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Abstract—As robots are increasingly deployed in complex
real-world domains, visual object recognition continues to be an
open problem. Existing algorithms for learning and recognizing
objects are predominantly computationally expensive, and require
considerable training or domain knowledge. This paper describes
an algorithm for robots to use motion cues to identify and focus on
a set of interesting objects, automatically extracting appearance-
based and contextual cues from a small number of images to
efficiently learn representative models of these objects. Learned
models exploit complementary strengths of: (a) relative spatial
arrangement of gradient features; (b) graph-based models of
neighborhoods of gradient features; (c) parts-based models of
image segments; (d) color distributions; and (e) mixture models
of local context. The learned models are used by an energy
minimization algorithm and a generative model of information
fusion for reliable and efficient object recognition in novel scenes.
The algorithm is evaluated on wheeled robots in indoor and
outdoor domains, and on images from benchmark datasets.

I. INTRODUCTION

Sophisticated algorithms developed for representing and
recognizing objects using different visual cues are predom-
inantly computationally expensive and require considerable
training or prior knowledge to learn object models. However,
robot application domains make it challenging to obtain ac-
curate domain knowledge, elaborate human feedback or many
labeled samples of relevant objects. Enabling robots to learn
object models and recognize objects with minimal human
supervision thus continues to be an open problem.

The above-mentioned challenges are offset by some obser-
vations. First, many objects possess unique characteristics and
distinguishable motion patterns, although these characteristics
and patterns are not known in advance and may change over
time. Second, images encode information about objects in the
form of complementary appearance-based and contextual cues,
although different cues may be best suited to represent objects
in different situations. Third, in many application domains,
robots learn the domain map and do not need to model all
domain objects; many tasks require robots to focus on a
small set of objects, especially those that move. Our algorithm
exploits these observations to achieve the following:

• Learn object models from a small (3 − 8) number of
images, efficiently identifying image regions corresponding
to moving (i.e., interesting) objects using motion cues.
• Exploit complementary strengths of appearance-based and

contextual visual cues to efficiently learn representative
models of these objects from relevant image regions.
• Generative models of information fusion and energy min-

imization algorithms use learned object models for reliable
and efficient recognition in novel scenes.

Fig. 1. Local, global and temporal cues extracted from pixels within the
yellow boundary represent appearance, while mixture models and relative
positions (e.g., “on” and “under”) of regions within the red rectangle (outside
the yellow polygon) represent context.

These objectives promote incremental learning, enabling
robots to acquire and use sensor inputs and human feedback
based on need and availability. Object models consist of:
spatial arrangements of gradient features, graph-based models
of neighborhoods of gradient features, parts-based models of
image segments, color distributions, and local context models.
Although the underlying visual cues have been used in other
algorithms, our representation of these cues fully exploits their
complementary strengths, resulting in reliable and efficient
learning and recognition in indoor and outdoor domains.

II. RELATED WORK

Many algorithms have been developed for modeling and
recognizing objects using scale, rotation and affine-invariant
image gradient features [1], and appearance and shape fea-
tures [2]. Algorithms have modeled global context in the
image [3] and local context from regions surrounding the
objects of interest [4], extracting adaptive contextual cues
from image regions [5]. Researchers have used motion cues
in conjunction with other cues for object recognition [6].
Algorithms have also used multiple visual cues and interactions
with objects to learn spatial relationships between objects [7],
distinguish objects from background [8], and discover groups
of related objects [9]. Algorithms have also been developed
for unsupervised learning of hierarchical spatial structures
using rule-based models [10], and for using a composition
system to automatically learn structured, hierarchical object
representations without manual segmentation or object local-
ization [11]. However, these algorithms are computationally
expensive, requiring many labeled training samples and/or
extensive prior knowledge and human supervision.

Existing algorithms support the learning of object mod-
els from a small set of images, e.g., using appearance and
shape features [12]. Recent research has provided an “object-
ness” measure based on multiple image cues to automatically
identify image windows containing objects from the desired
classes [13]. However, this algorithm is computationally ex-
pensive and does not fully exploit visual cues (see Section IV).
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Fig. 2. Learned model uses contextual and appearance-based cues to
characterize objects of interest.

Motivated by the limitations of existing algorithms, our recent
work provided an overview of an algorithm that exploits the
complementary strengths of appearance-based and contextual
visual cues [14]. This paper describes and thoroughly evaluates
our algorithm that supports incremental learning of represen-
tative object models from a small number of images, resulting
in reliable and efficient object recognition in novel scenes.

III. PROPOSED APPROACH

In our algorithm, robots learn the domain map using range
data and consider objects that move to be interesting. Based
on the observation that characteristic features of an object have
similar relative motion between consecutive images, robots
track local gradient features in short sequences (3−8 images),
identifying regions of interest (ROIs) corresponding to moving
objects by clustering features with similar relative motion. The
complementary strengths of appearance-based and contextual
visual cues extracted from these ROIs are used to learn object
models. One underlying assumption (that works in practice)
is that object motion has a non-trivial linear component. This
section describes the components of learned object models,
and the use of learned models for object recognition.

A. Object Model Learning

Figure 2 shows the object model’s components for a
specific ROI: (1) relative spatial arrangements of gradient
features; (2) graph-based model of connection potentials be-
tween gradient features; (3) a parts-based model of spatial
arrangement of image segments; (4) second-order statistics of
color distributions; and (5) Gaussian mixture models of local
context. These components are described below.

1) Spatial Coherence of Gradient Features (SCG): Gradi-
ent features extracted from the image ROI may not be unique.
Our prior work created a spatial coherence vector (SCV) to
model the relative spatial arrangement of gradient features,
which is difficult to duplicate [15]. The SCV is computed
along x and y axes for each of the N gradient features in
the ROI, e.g., SCVx,i = {dx

i,1, d
x
i,2, . . . , d

x
i,N} and SCVy,i =

{dy
i,1, d

y
i,2, . . . , d

y
i,N}, and if xi and xj are the x-coordinates

of feature i and j in the image, dx
i,j = 1, 0 or −1 for xi >,=

or < xj respectively; dy
i,j is defined similarly. The object

model thus extracts N gradient features from the ROI (each
feature is a 128D vector) and a 2(N − 1)-dimensional SCV
for each feature. Modeling the relative spatial arrangement of
features may make this component sensitive to large changes
in orientation; however, it works well in practice.

2) Graph-Based Model of Connection Potentials (GCP):
The second component of the object model captures the
relationships between neighboring gradient features in the ROI.
The connection potential for any two gradient features is
defined as the distribution of pixels on the line joining the
features. The distance between the features is normalized and
pixel’s color values are collected in a histogram of 100 bins,
which is smoothed along each color channel: Cnew

n = αCn +
(1−α)Cn−1, where the smoothed value in a bin is a function
of the value in previous bin and raw value in the bin. The effect
of raw data is controlled by α, while the coarse representation
(100 bins) provides computational efficiency. The N gradient
features in the ROI are sorted based on distance from the center
of the ROI: {d1, ..., dk−1, dk, dk+1, ...dN},∀i < j, di < dj .
The local neighborhood of each feature includes the four
closest neighbors. The object model includes the connection
potentials and a undirected graph [16] of local neighborhoods
of connection potentials.

3) Parts-based Models of Image Segments (PIS): The third
component uses a graph-based segmentation algorithm to
extract segments from the ROI such that RGB values within
a segment are similar and significantly different from pixels
in neighboring segments [17]. Valid segments are modeled
as 2D Gaussians that represent spatial locations in the ROI:
N (µk,Σk), k = 1, ...,M and constitute “parts” of the object.
Each pixel n in the ROI is assigned membership in one of
M parts based on Gaussian density functions of the parts:
argmaxj p(n |µj ,Σj ). Then, each pixel’s similarity with pixels
in the same part and dissimilarity with pixels in neighboring
parts are computed, weighted by the probability that these
pixels belong to the same part or different parts. Similar-
ity and dissimilarity measures for each part (PartSimMk,
PartDiffMk) are defined as the logarithm of sum of contribu-
tions of all pixels in that part. To capture local variations in part
positions, the envelope around the extracted parts is displaced
a few times and the corresponding values of PartSimM and
PartDiffM are modeled as gamma (Γ) distributions for each
part. The object model includes image segments, parts-based
model, and these similarity and dissimilarity measures.

4) Color Distribution Statistics (CDS): The fourth compo-
nent captures color information [15]. The ROI’s pixels are used
to learn normalized histograms (pdfs) in the HSV color space.
Each pdf is learned in (h, v) with ten bins in each dimension.
Since color distributions are not a unique representation,
distances are computed between every pair of pdfs, using
the Jensen-Shannon (JS) measure [18]. The fourth component
consists of the pdfs and incrementally-learned distribution of
distances between the pdfs.

5) Gaussian Mixture Model of Context (GMC): The fifth
component models the object’s local context using image
segments (extracted for PIS) that share a boundary with the
ROI, i.e., segments within the red rectangle but outside the
yellow boundary in Figure 1. The pixels in each such segment
are used to learn a 2D Gaussian in the normalized HSV color
space (using h, v). The relative spatial arrangement of each
segment with respect to the ROI is used to assign labels “on”,
“under” and “beside” to the segment; segments can have more
than one label. Segments with the same label are used to learn
a Gaussian mixture model (GMM), e.g., each of the K 2D
Gaussians with label “on” is assigned a mixing factor πk that
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is the ratio of number of pixels in the corresponding segment
divided by the number of pixels in all K segments. Each GMM
is also assigned a weight that is the ratio of number of pixels
in segments with the corresponding label to the number of
pixels in all segments used to model context. The object model
includes GMMs, and their relative positions and sizes with
respect to the ROI’s center and size.

B. Information Fusion for Recognition

The learned models are used for object recognition in
images of novel scenes, irrespective of whether the objects are
stationary or moving. Energy minimization is used to select
ROIs in test images, and generative models merge evidence
from components of learned models. Consider the analysis of
a specific test image ROI using a specific object model.

1) SCG-Based Matching: The SCVs of gradient features
in the learned model and the matched features in the test
image ROI are used to obtain the probability of occurrence
of corresponding object in the ROI:

pscg =
xcorrect + ycorrect

2 ∗M
, pscg ∈ [0, 1] (1)

xcorrect =
M∑

m=1

Nxm correct

N − 1
, ycorrect =

M∑
m=1

Nym correct

N − 1

where Nxm correct and Nym correct are the number of values
in the ROI’s SCV that match the learned model’s SCV along
x and y axes respectively; M and N are the number of
gradient features in the learned model and ROI respectively.
This computation is repeated with each learned object model.

2) GCP-Based Matching: Next, the neighborhood of con-
nection potentials between features in the learned model is
compared with the neighborhood of connection potentials
between matched ROI features. The similarity between two
connection potentials i and j is:

con(i, j) =
100∑
n=1

f(Ci
n, Cj

n), f(a, b) =
{

1 |a− b| > β
0 otherwise

where parameter β is used to identify significant changes in
entries of connection potentials. The probability of occurrence
of the learned object in the ROI is:

pgcp =
1
Z

∑
k∈{1,...,M}

∑
i∈Nk,j∈Nkm

con(i, j) (2)

where M gradient features in the object model match features
in the ROI, Nkm and Nk are the connected neighborhoods of
feature km and matched feature k in the object model and
ROI respectively, and Z is a normalizer. This computation is
repeated with each learned object model.

3) PIS-based Matching: Next, different relative arrange-
ments of the learned model’s parts are compared with pixels
in the test image ROI. For pixels in the overlapping regions
(for any arrangement), the similarity of pixels within a learned
model part and the dissimilarity of pixels in neighboring parts
are computed. The learned Γ distributions of these measures
(for each part) compute the likelihood of this arrangement:

ppis =
∑

j

{wj · f(PartSimMj) · f(PartDiffMj)}

f(xj) = Γ
(
|xj − xj | − (k − 1)θ, k, θ

)
(3)

where, for the learned object’s jth part, (k − 1)θ is the
stationary point of the learned Γ pdf, xj is the similar-
ity or dissimilarity computed using ROI pixels in the part
(PartSimMj , PartDiffMj), and xj is the mean of the Γ
pdf. The match probability of this arrangement is the sum of
product of these measures for each part, weighted (wj) by
the ratio of number of ROI pixels in a part and number of
ROI pixels in all parts of object model. The arrangement that
maximizes ppis is chosen. This computation is repeated with
each learned object model.

4) CDS-Based Matching: Next, the average distance davg

is computed between the ROI’s color space pdf and the pdfs in
the learned object model, using the JS measure. A comparison
with the expected (Gaussian) distribution of distances (in the
object model) provides the probability of occurrence of the
learned object (pcds). This computation is repeated with each
learned object model. When second-order statistics of object
models are being learned, relative values of average distances
between the ROI’s color space pdf and learned pdfs of object
models are used to obtain the probability of occurrence of
learned objects in the ROI.

5) GMC-Based Matching: Next, each GMM in the learned
model is scaled and positioned with respect to the ROI. A
matching score is computed using each GMM, considering
the pixels around the convex boundary of the ROI that fall
within the spatial scope of the GMM (Nlbc). The probability
of occurrence of the learned object is the weighted sum of
individual scores:

pgmc =
∑

lbc∈{on,under,beside}

wlbc · Γ
(
f(xlbc), k, θ

)

f(xlbc) =
1

Nlbc

Nlbc∑
l=1

Ngmm
lbc∑
j=1

πj e−
1
2 (xl−µj)

T Σ−1
j (xl−µj) (4)

where Ngmm
lbc is the number of 2D Gaussians in the GMM

with label lbc ∈ {on, under, beside}. Each ROI pixel x is a
2D vector in the normalized (h, v) space. The value of f(xlbc)
is scaled by a Γ distribution and weighted (wlbc) by the ratio
of number of pixels that fall within the corresponding GMM
and number of pixels that fall within all GMMs in the learned
model—πj , µj and Σj are obtained from the learned model.
This computation is repeated with each learned object model.

6) Information Fusion: For ease of explanation, assume
that any ROI contains no more than one object—the algorithm
can detect multiple objects in an image or ROI. If a test image
sequence contains a moving object, the corresponding ROI
is identified by (as during learning) tracking and clustering
gradient features; the probability of occurrence of a learned
object in this ROI is then the product of probabilities provided
by components of the object model.

When test images are individual snapshots of objects, ROIs
are identified by matching gradient features in the images
with gradient features in the object models, e.g., to compute
the probability of occurrence of the ith learned object in a
test image, K nearest neighbors are found in the test image
for each of the M gradient features in the learned model.
Candidate ROIs are created by selecting M matched features
in the test image from the (at most) K ∗ M features, using
the iterated conditional modes (ICM) energy minimization
algorithm [19]. Since this algorithm can be sensitive to the



In the International Conference on Advanced Robotics (ICAR), Montevideo, Uruguay, November 25-29, 2013.

choice of initial estimates in high-dimensional spaces, the
nearest neighbors of the learned object’s gradient features
provide the initial ROI estimate. For a set of M matched
features, the probability of occurrence of the ith learned object
(pOi

) considers evidence from each feature:

pOi =
∏

j∈{1,...,M}

p
(
gj |Oi, {gn|n = 1, ...,M, n 6= j}

)
=

∏
j∈{1,...,M}

p(gj |Oi) (5)

where {gn|n = 1, ...,M, n 6= j} is the subset of M matched
gradient features excluding the jth feature under consideration.
This term is dropped in the following equations since this
information is always available. The probability that each
matched feature comes from object Oi is formulated as a
generative model over components of the object model:

p(gj |Oi) =
∑

Lbgj∈{fg,bg}

p(gj |Lbgj , Oi) · p(Lbgj |Oi) (6)

where Lbgj ∈ {fg, bg} indicates whether the jth feature
belongs to the foreground (i.e., part of the target object) or
the background (i.e., not part of the target).

When specific labels (fg, bg) are assigned to candidate
matched features, the ROI is defined by minimal convex set
containing the foreground features. Generative models thus
consider multiple arrangements to refine the initial choice
made by feature matching and energy minimization. Equa-
tion 6 is decomposed using the independence relationships:

p(gj |Oi) =
∑

Lbgj∈{fg,bg}

p(gj |Lbgj , Oi) · p(Lbgj |Oi) (7)

=
∑

Lbgj
∈{fg,bg}

p(gj |Lbgj , scgOi) · p(gj |Lbgj , gcpOi)·

p(Lbgj |pisOi) · p(Lbgj |cdsOi) · p(Lbgj |gmcOi)

Since parts-based models (PIS), color statistics (CDS) and
context-based models (GMC) capture visual cues that are not
evaluated based on relative arrangements of local cues, they
are used to evaluate the relative likelihoods of labels (fg, bg)
for the feature under consideration. The other components, i.e.,
SCG and GCP, evaluate the probability of occurrence of the
gradient features given the specific labels. The probabilities
in Equation 7 are provided by Equations 1-4 and these in-
dependence assumptions work well in practice. The ROI that
maximizes Equation 7 and thus Equation 5 is the best estimate
of the corresponding object’s location in the test image.

Finally, the probability distribution of occurrence of the
L learned objects in a test image ROI is normalized: pOi

, i ∈
[1, L] and used to recognize objects, and to detect novel objects
when none of the learned objects has a match probability
significantly larger than others. The robot thus concurrently
and incrementally learns object models and recognizes objects
while revising the domain map and planning navigation.

IV. EXPERIMENTAL SETUP AND RESULTS

This section describes the robot platform and the experi-
mental results of evaluating our algorithm.

A. Robot Platform

The robot platform is a 40cm×41cm×15cm wheeled base
equipped with a stereo camera, monocular camera, laser range
finder and pan-tilt unit. The experiments used 640×480 images
from one of the cameras of the stereo unit. Input from the laser
range finder is used to learn the domain map. All experiments
were performed on-board using a 2GHz processor and 1GB
RAM. Trials were conducted in indoor and outdoor settings.

B. Experimental Setup and Results

Experimental trials used 20 object categories, with sep-
arate models learned for different objects in a category, e.g.,
different boxes or books, resulting in 60 subcategories. Objects
were placed in complex backgrounds that made learning and
recognition challenging. Some objects (e.g., humans and cars)
moved on their own, while some (e.g., boxes) were moved on
trolleys. It is difficult to obtain an image database of objects
with well-defined motion. Experiments used ≈ 2000 images,
including short sequences and snapshots, ≈ 700 of which were
captured by the robot. To establish applicability to different
domains, ≈ 1300 images of motorbikes, buses, some cars and
airplanes were chosen from the Pascal VOC2006 and Caltech-
256 benchmark datasets, which include ROIs for objects in
the images—suitable ROIs and neighboring segments were
selected when these images were used for learning object
models. Each object model is learned from 3−8 images, with
≈ 250 images used for learning all object models; remain-
ing images are used for testing. The robot processes 3 − 5
frames/second to identify ROIs, learn models and recognize
objects while performing other operations. The images used for
learning and recognition were chosen randomly (in repeated
trials) to obtain the results below.

The average classification accuracy over all 60 subcat-
egories is: 0.8860 ± 0.0432, which is promising given the
small number of images used for learning. Table I shows
accuracy for a subset of (ten) object categories, averaged
over subcategories in each category; off-diagonal terms rep-
resent errors. Accurate classification requires an object to be
matched to the correct model—matching an object in car-
class1 to model car-class2 is an error. One reason for errors
is the learning of object models with non-unique features,
e.g., long shots of humans cause features to be extracted
from clothes, resulting in non-unique object models and lower
recognition accuracy. Some errors correspond to an insufficient
number of test image features being matched with the learned
models due to occlusions, motion blur or a large difference
in viewpoint. Revision of object models over time further
improves recognition accuracy. Some errors also occur when
test image ROIs are assigned the label of the object model
with the maximum match probability, even if this value is
similar to match probabilities of other objects—these errors are
eliminated by requiring that the maximum match probability
be substantially higher than match probabilities of other object
classes. Furthermore, errors are less frequent in sequences of
objects in motion because correctly identifying the ROI enables
some subset of the components of learned models to provide
high match probabilities for the appropriate object.

Our algorithm and existing vision algorithms have dis-
parate objectives; our algorithm efficiently learns representa-
tive models of relevant objects using 3 − 8 images (each),
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Fig. 3. Robot recognizes objects from different categories, multiple objects and multiple instances of an object in cluttered backgrounds. Last column shows
an incorrect envelope (top) and an incorrect classification due to occlusion (bottom).

Box Car Human Robot Book Airplane Bus Motorbike Fire Truck Firehydrant
Box 0.941 0 0.017 0.025 0 0 0 0 0 0.017
Car 0.010 0.917 0 0.021 0 0 0 0.042 0 0.010

Human 0.080 0.024 0.820 0.060 0.016 0 0 0 0 0
Robot 0.027 0 0.042 0.899 0.027 0 0 0.005 0 0
Book 0.016 0 0 0.042 0.942 0 0 0 0 0

Airplane 0.029 0.051 0 0.023 0.009 0.888 0 0 0 0
Bus 0 0 0 0 0 0 0.856 0.036 0.108 0

Motorbike 0 0.073 0 0.010 0.016 0 0.062 0.839 0 0
Fire Truck 0 0.032 0 0 0 0 0.080 0.016 0.872 0
Firehydrant 0.029 0.029 0 0 0 0 0 0 0.058 0.884

TABLE I. RECOGNITION ACCURACY AVERAGED OVER DIFFERENT MODELS (I.E., SUBCATEGORIES) IN A SUBSET OF (TEN) OBJECT CATEGORIES.

Fig. 4. Our algorithm provides higher accuracy than any individual compo-
nent or any four of the components; results are statistically significant.

Fig. 5. Our algorithm provides higher accuracy than the objectness measure
using a much smaller number of image for learning the object models.

while existing algorithms typically focus on modeling a large
number of objects using a much larger number of images of
each object. Although finding a common frame of reference is
challenging, the following experiments were conducted.

When we increase the number of images used for learning,
the recognition accuracy increases, e.g., 0.90± 0.05 with 400
images (total) for learning, and approaches reported accuracies
of state of the art algorithms on benchmark datasets. However,
existing algorithms are much more (computationally) expen-
sive for learning and/or recognition, and only some algorithms

support incremental learning. Furthermore, it is difficult for
existing algorithms to learn good models from a small number
of images because they do not fully exploit the complementary
strengths of (and dependencies between) different cues.

Next, Figure 4 compares the average recognition accuracy
of our algorithm with that of each component and different
subsets of four components. None of the individual compo-
nents provide high recognition accuracy and there is large
variance, especially with components that primarily use color.
At the same time, each component contributes to the overall
accuracy—the accuracy of our algorithm is better than that
of different subsets of four components. These results indicate
that although each component uses visual cues widely used by
other algorithms, our representation exploits their complemen-
tary strengths to learn representative object models. Figure 3
shows examples of the robot recognizing objects from different
categories, and multiple objects or multiple instances of objects
in different scenes. The last column of Figure 3 also shows
an instance where (a) top: the object boundary is incorrect
(although object label is correct) due to incorrectly matched
features; and (b) bottom: occlusion leads to incorrect classifi-
cation, e.g., object of bus-class1 matched with car-class2. We
hypothesize that including a component that matches shapes
will minimize these errors; the computational efficiency of our
algorithm supports the inclusion of such components.

We also compared the recognition accuracy and efficiency
of our algorithm with state of the art algorithms that use
gradient features, e.g., SURF [20] and BRIEF [21]. SURF and
BRIEF were provided images with labeled ROIs to learn object
models, which were used for recognition. During learning,
these algorithms extract local gradient features from the ROIs
to create suitable object models. During recognition, features
in the learned models are matched with features extracted in
the test images. Table II shows that our algorithm provides
much higher accuracy than these algorithms, primarily because
it exploits the complementary strengths and dependencies
between local, global, temporal and contextual visual cues. The
use of multiple components does increase the computational
cost—see Table III. We believe that this trade-off is justified
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Box Car Human Robot Book Airplane Bus Motorbike Fire Truck Firehydrant
Proposed 0.941 0.917 0.820 0.899 0.942 0.888 0.856 0.839 0.872 0.884

SURF 0.804 0.784 0.706 0.822 0.832 0.742 0.713 0.772 0.754 0.793
BRIEF 0.843 0.822 0.743 0.855 0.843 0.772 0.733 0.813 0.782 0.834

TABLE II. OUR ALGORITHM PROVIDES HIGHER ACCURACY THAN SURF AND BRIEF USING THE SAME NUMBER OF IMAGES FOR LEARNING OBJECT
MODELS.

SURF BRIEF Proposed Objectness
Learning 0.1 0.005 0.3 360
Testing 0.12 0.01 0.25 5

TABLE III. COMPUTATION TIME IN SECONDS TO PROCESS ONE IMAGE.

since it supports incremental learning of representative object
models from a small number of images.

Finally, we compared our algorithm with the algo-
rithm based on the objectness measure, which automatically
identifies image windows containing objects from desired
classes [13]. Compared with the objectness-based algorithm,
our algorithm is significantly more efficient—see last column
in Table III. Figure 5 compares the recognition accuracy of
the two algorithms as a function of the number of images
used for learning object models. Our algorithm provides much
better recognition accuracy using a much smaller number of
images because the objectness measure-based algorithm does
not fully exploit all visual cues.

V. CONCLUSIONS AND FUTURE WORK

This paper described an algorithm for robots to identify
interesting objects based on motion cues, automatically and
efficiently learning representative models of these objects using
appearance-based and contextual visual cues extracted from a
small number of images. The learned models support reliable
and efficient object recognition in novel scenes.

The images used in the experimental trials reported in
this paper had a small set of moving objects in any given
image. Future research will investigate the extension to image
sequences with many moving objects and consider images with
substantial occlusions. In parallel, computational efficiency
will be improved by using sampling-based algorithms and
better energy minimization algorithms [16], [22]. Furthermore,
we will develop algorithms that automatically determine the
most informative subset of components to represent each
object. The long-term goal is to enable robots to automatically
and incrementally learn object models with minimal human
supervision in complex application domains.
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