 480, 320 × 240 or 160 × 120. There are two ultrasound

sensors in the chest, each with a 60o field of view, other sensors (e.g., accelerometers,

bump sensors) and Wi-Fi to communicate with other robots or an off-board PC. All pro-

cessing is typically performed in real-time (30Hz) on board the robot, using a 500MHz

CPU. One popular application domain for the Naos is the Standard Platform League of

RoboCup [18], a research initiative with the goal of creating a team of humanoid robots

that can beat the champion human soccer team by the year 2050. Scenarios were set

up in indoor offices and the robot soccer framework to simulate the challenges related

to autonomous vision, navigation and coordination, which need to be addressed in the

scenario of Figure 1(a). The task is to navigate safely in the presence of stationary and

moving obstacles. The robot uses different visual cues and range information to robustly

localize the obstacles, i.e., to compute their relative distance and bearing. This paper

uses moving robots as the representative “obstacles”, but the techniques are applicable

to other environmental objects, robot platforms and application domains.

3.2. Image Gradient-based Obstacle Detection

Features based on local image gradients are being used extensively in computer vision re-

search to characterize and hence recognize the desired objects [7,8,9]. These approaches

are aimed at being robust to one or more factors such as scale, orientation, affine transfor-

mations, illumination and viewpoint. All such methods have two components: a detector

that uses second-order gradients to extract keypoints, i.e., image regions that are consis-

tent across variations in the viewing conditions; and a descriptor that identifies the ap-

pearance of each such extracted region compactly. Objects of interest are represented by

a database of feature descriptors generated from a set of images, and features extracted

from test images are compared with this database for classification.

Experimental comparison of the existing detectors and descriptors [25] has shown

that the MSER (Maximally Stable Extremal Regions) detector efficiently identifies a

small set of unique regions [8], while the 128-dimensional SIFT descriptor provides the

most reliable performance [7]. Figures 2(a)–2(d) show images with keypoints detected



(a) SIFT example 1. (b) MSER example 1. (c) SIFT example 2. (d) MSER example 2.

Figure 2. (a),(c) Keypoints detected with DoG+SIFT; (b),(d) Keypoints detected with MSER. MSER finds

more distinctive keypoints.

using MSER and the default SIFT technique that uses a Difference of Gaussian (DoG)

detector—MSER finds a smaller set of more distinctive image regions. This paper com-

bines these two approaches to characterize objects reliably and efficiently.

The DoG detector for SIFT is implemented in scale-space and has four parameters:

(x, y) denote the location of the detected region, σ represents the scale-space for the

detector, and θ is the orientation. MSER finds elliptical covariant regions on level sets

of the image and has five parameters: (x, y) denote the location of the detected region,

(a, b) represent the region as an ellipse, and c represents the ellipse’s orientation. The

DoG defines the scale space of an image as the function:
L(x, y;σ) = G(x, y;σ) ⊗ I(x, y) (1)

which is the convolution of a variable-scale Gaussian G(x; y;σ) with the image I(x; y).
The parameter σ defines the range of the mask and hence that of the detector. The MSER

representation can be transformed to that its DoG equivalent in two ways:

σ = K ·
√

(a2 + b2) or max(a, b) (2)

These options are compared in Section 4.2. However, the orientation c in MSER cannot

be used for DoG whose θ is computed from the orientation histogram in the Gaussian

smoothed image. The new orientation in scale-space is hence computed after estimating

σ. In this paper, a small set of unique MSER features are hence extracted from image

regions with the target object. Next, the equivalent DoG representations are obtained and

the SIFT descriptors are computed to build the training database of object features. A

similar database is built for the environment. A test image region with sufficient number

of features similar to the database of obstacle features can be labeled as an obstacle

location. The distance and bearing of the obstacle relative to the robot are computed using

coordinate transforms that consider the robot’s joint angles and compare the physical size

of the obstacle with the size of the image region in pixels—see [22]. One key difference

is that the training database is learned, as described in Section 4.1.

3.3. Information Fusion

As with other robot platforms, the Nao has multiple information processing schemes:

(a) Ultrasound (US): each ultrasound sensor computes object distance up to 150cm—the

bearing information is limited to direction (left and/or right) in a 60o cone; (b) Vision-

Color (VC): color segmented image regions are used to detect objects; and (c) MSER-

SIFT (VM): local image gradients are used to detect objects.

The moving obstacles (i.e., other robots) have red or blue parts arranged in a pattern

on the shoulder, head, chest and arms. VC localizes the obstacles by detecting patterns

of a suitable color, and computing relative distance and bearing using the coordinate

transforms used for VM. However, VC only works from viewpoints where the uniform
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Figure 3. (a) Gaussian model used in the measurement update of the Kalman filter; and (b) Pictorial represen-

tation of the temporal scheme for distance estimation.

patterns are visible, and it is reliable only up to a distance of ≈ 2m as against ≈ 4m with

VM. In addition, VC and VM compute distance by comparing the known object size with

the detected size in image pixels: noise in segmentation or feature detection can hence

introduce errors. In terms of computation, US and VC are inexpensive, while VM is

expensive. Typically, heuristic constraints are imposed on when and how the information

from each of these schemes should be used. Instead, this paper builds on prior work [19]

to enable a mobile robot to model the errors in the processing schemes, and use the

models to merge the available information. The key differences are: (a) the use of local

and temporal visual cues in addition to the color and range input; and (b) the robust

localization and tracking of moving obstacles in complex scenarios.

The information fusion algorithm associates each obstacle estimate with a Kalman

Filter [24]. The existing estimates are first adjusted to account for the robot’s (and ob-

stacle’s) motion since the previous update, and stale estimates are removed. Each pro-

cessing scheme then identifies obstacles and computes the distances and bearings. Next,

similar measurements are grouped using the learned error models—if the difference in

measurements from two schemes is more than the corresponding expected errors, they

are not grouped. A single estimate is then computed for each group:

dj =
∑

i

w
j
d,id

j
i , θj =

∑

i

w
j
θ,iθ

j
i (3)

where the distance and bearing to the jth obstacle in the current frame (dj , θj) are the

weighted average of the individual measurements (i ∈ {US, V C, V M}). The weights

associated with the values from the ith source (wd,i and wθ,i) are based on the predicted

measurement errors. The individual and merged estimates from the current frame are

then merged with existing Kalman filter estimates from prior frames or tracked as new

estimates. This grouping and merging scheme performs much better than directly using

the measured values in the Kalman filters and manually tuning the error models. Fig-

ure 3(a) shows the Kalman filter representation of a new estimate: the errors (i.e. axes

widths l1, l2 of the Gaussian) are based on the measurements (d, α), robot velocity and

obstacle velocity. Section 4.1 describes the learning of the error models.

3.4. Bootstrap Learning with Temporal Cues

MSER-SIFT uses a smaller set of unique features (compared to SIFT) to represent the

target object. Noise in the feature extraction can hence cause errors in the measured size

of the obstacle region in the image, leading to errors in the measured distance to the

obstacle. The error in bearing is not as significant due to the limited field of view of



the robot. Segmentation errors can cause similar errors in VC. Temporal visual cues are

hence used to achieve reliable localization of the obstacles.

Consider the situation in Figure 3(b): at time tn−1 the robot at position A detects

an obstacle at bearing θn−1 at point C (distance estimate is noisy). At time tn, the robot

has moved to point B and it detects an obstacle at point D at relative bearing θn. If the

associated Kalman filters consider the two measurements to be close enough to represent

the same obstacle, the corrected distance h2 from the obstacle to the robot’s direction of

motion can be computed:

h1 = (a + b) · tan(θn−1); h2 = (a − x) · tan(θn); h1 = h2 − y (4)

=⇒ h2 = tan(θn) ·
tan(θn−1) · b + tan(θn−1) · x + y

tan(θn) − tan(θn−1)

where b is the displacement of the robot between time tn−1 and tn; and x, y represent

the obstacle’s local motion. The velocity of the obstacle is assumed to be a constant until

it is estimated by the robot. As the measurements are corrected, the robot can measure

obstacle velocity more accurately, thereby accurately localizing the obstacle, which in

turn enables the robot to measure the distance and track the obstacle robustly. This ability

to bootstrap is a key advantage of the temporal scheme that is used with VM and VC in

the information fusion algorithm (Section 3.3).

4. Experiment Setup and Results

This section describes the learning of the error models of the processing schemes and the

training database of MSER-SIFT features, followed by the experimental results.

4.1. Bootstrap Learning of Models

The weighted merging of the individual measurements in Section 3.3 uses models that

predict the measurement errors of the processing schemes. In order to learn these pre-

dictive models, obstacles are placed on the field at positions that are known to the robot,

and the robot moves through a sequence of poses (position+orientation) that it can reach

accurately. The robot segments input images using a color map that maps pixels to nu-

merical color labels. Contiguous regions of the same color are grouped into regions that

are used to detect objects. Measured distances and bearings to these objects are used for

global localization. At each pose, the robot then compares the actual distance and bearing

to the known obstacle locations against the measured values. The error values are used

to estimate the parameters of a polynomial function approximator (degree, coefficients)

that is then used to predict the error as a function of the measured distance and bearing.

The weights in Equation 3 are inversely proportional to this expected error.

At each pose, the robot also projects the known positions of the obstacles within the

field of view of the camera, to the image. The MSER-SIFT features extracted from the

corresponding image regions are used to train a database of features that represent the

obstacles. A similar database is created for the background and other obstacle categories

(e.g., humans). The robot also estimates other properties such as the actual size of the

obstacle regions that can be detected in the image. In addition, the color map used for

segmentation is learned autonomously [20]. The map of the world, though currently

provided manually, can be learned by the robot.
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Table 1. Accuracy (%) with K = 1.3.
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Obs 93.0 7.0

Obs 19.3 80.7

Table 2. Accuracy (%) using max().

4.2. Automatic Parameter Tuning

The modeling of objects using MSER-SIFT gradient features involves the certain pa-

rameters, which are tuned automatically during the bootstrap learning described above.

Feature descriptors extracted from a set of 30 images each with and without obstacles are

used to generate the training database. These images contain obstacles at different scales

and orientations. A validation set is obtained by extracting feature descriptors from a dif-

ferent set of 50 images each with and without obstacles. Feature vectors that are similar

are eliminated by computing the ratio of distances between closest and second-closest

neighbor of each feature vector [7].

As mentioned in Equation 2 in Section 3.2, there are two ways to compute the σ

to transform the MSER representation to an equivalent DoG representation. Tables 1, 2

summarize the best results obtained with the two options, in the standard “confusion

matrix” format—for e.g., Obs|Obs represents the true positives (obstacles classified as

obstacles). Based on these results, all experiments use the first option with K = 1.3.

A nearest neighbor approach is used to detect obstacles in test images. Each ex-

tracted feature (descriptor) in the test image is assigned a class label (obstacle, back-

ground) by computing the most similar feature vector in the trained database of obstacle

and background features—the euclidean distance is used as the similarity measure. If

the number of test image features that match the trained database of obstacle features

is above a threshold, the corresponding image region is considered to be the location of

an obstacle. The best value of this threshold is estimated by computing the classification

accuracy over the validation set, for different values of the threshold. Figure 4 shows

a pictorial representation of the classification accuracy as a function of the number of

matched features—the best performance occurs at a threshold of 5, and Figure 5 shows

the corresponding classification accuracy.
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Figure 4. Accuracy vs. no. of matched features.
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Figure 5. Accuracy (%) when no. of matched

features = 5.

4.3. Experimental Results

The following hypotheses were evaluated: (H1) MSER-SIFT gradient cues enable reli-

able and efficient recognition of the target object; (b) temporal visual cues increase re-

liability of obstacle localization; and (c) the information fusion scheme enables reliable

tracking of the (moving) obstacles. The experimental setup consisted of stationary (e.g.,

desks) and moving (e.g., other robots) obstacles in dynamic scenarios such as indoor of-



Method Testing Time (msec) Training Time

MSER-SIFT 121.4 ± 35.3 86.5 ± 13.5 msec

SIFT 413.2 ± 72.1 153.7 ± 16.7 msec

FERN 40.7 ± 14.8 26.5 ± 0.3 sec

Table 3. MSER-SIFT takes longer

than FERN during testing but is signif-

icantly faster during training.

Method Obs|Obs(%) Obs|Obs(%)

MSER-SIFT 86.8 ± 6.14 87.2 ± 1.75

SIFT 64.6 ± 3.03 81.5 ± 4.7

FERN 85.6 ± 4.20 67.8 ± 4.47

Table 4. Accuracy of the different techniques. MSER-SIFT provides the best performance.

fices and the robot soccer field. Once the obstacles are localized, navigation is based on

artificial potential fields, as described in our earlier work [22].

In order to evaluate H1, the MSER-SIFT approach was compared against the default

SIFT approach and the method called FERN [12], on a test set of 300 images, with

150 images each with and without obstacles. The evaluation measures used were the

accuracy of classification (i.e., reliability) and the running time (i.e., efficiency). The

training databases were set up for all three approaches in a similar fashion. From the test

set, 200 images were chosen at random for evaluation, and the process was repeated 10
times to obtain the results in Tables 3, 4.

Table 3 shows that MSER-SIFT is significantly faster than SIFT, because it detects

a smaller set of more unique features. FERN is the fastest during testing because it uses

simpler features. However, unlike MSER-SIFT or SIFT, FERN takes several seconds per

image to learn the training database, making incremental revisions infeasible. Table 4

compares the methods in terms of their classification accuracy. MSER-SIFT recognizes

obstacles and rejects non-obstacles better than the other two methods. Based on Ta-

bles 3, 4, MSER-SIFT is used to characterize the obstacles in all subsequent experiments.

In order to evaluate H2, obstacles were placed at different distances from the robot,

with the minimum distance being greater than the maximum range of the ultrasound

sensors (1.5m). Then, as the obstacle moved randomly, the robot used temporal cues to

correct the distance measurements, as described in Section 3.4. When only MSER-SIFT

features were used to compute the distances, the average measurement error over 50
trials was 87.4± 45.1cm, making it infeasible to use VM-based distance measurements.

However, when temporal cues were included, the error is much smaller: 21.7 ± 18.5cm,

and VM-based distances can be used in the information fusion scheme.

Finally, Table 5 evaluates H3— it summarizes the distance error, bearing error

and classification accuracy of the processing schemes (US, VC, VM, US+VC+VM).

Obstacles placed at different locations performed specific displacements, and the robot

walked through fixed poses, using color-coded objects and a learned map of the world

for global localization. The distance and bearing errors were computed over 15 trials for

20 different obstacle positions where the obstacles were detected correctly. The detec-

tion accuracy was computed over 400 images captured during this testing process—the

ground truth was provided manually. The individual processing schemes have different

drawbacks (e.g. VM provides accurate bearings but noisy distance measurements). How-

ever, a combination of these schemes fully exploits the relevant information, resulting in



Scheme Error Accuracy(%)

Distance (cm) Bearing (deg)

Ultrasound (US) 6.5 ± 3.6 −− 70

Vision-Color (VC) 17.5 ± 8.7 8.5 ± 4.0 81.5

MSER-SIFT (VM) 87.4 ± 45.1 1.8 ± 1.5 86.1

US + V C + V M 9.0 ± 4.9 4.8 ± 4.1 92.4

Table 5. The distance and bearing errors, and the detection accuracy of the processing schemes.

(a) Image 1. (b) Image 2. (c) Image 3. (d) Image 4.

Figure 6. (a)–(d) Obstacle localization with MSER-SIFT; detected obstacles are enveloped in pink rectangles.

low measurement errors and high classification accuracy. In order to meet the computa-

tional constraints of the test platform, VM is run only once every second. However, the

same algorithm has been evaluated on a wheeled robot platform with additional com-

putational resources, resulting in a much faster (and smoother) performance while pro-

viding similar reliability. Finally, Figures 6(a)–6(d) show images with rectangular boxes

depicting the obstacles detected using all available cues. Additional images and videos

can be viewed on the authors’ web-sites.

5. Conclusions And Future Work

A key challenge to the widespread deployment of mobile robots is the ability to fully

exploit the relevant sensory inputs to operate autonomously in dynamic environments.

This proposed algorithm enables a mobile robot to better exploit the available visual

information to navigate safely in the presence of mobile obstacles in dynamic indoor

environments. The robot characterizes the desired objects using local image gradient

cues and temporal visual cues, and effectively merges the corresponding information

with other visual cues and range information.

One direction of future work is to apply the proposed method to the overall test sce-

nario of Figure 1(a), using different robot platforms—see Figure 1(c). In such a dynamic

scenario, the robots will have to incrementally revise the trained database in response to

changes in the obstacle configurations and environmental factors. In addition, other sen-

sory inputs and information processing schemes can be included, and the sensing and in-

formation processing can be tailored to the task at hand [21]. Furthermore, the approach

can be extended to a team of robots that share information in order to collaborate robustly

towards a common objective.

Though this paper focuses on the task of safe indoor navigation, it provides the

tools that can be used in many other domains. In addition, the results show that a mo-

bile robot can operate autonomously by bootstrapping off of the learned models of envi-

ronmental objects and visual features. The long-term goal is to enable mobile robots to

autonomously learn environmental models, effectively merge information obtained from

different sources, and operate robustly in real-world application domains.
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