
In The International Conference on Automated Planning and Scheduling (ICAPS 08),
Sydney, Australia, September 14-18, 2008.

HiPPo: Hierarchical POMDPs for Planning Information Processing and Sensing
Actions on a Robot

Mohan Sridharan and Jeremy Wyatt and Richard Dearden
University of Birmingham, UK
{mzs,jlw,rwd}@cs.bham.ac.uk

Abstract

Flexible general purpose robots need to tailor their visual pro-
cessing to their task, on the fly. We propose a new approach to
this within a planning framework, where the goal is to plan a
sequence of visual operators to apply to the regions of interest
(ROIs) in a scene. We pose the visual processing problem as
a Partially Observable Markov Decision Process (POMDP).
This requires probabilistic models of operator effects to quan-
titatively capture the unreliability of the processing actions,
and thus reason precisely about trade-offs between plan ex-
ecution time and plan reliability. Since planning in practical
sized POMDPs is intractable we show how to ameliorate this
intractability somewhat for our domain by defining a hier-
archical POMDP. We compare the hierarchical POMDP ap-
proach with a Continual Planning (CP) approach. On a real
robot visual domain, we show empirically that all the plan-
ning methods outperform naive application of all visual op-
erators. The key result is that the POMDP methods produce
more robust plans than either naive visual processing or the
CP approach. In summary, we believe that visual processing
problems represent a challenging and worthwhile domain for
planning techniques, and that our hierarchical POMDP based
approach to them opens up a promising new line of research.

Introduction
Current robot visual systems are designed by hand for spe-
cific visual tasks, for specific robots, to run in specific if
challenging domains. If we are to achieve more general pur-
pose robots we need to develop methods by which a robot
can tailor its visual processing on the fly to match its cur-
rent task. While there exists a body of impressive work on
planning of image processing (Clouard et al. (1999); Thon-
nat and Moisan (2000); Moisan (2003); Li et al. (2003)), it
is largely used for single images, requires specialist domain
knowledge to perform re-planning or plan repair, has only
been extended to robotic systems in the most limited ways,
and poses the problem in an essentially deterministic plan-
ning framework or as a MDP (Li et al. (2003)). In this paper
we push the field of planning visual processing in a new di-
rection by posing the problem as an instance of probabilistic
sequential decision making. We pose it as a Partially Ob-
servable Markov Decision Process (POMDP), thereby tak-
ing explicit, quantitative account of the unreliability ofvi-
sual processing. Our main technical contribution is that we
show how to contain one aspect of the intractability inher-

ent in POMDPs for this domain by defining a new kind of
hierarchical POMDP. We compare this approach with a for-
mulation based on the Continual Planning (CP) framework
of Brenner and Nebel (2006). Using a real robot domain,
we show empirically that both planning methods are quicker
than naive visual processing of the whole scene, even tak-
ing into account the planning time. The key benefit of the
POMDP approach is that the plans, while taking slightly
longer to execute than those produced by the CP approach,
provide significantly more reliable visual processing thanei-
ther naive processing or the CP approach.

In our domain, both a robot and human can converse
about and manipulate objects on a table top (see Hawes et
al. (2007)). Typical visual processing tasks in this domain
require the ability to find the color, shape identity or cate-
gory of objects in the scene to support dialogues about their
properties; to see where to grasp an object; to plan an obsta-
cle free path to do so and then move it to a new location; to
identify groups of objects and understand their spatial rela-
tions; and to recognize actions the human performs on the
objects. Each of these vision problems is hard in itself, to-
gether they are extremely challenging. The challenge is to
build a vision system able to tackle all these tasks. One early
approach to robot vision was to attempt a general purpose,
complete scene reconstruction, and then query this model
for each task. This is still not possible and in the opinion
of many vision researchers will remain so. An idea with
a growing body of evidence from both animals and robots
is that some visual processing can be made more effective
by tailoring it to the task/environment (Lee (1980); Horswill
(1993); Land and Hayhoe (2001). In this paper we ask how,
given a task, a robot could infer what visual processing, of
which areas of the scene, should be executed.

Consider the scene in Figure 1, and consider the types of
visual operations that the robot would need to perform to an-
swer a variety of questions that a human might ask it about
the scene: “is there a blue triangle in the scene?”, “what is
the color of the mug?”, “how many objects are there in the
scene?”. In order to answer these questions, the robot has
at its disposal a range of information processing functions
and sensing actions. But, in any reasonably complex sce-
nario (such as the one described above), it is not feasible
(and definitely not efficient) for the robot to run all available
information processing functions and sensing actions, espe-

Figure 1: A picture of the typical table top scenario—ROIs
bounded by rectangular boxes.

cially since the cognitive robot system needs to respond to
human queries/commands in real-time.

The remainder of the paper is organized as follows: we
first pose the problem in two ways: as a probabilistic plan-
ning problem, and as a continual planning problem. We
show how some visual operators with relatively simple ef-
fects can be modeled using planning operators in each
framework. We also show how to make the POMDP ap-
proach more tractable by defining a hierarchical POMDP
planning system called HiPPo. After presenting the results
of an empirical study, we briefly describe some related work
and discuss future research directions.

Problem Formulation
In this section, we propose a novel hierarchical POMDP
planning formulation. We also briefly present the Contin-
ual Planning (CP) framework with which we compare our
method. For ease of understanding, we use the example
of an input image from the table-top scenario that is pre-
processed to yield two regions of interest (ROIs), i.e. two
rectangular image regions that are different from a previ-
ously trained model of the background. Figure 1 shows an
example of ROIs extracted from the background.

Consider the query: “which objects in the scene are
blue?” Without loss of generality, assume that the robot has
the following set of visual actions/operators at its disposal: a
color operator that classifies the dominant color of the ROI
it is applied on, ashapeoperator that classifies the dominant
shape within the ROI, and asift operator (Lowe (2004)) to
detect the presence of one of the previously trained object
models. The goal is to plan a sequence of visual actions that
would answer the query with high confidence. Throughout
this paper, we use the following terms interchangeably: vi-
sual processing actions, visual actions, and visual operators.

A Hierarchical POMDP
In robot applications, typically the true state of the world
cannot be observed directly. The robot can only revise its
belief about the possible current states by executing actions,
for instance one of the visual operators.

We pose the problem as an instance of probabilistic
sequential decision making, and more specifically as a
Partially Observable Markov Decision Process (POMDP)
where we explicitly model the unreliability of the visual op-
erators/actions. This probabilistic formulation enablesthe
robot to maintain a probability distribution (thebelief state)

over the true underlying state. To do this we need an ob-
servation model that captures the likelihood of the outcomes
from each action. In this paper, we only consider actions that
have purely informational effects. In other words, we do not
consider actions such as poking the object to determine its
properties, with the consequence that the underlying state
does not change when the actions are applied. However, the
POMDP formulation allows us to do this, which is neces-
sary if we wish to model the effects of operators that split
ROIs, move the camera, or move the objects to gain visual
information about them.

Each action considers the true underlying state to be com-
posed of the normal class labels (e.g.red(R), green(G),
blue(B)for color;circle(C), triangle(T), square(S)for shape;
picture, mug, boxfor sift), a label to denote the absence of
any object/valid class—empty(E), and a label to denote the
presence ofmultipleclasses (M). The observation model for
each action provides a probability distribution over the set
composed of the normal class labels, the class labelempty
(E) that implies that the match probability corresponding
to the normal class labels is very low, andunknown(U) that
means that there is no single class label to be relied upon and
that multiple classes may therefore be present. Note thatU
is an observation, whereasM is part of the underlying state:
they are not the same, since they are not perfectly correlated.

Since visual operators only update belief states, we in-
clude “special actions” that answer the query by “saying”
(not to be confused with language-based communication)
which underlying state is most likely to be the true state.
Such actions cause a transition to a terminal state where no
further actions are applied. In the description below, for ease
of explanation (and without loss of generality) we only con-
sider two operators:color andshape, denoting them with
the subscriptsc, s respectively. States and observations are
distinguished by the superscriptsa, o respectively.

Consider a single ROI in the scene—it has a POMDP as-
sociated with it for the goal of answering a specific query.
This POMDP is defined by the tuple〈S,A, T ,Z,O,R〉:

• S : Sc × Ss ∪ term, the set of states, is a carte-
sian product of the state spaces of the individual ac-
tions. It also includes aterminal state (term). Sc :
{Ea

c , Ra
c , Ga

c , Ba
c ,Mc}, Ss : {Ea

s , Ca
s , T a

s , Sa
s ,Ms}

• A : {color, shape, sRed, sGreen, sBlue} is the set of
actions. The first two entries are the visual processing ac-
tions. The rest are special actions that represent responses
to the query such as “say blue”, and lead toterm. Here
we only specify “say” actions for color labels, but others
may be added trivially.

• T : S×A×S → [0, 1] represents the state transition func-
tion. For visual processing actions it is an identity matrix,
since the underlying state of the world does not change
when they are applied. For special actions it represents a
transition toterm.

• Z : {Eo
c , Ro

c , G
o
c , B

o
c , Uc, E

o
s , Co

s , T o
s , So

s , Us} is the set
of observations, a concatenation of the observations for
each visual processing action.

• O : S×A×Z → [0, 1] is the observation function, a ma-

trix of size |S| × |Z| for each action under consideration.
It is learned by the robot for the visual actions (described
in the next section), and it is a uniform distribution for the
special actions.

• R : S × A → ℜ, specifies the reward, mapping from the
state-action space to real numbers. In our case:

∀s ∈ S, R(s, shape) = −1.25 · f(ROI-size)

R(s, color) = −2.5 · f(ROI-size)

R(s, special actions) = ±100 · α

For visual actions, the cost depends on the size of the ROI
(polynomial function of ROI size) and the relative compu-
tational complexity (thecolor operator is twice as costly
asshape). For special actions, a large +ve (-ve) reward is
assigned for making a right (wrong) decision for a given
query. For e.g. while determining the ROI’s color:
R(Ra

cT a
s , sRed) = 100·α,R(Ba

c T a
s , sGreen) = −100·α

but while computing the location ofred objects:
R(Ba

c T a
s , sGreen) = 100 · α. The variableα enables

the trade-off between the computational costs of visual
processing and the reliability of the answer to the query.

In the POMDP formulation, given the robot’s belief state
bt at timet, the belief update proceeds as:

bt+1(s
′) =

O(s′, at, ot+1)
∑

s∈S T (s, at, s
′) · bt(s)

P (ot+1|at, bt)
(1)

whereO(s′, at, ot+1) = P (ot+1|st+1 = s′, at), bt(s) =
P (st = s), T (s, at, s

′) = P (st+1 = s′, at, st =
s), and P (ot+1|at, bt) =

∑

s′∈S

{

P (ot+1|s
′, at) ·

∑

s∈S P (s′|at, s) bt(s)
}

is the normalizer.
Our visual planning task for a single ROI now involves

solving this POMDP to find a policy that maximizes reward
from the initial belief state. Plan execution corresponds to
traversing a policy tree, repeatedly choosing the action with
the highest value at the current belief state, and updating the
belief state after executing that action and getting a partic-
ular observation. In order to ensure that the observations
are independent (required for Eqn 1 to hold), we take a new
image of the scene if an action is repeated on the same ROI.

Actual scenes will have several objects and hence sev-
eral ROIs. Attempting to solve a POMDP in the joint space
of all ROIs soon becomes intractable due to an exponential
state explosion, even for a small set of ROIs and actions.
For a single ROI withm features (color, shape, etc.) each
with n values, the POMDP has an underlying space ofnm;
for k ROIs the overall space becomes:nmk. Instead, we
propose ahierarchical decomposition: we model each ROI
with a lower-level (LL) POMDP as described above, and
use a higher-level (HL) POMDP to choose, at each step, the
ROI whose policy tree (generated by solving the correspond-
ing LL-POMDP) is to be executed. This decomposes the
overall problem into one POMDP with state spacek, and
k POMDPs with state spacenm. For the example of two
ROIs and the goal of finding theblue objects, the two LL-
POMDPs are defined as above, and the HL-POMDP is given
by: 〈SH ,AH , T H ,ZH ,OH ,RH〉, where:

A

A A A

A

A A A

. . .

. . .

.

.

.

O1
O2

Ok

O1
O2

Ok

Level: 0

Level: 1

Level: (N−1)

Level: N

sRed sBlue sRed

Figure 2: Policy Tree of an ROI—each node represents a
belief state and specifies the action to take.

• SH = {R1 ∧ ¬R2,¬R1 ∧ R2,¬R1 ∧ ¬R2, R1 ∧
R2} ∪ termH is the set of states. It represents the pres-
ence/absence of the object in one or more of the ROIs, i.e.
R1 ∧ ¬R2 means the object is really exists inR1 but not
in R2. It also includes a terminal state (termH).

• AH = {u1, u2, AS} are the actions. The sensing actions
(ui) denote the choice of executing one of the LL ROIs’
policy trees. The special actions (AS) represent the fact
of “saying” that one of the entries ofSH is the answer,
and they lead totermH .

• T H is the state transition function, which leads totermH

for special actions and is an identity matrix otherwise.

• ZH = {FR1,¬FR1, FR2,¬FR2} is the set of observa-
tions. It represents the observation of finding/not-finding
the object when each ROI’s policy tree is executed.

• OH : SH ×AH ×ZH → [0, 1], the observation function
of size|SH | × |ZH |, is an uniform matrix for special ac-
tions. For sensing actions, it is obtained from the policy
trees for the LL-POMDPs as described below.

• RH is the reward specification. It is a “cost” for each
sensing action, which is computed as described below.
For a special action, it is a large +ve value if it predicts
the true underlying state correctly, and a large -ve value
otherwise. For e.g.R(R1 ∧ R2, sR1 ∧ R2) = 100, while
R(R1 ∧ ¬R2, sR1 ∧ R2) = −100.

The computation of the observation function and the
cost/reward specification for each sensing action is based on
the policy tree of the corresponding LL-POMDP. As seen in
Figure 2, the LL-POMDP’s policy tree has the root node rep-
resenting the initial belief. At each node, the LL-POMDP’s
policy is used to determine the best action, and all possible
observations are considered to determine the resultant be-
liefs and hence populate the next level of the tree.

Consider the computation ofFR1 i.e. the probability that
the object being searched for (ablueobject in this example)
is “found” in R1 on executing the LL-POMDP’s policy tree.
The leaf nodes corresponding to the desired terminal action
(sBlue) are determined. The probability of ending up in each
of these leaf nodes is computed by charting a path from the
leaf node to the root node and computing the product of the
corresponding transition probabilities (the edges of the tree).

These individual probabilities are summed up to obtain the
total probability of obtaining the desired outcome in the HL-
POMDP. For our example of searching forblueobjects, this
can be formally stated as:

P (FR1) =
∑

in∈LeafNodes|action(in)=sBlue

P (in|π1, b0) (2)

P (in|π1, b0) = Π1
k=nP (ik|Parent(i)k−1)

where,ik denotes the nodei at levelk, Parent(i)k−1 is
the parent node of nodei at levelk − 1, andπ1 is the policy
tree corresponding to the ROIR1. We control computation
by forcing the LL-POMDP’s policy tree to terminate after
N levels, set heuristically based on the query complexity (x
= no. of object features being analyzed):Nmin + k · x,
where all branches have to take a terminal action. The en-
tries within the product term (Π) are the normalizers of the
belief update (Eqn 1):

P (ik|Parent(i)k−1) = (3)
∑

s′∈S

{

P (oik

Parent(i)k−1

|s′, aParent(i)k−1
)

·
∑

s∈S

P (s′|a, s) bParent(i)k−1
(s)

}

where oik

Parent(i)k−1

is the observation that transitions
to node ik from its parentParent(i)k−1, aParent(i)k−1

represents the action taken from the parent node, and
bParent(i)k−1

(s) is the belief state atParent(i)k−1.
The cost of a HL sensing action, sayu1, is the average

cost of executing the actions represented by the correspond-
ing LL-POMDP’s policy tree,π1. It is a recursive computa-
tion starting from the root node:

Croot =
∑

j

P (j1) · C
j1
root · Cj1 (4)

whereC
j
root is the cost of performing the action at the root

node that created the child node (j) andP (j1) is the transi-
tion probability from the root node to the child node at level
1 (Equation 3).Cj1 is the cost of the child node, computed
by analyzing its children in a similar manner.

The traversal of the LL-POMDP’s policy tree for the
transition probability (and cost computation) for the HL-
POMDP model is different from the belief update when gen-
erating/executing the policy at the LL. Whenπ1 is evalu-
ated forFR1, we are computing the probability of find-
ing the blue object in R1 conditioned on the fact that
a blue object actually exists in the ROI, information that
the LL-POMDP does not normally have. The observa-
tion functions are hence modified such that for each ac-
tion, each row of the matrix is the weighted average of the
rows corresponding to the states that can predict the target
(“blue”) property, the weights being the likelihood of the
corresponding states in the initial belief. In our example
the states:Ba

c Ea
s , Ba

c Ca
s , Ba

c T a
s , Ba

c Sa
s , Ba

c Ms are equally
likely, while other states have zero probability in the ini-
tial belief. This change isonly for building the HL-POMDP
model—belief update in the LL-POMDPs proceeds with an
uniform initial belief and an unmodifiedO.

Once the observation functions and costs are computed,
the HL-POMDP model can be built and solved to yield the
HL policy. During execution, the HL-POMDP’s policy is
queried for the best action choice, which causes the execu-
tion of one of the LL-POMDP policies, resulting in a se-
quence of visual operators being applied on one of the im-
age ROIs. The answer provided by the LL-POMDP’s pol-
icy execution causes a belief update in the HL-POMDP, and
the process continues until a terminal action is chosen at the
HL, thereby answering the query posed. Here it provides the
locations of allblueobjects in the scene. For simpler occur-
rence queries (e.g. “Is there a blue object in the scene?”)
the execution can be terminated at the first occurrence of the
object in a ROI. Both the LL and HL POMDPs are query
dependent; we cannot solve them in advance and execute
the policies during user interactions. Solving the POMDPs
efficiently is hence crucial to overall performance.

Continual Planning

The Continual Planning (CP) approach of Brenner and
Nebel (2006) interleaves planning, plan execution and plan
monitoring. Unlike classical planning approaches that re-
quire prior knowledge of state, action outcomes, and all
contingencies, an agent in CP postpones reasoning about
unknowable or uncertain states until more information is
available. It achieves this by allowing actions to assert that
the preconditions for the action will be met when the agent
reaches that point in the execution of the plan, and if those
preconditions are not met during execution (or are met ear-
lier), replanning is triggered. But there isno representation
of the uncertainty/noise in the observation/actions. It uses
the PDDL (McDermott (1998)) syntax and is based on the
FF planner of Hoffmann and Nebel (2001). Consider the
example of acolor operator:

(:action colorDetector
:agent (?a - robot)
:parameters (?vr - visRegion ?colorP - colorProp)
:precondition (not (applied-colorDetector ?vr))
:replan (containsColor ?vr ?colorP)
:effect (and

(applied-colorDetector ?vr)
(containsColor ?vr ?colorP)))

The parameters are a color-property (e.g.blue) being
searched for in a particular ROI. It can be applied on any ROI
that satisfies the precondition i.e. it has not already been an-
alyzed. The expected result is that the desired color is found
in the ROI. The “replan:” condition ensures that if the robot
observes the ROI’s color by another process, replanning is
triggered to generate a plan that excludes this action. This
new plan will use thecontainsColorfact from the new state
instead. In addition, if the results of executing a plan stepare
not as expected, replanning (triggered by execution monitor-
ing) ensures that other ROIs are considered. Other operators
are defined similarly, and based on the goal state definition
the planner chooses the sequence of operators whose effects
provide parts of the goal state—the next section provides an
example. The CP approach to the problem is more respon-
sive to an unpredictable world than a non-continual classi-

cal planning approach would be, and it can therefore reduce
planning time in the event of deviations from expectations.
But, while actions still have non-deterministic effects, there
is no means for accumulating belief over successive applica-
tions of operators. We show that the HiPPo formulation pro-
vides significantly better performance than CP in domains
with uncertainty.

Experimental Setup and Results
In this section, we describe how the LL-POMDP observa-
tion functions are learned, followed by an example of the
planning-execution cycle and a quantitative comparison of
the planning approaches.

Learning Observation Functions
The model creation in the LL-POMDPs requires observation
and reward/cost functions for the sensing/information ac-
tions. Unlike POMDP-based applications where the reward
and observation matrices are manually specified (Pineau and
Thrun (2002)), we aim to model the actual conditions by
having the robot learn them in advance, i.e. before actual
planning and execution. Objects with known labels (“red
circular mug”, “blue triangle” etc) are put in front of the
robot, and the robot executes repeated trials to estimate the
probability of various observations (empty, class labels and
unknown) for each action, given the actual state information
(empty, class labels andmultiple). We assume here that the
observations are independent, and are produced by different
actions. The costs of the operators capture the relative run-
time complexity of the operators computed through repeated
trials over ROIs. The cost is also a function of the ROI size
but the objects are approximately the same size in our exper-
iments. In addition, a model is learned for the scene back-
ground in the absence of the objects to be analyzed. This
background model is used during online operation to gen-
erate the ROIs by background subtraction. Other sophisti-
cated techniques such as saliency computation (Itti, Koch,
and Niebur (1998)) may be used to determine the ROIs, but
the background subtraction method suffices for our problem
domain and it is computationally more efficient.

Experimental Setup and Example
The experimental setup is as follows. The camera mounted
on a robot captures images of a tabletop scene. Any change
from the known background model is determined and the
ROIs are extracted by background subtraction. The goal is
to choose a sequence of operators that when applied on the
scene can provide an answer to the query. For these exper-
iments we assume the robot can choose fromcolor, shape
andsift, and we explain the execution with the sample query:
Where is the blue circle?

In the HiPPo approach, the robot creates a LL-POMDP
model file for each ROI, based on the available visual op-
erators and the query that has been posed. The model file
is in the format required by the ZMDP planning package1.
The point-based solver of Smith and Simmons (2005) in the

1Seewww.cs.cmu.edu/∼trey/zmdp/

(a) Input image.

u1HL−POMDP

LL−POMDP 1

Level: 1

Level: 0

Level: 0

sRedSquare

Red
Color

(b) Execution Step 1.

u2

HL−POMDP

LL−POMDP 1

Level: 1

Level: 0

Level: 0

Level: 1

LL−POMDP 2

sBlueCircle

Level: 0

Level: 1

Level: 2

Level: 3

sRedSquare

Red
Blue

Circle

Circle

nFR1

Color

Shape

Shape

Color

u1

(c) Execution Step 2.

u2

HL−POMDP

LL−POMDP 1

Level: 1

Level: 0

Level: 0

Level: 1

Level: 2

LL−POMDP 2

sBlueCircle

Level: 0

Level: 1

Level: 2

Level: 3

s nR1 R2

sRedSquare

Red
Blue

Circle

Circle

nFR1

FR2

Color

Shape

Shape

Color

u1

(d) Execution Step 3.

Figure 3: Example query: “Where is the Blue Circle?” Dy-
namic reward specification in the LL-POMDP allows for
early termination when negative evidence is found.

same package is used to determine the LL-policies. As de-
scribed earlier, the policy trees of the ROIs are evaluated
with the modified belief vector and observation functions to
determine the observation functions and costs of the HL-
POMDP. The resulting HL model file is in turn solved to get
the HL policy. Figs 3(a)-3(d) show one execution example
for an image with two ROIs.

The example query is to determine the presence and lo-
cation of one or moreblue circlesin the scene (Fig 3(a)).
Since both ROIs are equally likely target locations, the HL-
POMDP first chooses to execute the policy tree of the first
ROI (actionu1 in Fig 3(b)). The corresponding LL-POMDP
runs the color operator on the ROI. The outcome of applying
any individual operator is the observation with the maximum
probability, which is used to update the subsequent belief
state—in this case the answer isred. Even though it is more
costly, the color operator is applied before shape because
it has a higher reliability, based on the learned observation
functions. When the outcome ofred increases the likelihood
(belief) of the states that represent the “Red” property as
compared to the other states, the likelihood of finding a blue
circle is reduced significantly. The dynamic reward specifi-
cation (α = 0.2) ensures that without further investigation
(for instance with a shape operator), thebestaction chosen at
the next level is a terminal action associated with not finding
the target object—here it issRedSquare. The HL-POMDP
receives the input that a red square is found inR1, leading
to a belief update and subsequent action selection (action
u2 in Fig 3(c)). Then the policy tree of the LL-POMDP of
R2 is invoked, causing the color and shape operators to be
applied in turn on the ROI. The higher noise in the shape
operator is the reason why it has to be applied twice before
the uncertainty is sufficiently reduced to cause the choice

of a terminal action (sBlueCircle)—the increased reliability
therefore comes at the cost of execution overhead. This re-
sults in the belief update and terminal action selection in the
HL-POMDP—the final answer is (s¬R1 ∧ R2), i.e. that a
blue circleexists inR2 and notR1 (Fig 3(d)).

In our HiPPo representation, each HL-POMDP action
chooses to execute the policy of one of the LL-POMDPs
until termination, instead of performing just one action. The
challenge here is the difficulty of translating from the LL be-
lief to the HL belief in a way that can be planned with. The
execution example above shows that our approach stilldoes
the right thing, i.e. it stops early if it finds negative evidence
for the target object. Finding positive evidence can only in-
crease the posterior of the ROI currently being explored, so
if the HL-POMDP were to choose the next action, it would
choose to explore the same ROI again.

If the same problem were to be solved with the CP ap-
proach, the goal state would be defined as the PDDL string:

(and (exists ?vr - visRegion) (and (containsColor ?vr
Blue) (containsShape ?vr Circle)))
i.e. the goal is to determine the existence of a ROI

which has the colorblue and shapecircle. The planner
must then find a sequence of operators to satisfy the goal
state. In this case it leads to the creation of the plan:

(colorDetector robot vr0 blue)
(shapeDetector robot vr0 circle)
i.e. the robot is to apply the color operator, followed by the

shape operator on the first ROI. There is a single execution
of each operator on the ROI. Even if (due to image noise) an
operator determines a wrong class label as the closest match
with a low probability, there is no direct mechanism to incor-
porate the knowledge. Any thresholds will have to be care-
fully tuned to prevent mis-classifications. Assuming that the
color operator works correctly in this example, it would clas-
sify the ROI as beingred, which would be determined in the
plan monitoring phase. Since the desired outcome (finding
blue in the first ROI) was not achieved, replanning is trig-
gered to create a new plan with the same steps, but to be
applied on the second ROI. This new plan leads to the de-
sired conclusion of finding theblue circle in R2 (assuming
the operators work correctly).

Quantitative comparison
The hypotheses we aim to test are as follows:

• Hierarchical-POMDP planning (HiPPo) formulation is
more efficient than the standard POMDP formulation.

• HiPPo and CP have comparable plan-time complexity.

• Planning is significantly more efficient than blindly ap-
plying all operators on the scene.

• HiPPo has higher execution time than CP but provides
more reliable results.

In order to test these hypotheses we ran several experi-
ments on the robot in the tabletop scenario. Objects were
placed on the table and the robot had to analyze the scene to
answer user-provided queries. Query categories include:

• Occurrence queries: Is there a red mug in the scene?

Approach % Reliability
Naive 76.67
CP 76.67
HiPPo 91.67

Table 1: Reliability of visual processing

• Location queries: Where in the image is the blue circle?

• Property queries: What is the color of the box?

• Scene queries: How many green squares are there in the
scene?

For each query category, we ran experiments over∼ 15
different queries with multiple trials for each such query,
thereby representing a range of visual operator combinations
in the planning approaches. We also repeated the queries for
different numbers of ROIs in the image. In addition, we
also implemented the naive approach of applying all avail-
able operators (color, shape and sift in our experiments) on
each ROI, until a ROI with the desired properties is found
and/or all ROIs have been analyzed.

Unlike the standard POMDP solution that considers the
joint state space of several ROIs, the hierarchical represen-
tation does not provide the optimal solution (policy). Exe-
cuting the hierarchical policy may be arbitrarily worse than
the optimal policy. For instance, in the search for thebluere-
gion, the hierarchical representation is optimaliff every ROI
is blue-colored. But as seen in Figure 4(a) that compares the
planning complexity of HiPPo with the standard POMDP
solution, the non-hierarchical approach soon becomes in-
tractable. The hierarchical approach provides a significant
reduction in the planning time and (as seen below) still in-
creases reliability significantly.

Next, we compare the planning times of HiPPo and CP
approaches as a function of the number of ROIs in the
scene—Figure 4(b). The standard hierarchical approach
takes more time than CP. But, the computationally intensive
part of HiPPo is the computation of the policies for the ROIs.
Since the policies computed for a specific query are essen-
tially the same for all scene ROIs, they can be cached and
not repeated for every ROI. This simple adjustment drasti-
cally reduces the planning time and makes it comparable to
the CP approach.

Figure 4(c) compares the execution time of the planning
approaches against applying all the operators on each ROI
until the desired result is found. The HiPPo approach has
a larger execution time than CP because it may apply the
same operator multiple times to a single ROI (in different
images of the same scene) in order to reduce the uncertainty
in its belief state. In all our experiments the algorithms are
being tested on-board a cognitive robot which has multiple
modules to analyze input from different modalities (vision,
tactile, speech) and has to bind the information from the dif-
ferent sources. Hence, though the individual actions are op-
timized and represent the state-of-the-art in visual process-
ing, they take some time to execute on the robot.

A key goal of our approach is not only to reduce overall
planning and execution time, but to improve the reliability
of the visual processing. In these terms the benefits are very

1 2 3 4 5 6 7
2

4

6

8

10

12

14

16

18

Number of Regions

P
la

nn
in

g
T

im
e

(L
og

2 s
ca

le
)

Joint POMDP vs HiPPo

Joint POMDP
HiPPo

(a) HiPPo vs. joint POMDP. Joint
POMDP soon becomes intractable.

0 1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

Number of Regions

T
im

e
(s

ec
on

ds
)

HiPPo vs CP (Planning Time)

HiPPo
CP
HiPPo (cached)

(b) Planning times of HiPPo vs.
CP. Policy-caching makes results
comparable.

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

Number of Regions

T
im

e
(s

ec
on

ds
)

HiPPo, CP and Baseline (Execution Time)

No Planning
CP
HiPPo

(c) Execution times of HiPPo, CP
vs. No planning. Planning makes
execution faster.

Figure 4: Experimental Results—Comparing planning and execution times of the planners against no planning.

clear, as can be seen in Table 1. The direct application of
the actions on all the ROIs in the scene results in an average
classification accuracy of76.67%, i.e. the sensing actions
misclassify around one-fourth of the objects. Using CP also
results in the same accuracy of76.67%, i.e. it only reduces
the execution timesince there is no direct mechanism in the
non-probabilistic planner to exploit the outputs of the indi-
vidual operators (a distribution over the possible outcomes).
The HiPPo approach is designed to utilize these outputs to
reduce the uncertainty in belief, and though it causes an in-
crease in the execution time, it results in much higher clas-
sification accuracy:91.67%. It is able to recover from a
few noisy images where the operators are not able to pro-
vide the correct class label, and it fails only in cases where
there is consistent noise. A similar performance is observed
if additional noise is added during execution. As the non-
hierarchical POMDP approach takes days to compute the
plan for just two ROIs we did not compute the optimal plan
for scenes with more than two ROIs, but for the cases where
a plan was computed, there was no significant difference be-
tween the optimal approach and HiPPo in terms of the exe-
cution time and reliability, even though the policy generated
by HiPPo can be arbitrarily worse than that generated by the
non-hierarchical approach.

A significant benefit of the POMDP approach is that
it provides a ready mechanism to include initial belief in
decision-making. For instance, in the example considered
above, ifR2 has a higher initial belief that it contains ablue
circle, then the cost of executing that ROI’s policy would be
lower and it would automatically get chosen to be analyzed
first leading to a quicker response to the query.

Figure 5 shows a comparison of the combined planning
and execution times for HiPPo, CP, and the naive approach
of applying all actions in all ROIs (no planning). As the
figure shows, planning is worthwhile even on scenes with
only two ROIs. In simple cases where there are only a cou-
ple of operators and/or only one operator for each feature
(color, shape, object recognition etc) one may argue that
rules may be written to decide on the sequence of operations.
But as soon as the number of operators increase and/or there
is more than one operator for each feature (e.g. two actions
that can find color in a ROI, each with a different reliability),
planning becomes an appealing option.

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

Number of Regions

T
im

e
(s

ec
on

ds
)

HiPPo, CP and Baseline (Total time)

No Planning
CP
HiPPo

Figure 5: Planning+execution times of HiPPo, CP vs. No
planning. Planning approaches reduce processing time.

Related Work

Previous work on Planning Visual Processing

There is a significant body of work in the image processing
community on planning sequences of visual operations. The
high level goal is specified by the user, and is used by a clas-
sical AI planner to construct a pipeline of image processing
operations. The planners use deterministic models of the ef-
fects of information processing: handling the pre-conditions
and the effects of the operators using propositions that are
required to be true a priori, or are made true by the applica-
tion of the operator. Uncertainty is handled by evaluating the
output images using hand-crafted evaluation rules (Clouard
et al. (1999); Thonnat and Moisan (2000); Moisan (2003)).
If the results are unsatisfactory, execution monitoring detects
this and the plan is repaired. This either involves re-planning
the type and sequence of operators or modification of the pa-
rameters used in the operators. Example domains include as-
tronomy (Chien, Fisher, and Estlin (2000)) and bio-medical
applications (Clouard et al. (1999)). There has also been
some work on perception for autonomous object detection
and avoidance in vehicles (Shekhar, Moisan, and Thonnat
(1994)) but extensions to more general computer vision has
proven difficult. Recent work (Li et al. (2003)) has mod-
eled image interpretation as a MDP (Markov Decision Pro-
cess). Here, human-annotated images are used to determine
the reward structure, and to explore the state space to deter-
mine dynamic programming based value functions that are

extrapolated (to the entire state space) using the ensemble
technique called leveraging. Online image interpretationin-
volves the choice of action that maximizes the value of the
learned value functions at each step.

In real-world applications, the true state of the system is
not directly observable. We model the probabilistic effects
of operators on the agent’s beliefs, and use the resulting
probability distributions for a more generic evaluation.

Observation Planners
The PKS planner (Petrick and Bacchus (2004)) uses actions
which are described in terms of their effect on the agent’s
knowledge, rather than their effect on the world, using a first
order language. Hence the model is non-deterministic in the
sense that the true state of the world may be determined
uniquely by the actions performed, but the agent’s knowl-
edge of that state is not. For example, dropping a fragile
item will break it, but if the agent does not know that the
item is fragile, it will not know if it is broken, and must use
an observational action to determine its status. PKS captures
the initial state uncertainty and constructs conditional plans
based on the agent’s knowledge. In our problem domain, we
could say that the objects in the query are in one of the re-
gions of interest, but that we do not know which one. The
planner will then plan to use the observational actions to ex-
amine each region, branching based on what is discovered.

The Continual Planning (CP) approach of Brenner and
Nebel (2006) that we have compared against is quite sim-
ilar to PKS in its representation, but works by replanning
rather than constructing conditional plans. As we have said,
in applications where observations are noisy, the optimal be-
haviour may be to take several images of a scene and run the
operators more than once to reduce uncertainty. This cannot
be represented in either PKS or CP.

POMDP Solvers
The POMDP formulation of Kaelbling, Littman, and Cas-
sandra (1998) is appropriate for domains where the state is
not directly observable, and the agent’s actions update its
belief distribution over the states. Our domain is a POMDP
where the underlying state never changes; actions only
change the belief state. But the state space quickly grows
too large to be solved by conventional POMDP solvers as the
number of ROIs increases. To cope with large state spaces in
POMDPs, Pineau and Thrun (2002) propose a hierarchical
POMDP approach for a nursing assistant robot, similar to
the MAXQ decomposition for MDPs of Dietterich (1998).
They impose an action hierarchy, with the top level action
being a collection of simpler actions that are represented by
smaller POMDPs and solved completely; planning happens
in a bottom-up manner. Individual policies are combined to
provide the total policy. When the policy at the top-level task
is invoked, it recursively traverses the hierarchy invoking se-
quence of local policies until a primitive action is reached.
All model parameters at all levels are defined over the same
state-action-observation space, but the relevant space isab-
stracted for each POMDP using a dynamic belief network.
In the actual application, a significant amount of data for the
hierarchy and model creation is hand-coded.

Hansen and Zhou (2003) propose a manually specified
task hierarchy for POMDP planning. Though similar to
Pineau’s work in terms of the bottom-up planning scheme,
each policy is represented as a finite-state controller (FSC),
and each POMDP in the hierarchy is an indefinite-horizon
POMDP that allows FSC termination without recognition
of the underlying terminal state. In addition, they use pol-
icy iteration instead of value iteration to solve POMDPs.
They show that this representation guarantees policy quality.
More recent work by Toussaint, Charlin, and Poupart (2008)
proposes maximum likelihood estimation for hierarchy dis-
covery in POMDPs, using a mixture of dynamic Bayesian
networks and EM-based parameter estimation.

We propose a hierarchy in the (image) state and action
space. Instead of manually specifying the hierarchy, ab-
stractions and the model parameters across multiple levels,
our hierarchy only has two levels. At the lower level (LL),
each ROI is assigned a POMDP, whose action (and state)
space depends on the query posed. The visual processing
actions are applied in the LL. The approximate (policy) solu-
tions of the LL-POMDPs are used to populate a higher level
(HL) POMDP that has a completely different state, action
and observation space. The HL POMDP acts as the con-
troller: it maintains the belief over the entire scene/image
and chooses the best ROI for further processing by execut-
ing the corresponding LL policy, thereby providing answers
to the queries posed. Hence a simple hierarchy structure can
be used unmodified for a range of queries in our application
domain. Furthermore, all reward and observation models are
learned: in the LL the robot autonomously collects statistics
based on repeated applications of the visual operators, and
in the HL it is learned based on the LL policies.

Conclusions and Future Work

Robots working on cognitive tasks in the real world need the
ability to tailor their visual processing to the task at hand. In
this paper, we have proposed a probabilistic planning frame-
work that enables the robot to plan a sequence of visual oper-
ators, which when applied on an input scene enable it to de-
termine the answer to a user-provided query with high confi-
dence. We have compared the performance of our approach
with a representative modern planning framework (contin-
ual planning) on a real robot application. Both planning ap-
proaches provide significant benefits over direct application
of all available visual operators. In addition, the probabilis-
tic approach is better able to exploit the output information
from individual actions in order to reduce the uncertainty in
decision-making. Still we have but opened up an interesting
direction of further research, and there are several challenges
left to address.

Currently we are dealing with a relatively small set of op-
erators and ROIs in the visual scene. With a large number of
operators the solution to the LL-POMDPs may prove to be
expensive. Similarly, once the number of regions increase,
finding the solution to the HL-POMDP may also become
computationally expensive. In such cases, it may be nec-
essary to implement a range of hierarchies (e.g. Pineau and
Thrun (2002)) in both the action and state spaces. A further

extension would involve learning the hierarchy itself (Tous-
saint, Charlin, and Poupart (2008)).

In our current implementation, the LL-POMDP policies
are evaluated up to a certain number of levels before control
returns to the HL-POMDP. One direction of further research
is to exploit the known information to make the best deci-
sion at every step. This would involve learning (or evaluat-
ing during run-time) the observation functions for the HL-
POMDP for partial executions of the LL policies.

We would also like to extend this planning framework
for more complex queries, such as “relationship queries”
(e.g. Is the red triangle to the left of the blue circle?) and
“action queries” (e.g. Can the red mug be grasped from
above?). For such queries, we aim to investigate the use a
combination of a probabilistic and a deterministic planner.
For known facts about the world (e.g. relationships such as
“left of”) and binding information across different modali-
ties (say tactile and visual), we could use the deterministic
planning approach, while the probabilistic framework could
be employed for sensory processing. Furthermore, the cur-
rent planning framework can be extended to handle actions
that change the visual input, for instance a viewpoint change
to get more information or an actual manipulation action that
grasps and moves objects from one point to another (and
hence changes the state). Eventually the aim is to enable
robots to use a combination of learning and planning to re-
spond autonomously and efficiently to a range of tasks.

Acknowledgements
Special thanks to Nick Hawes for providing feedback on an
initial draft. We are grateful that this work was supported
by the EU FP6 IST Cognitive Systems Integrated Project
(CoSy) FP6-004250-IP, the Leverhulme Trust Research Fel-
lowship Award Leverhulme RF/2006/0235 and the EU FP7
IST Project CogX FP7-IST-215181.

References
Brenner, M., and Nebel, B. 2006. Continual Planning and

Acting in Dynamic Multiagent Environments. InThe In-
ternational PCAR Symposium.

Chien, S.; Fisher, F.; and Estlin, T. 2000. Automated soft-
ware module reconfiguration through the use of artificial
intelligence planning techniques.IEE Proc. Software147.

Clouard, R.; Elmoataz, A.; Porquet, C.; and Revenu, M.
1999. Borg: A knowledge-based system for automatic
generation of image processing programs.PAMI 21.

Dietterich, T. 1998. The MAXQ Method for Hierarchical
Reinforcement Learning. InICML.

Hansen, E. A., and Zhou, R. 2003. Synthesis of Hierarchical
Finite-State Controllers for POMDPs. InICAPS, 113–
122.

Hawes, N.; Sloman, A.; Wyatt, J.; Zillich, M.; Jacobsson,
H.; Kruiff, G.-J. M.; Brenner, M.; Berginc, G.; and Sko-
caj, D. 2007. Towards an Integrated Robot with Multi-
ple Cognitive Functions. InThe Twenty-second National
Conference on Artificial Intelligence (AAAI).

Hoffmann, J., and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search.Journal
of Artificial Intelligence Research14:253–302.

Horswill, I. 1993. Polly: A Vision-Based Artificial Agent.
In AAAI, 824–829.

Itti, L.; Koch, C.; and Niebur, E. 1998. A Model of
Saliency-Based Visual Attention for Rapid Scene Analy-
sis. IEEE Transactions on Pattern Analysis and Machine
Intelligence20(11):1254–1259.

Kaelbling, L.; Littman, M.; and Cassandra, A. 1998. Plan-
ning and Acting in Partially Observable Stochastic Do-
mains.Artificial Intelligence101:99–134.

Land, M. F., and Hayhoe, M. 2001. In What Ways do Eye
Movements Contribute to Everyday Activities.Vision Re-
search41:3559–3565.

Lee, D. N. 1980. The Optical Flow-field: The Foundation of
Vision. Philosophical Transactions of the Royal Society
London B290:169–179.

Li, L.; Bulitko, V.; Greiner, R.; and Levner, I. 2003. Improv-
ing an Adaptive Image Interpretation System by Leverag-
ing. In Australian and New Zealand Conference on Intel-
ligent Information Systems.

Lowe, D. 2004. Distinctive Image Features from Scale-
Invariant Keypoints.IJCV.

McDermott, D. 1998. PDDL: The Planning Domain Defi-
nition Language, Technical Report TR-98-003/DCS TR-
1165. Technical report, Yale Center for Computational
Vision and Control.

Moisan, S. 2003. Program supervision: Yakl and pegase+
reference and user manual. Rapport de Recherche 5066,
INRIA, Sophia Antipolis, France.

Petrick, R., and Bacchus, F. 2004. Extending the
Knowledge-Based approach to Planning with Incomplete
Information and Sensing. InICAPS, 2–11.

Pineau, J., and Thrun, S. 2002. High-level Robot Behavior
Control using POMDPs. InAAAI.

Shekhar, C.; Moisan, S.; and Thonnat, M. 1994. Use of a
real-time perception program supervisor in a driving sce-
nario. InIntelligent Vehicle Symposium.

Smith, T., and Simmons, R. 2005. Point-based POMDP
Algorithms:Improved Analysis and Implementation. In
UAI.

Thonnat, M., and Moisan, S. 2000. What can program su-
pervision do for program reuse?IEE Proc. Software.

Toussaint, M.; Charlin, L.; and Poupart, P. 2008. Hier-
archical POMDP Controller Optimization by Likelihood
Maximization. InUAI.

