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Abstract—Mobile robots equipped with multiple sensors and
deployed in real-world domains frequently find it difficult to pro-
cess all sensor inputs, or to operate without any human input and
domain knowledge. At the same time, robots cannot be equipped
with all relevant domain knowledge in advance, and humans
are unlikely to have the time and expertise to provide elaborate
and accurate feedback. This paper presents a novel framework
that addresses these challenges by integrating high-level logical
inference with low-level probabilistic sequential decision-making.
Specifically, Answer Set Programming (ASP), a non-monotonic
logic programming paradigm, is used to represent, reason with
and revise domain knowledge obtained from sensor inputs
and high-level human feedback, while hierarchical partially
observable Markov decision processes (POMDPs) are used to
automatically adapt visual sensing and information processing to
the task at hand. Furthermore, a psychophysics-inspired strategy
is used to merge the output of logical inference with probabilistic
beliefs. All algorithms are evaluated in simulation and on wheeled
robots localizing target objects in indoor domains.

I. INTRODUCTION

Sophisticated learning, planning and control algorithms
have enabled the use of mobile robots and agents in do-
mains such as disaster rescue, reconnaissance and health care.
Real-world domains characterized by partial observability,
non-deterministic action outcomes and unforeseen dynamic
changes frequently make it difficult for robots to process all
sensor inputs, model the entire domain or operate without
substantial domain knowledge and human feedback. At the
same time, robots cannot be provided all relevant domain
knowledge in advance. In addition, although human feedback
can provide rich information about task and domain, humans
are unlikely to have the time and expertise to provide elabo-
rate and accurate feedback in complex domains. Information
extracted from sensory cues and human feedback may also
have different degrees of relevance to current or future tasks.
Widespread deployment of intelligent robots and agents in
real-world domains thus poses some formidable challenges—
robots need to represent, reason with and revise domain
knowledge; automatically adapt sensing and processing to the
task at hand; and learn from high-level human feedback.

Partially observable Markov decision processes (POMDPs),
an instance of probabilistic sequential decision-making, have
been used to plan sensing and navigation on robots by
modeling the associated uncertainty [10], [21]. However, it

is a challenge to include common sense knowledge obtained
from sensor inputs or human feedback in a POMDP. On the
other hand, although non-monotonic logic programming is
well-suited for knowledge representation and logical inference,
it is not appropriate for modeling the uncertainty in real-
world sensing and navigation [8]. This paper presents a novel
framework that integrates Answer Set Programming (ASP), a
non-monotonic logic programming paradigm, with hierarchi-
cal POMDPs to make the following contributions:
• ASP enables robots to represent, reason with and revise

spatial knowledge of the application domain (and domain
objects), using online repositories and information extracted
from sensory cues and human feedback.
• Building on our prior work on hierarchical POMDPs,

robots are enabled to adapt sensing and information pro-
cessing to the task at hand [21]. The entropy of POMDP
beliefs is used to identify the need for human feedback.
• A psychophysics-inspired strategy enables robots to use

logical facts representing current domain knowledge to
probabilistically initialize and revise POMDP beliefs.

The framework is evaluated in simulation and on wheeled
robots that use visual inputs, high-level human feedback and
laser range data to localize objects in complex indoor domains.

II. RELATED WORK

Mobile robots frequently have to plan a sequence of sensing
and information processing actions, e.g., for locating objects
and interacting with humans. Many POMDP-based algorithms
have been developed to plan sensing, navigation and in-
teraction on robots [10], [12], [16], [21]. Algorithms have
also been developed for deriving preconditions and effects of
actions in relational POMDPs [18], and for exploiting first-
order reasoning in relationally-specified POMDPs [17]. In
parallel, common sense reasoning using knowledge bases or
human feedback has significantly improved the performance
of robots [4], [9]. However, using logical inference and
probabilistic modeling of uncertainty to exploit sensor inputs
and human feedback, continues to be a challenge on robots.

Research in classical planning has resulted in many so-
phisticated algorithms for logical reasoning and knowledge
representation [9]. However, many of these algorithms require
a significant amount of prior knowledge, or are unable to
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Fig. 1: Framework integrates probabilistic planning, non-
monotonic logical reasoning and human-robot interaction.

merge new (unreliable) information from sensors and humans
with the current beliefs encoded in the knowledge base [6],
[20]. Answer Set Programming (ASP), a non-monotonic logic
programming paradigm, is well-suited for common sense
knowledge representation and reasoning (especially default
reasoning) [1], [8]. ASP has been used in different application
domains and it has been integrated with natural language pro-
cessing for service robots [4]. However, real-world sensing and
navigation are non-deterministic, and humans are unlikely to
provide elaborate and accurate feedback in complex domains.
ASP is not well-equipped to model this uncertainty in sensing,
navigation and interaction on mobile robots.

Many algorithms are being developed to integrate logi-
cal reasoning with probabilistic planning, e.g., the switching
planner enables a robot to choose between logical reasoning
and POMDPs for action selection [10]. Such a strategy,
however, does not fully exploit the complementary properties
of logical reasoning and POMDPs. Researchers have also
combined deterministic and probabilistic algorithms for task
and motion planning [13], while semantic maps and common
sense knowledge about object positions have been used for
target localization [11]. However, these algorithms use domain
knowledge obtained from extensive human input or (generic)
public resources (e.g., Internet [11]), which may not accurately
reflect the specific task or domain. These algorithms are also
typically unable to perform non-monotonic logical inference,
where adding a new fact can reduce the set of (inferred) con-
sequences. Therefore, integrating knowledge representation,
(high-level) logical inference and probabilistic modeling of
(low-level) uncertainty in sensing and navigation continues to
be a formidable challenge for mobile robots. Our framework
is a significant step towards addressing these challenges.

III. PROBLEM FORMULATION

Figure 1 depicts our framework. The Knowledge Base (KB)
in ASP contains causal rules and domain facts. Currently,
rules are hand-coded and facts are learned from sensor inputs,
human feedback and online repositories. For any specific
query (or task), reasoning in the KB results in an Answer Set
containing a set of grounded literals (Section III-A). The un-
certainty in sensing and navigation is modeled using POMDP
belief distributions (Section III-B). The answer sets from
ASP initialize or revise POMDP belief distributions based

Fig. 2: Illustrative example of information about object cate-
gories stored in the knowledge base.

on a psychophysics-inspired strategy (Section III-C1). Robots
obtain observations from sensors activated when needed (e.g.,
cameras) and sensors that are always in operation (e.g., range
finders). Observations made with high certainty update the KB,
while other observations update POMDP belief distributions.
Since human feedback is a valuable resource that is unreliable
and not always available, human-robot interaction (HRI) is
used when needed, e.g., if an object’s location is known with
considerable certainty, there is not much to gain by soliciting
human help to locate the object. Robots therefore determine
the need for human feedback based on entropy of POMDP
belief distributions (Section III-C2). This paper illustrates the
framework in the context of mobile robots localizing (i.e.,
computing the location of) target objects in indoor domains.

A. Knowledge Representation and Reasoning with ASP
Answer Set Programming (ASP) is a non-monotonic logic

programming paradigm [1]. An ASP program is a collection
of statements describing domain objects and relations between
them [8]. An answer set is a set of ground literals that represent
beliefs of an agent associated with the program. Program
consequences are statements that are true in all such belief sets.
ASP provides the ability to perform default reasoning using
concepts such as default negation and epistemic disjunction,
e.g., unlike “¬ a”, “not a” only implies that “a is not
believed to be true” and does not imply that “a is believed
to be false”. New information can hence be used to smoothly
revise statements that are currently believed to be true.

The illustrative example of a robot localizing target objects
can be reduced to finding answer sets for queries. The semantic
(2D) domain description has the following elements: room/1,
a space bounded by walls and doors that can be occupied
by robots and objects; object/1, a visually identifiable
element in a room; and category/1, a set of objects or
sub-categories. Categories with objects as children are primary
categories. A tree of object categories is created automatically
from the KB—Figure 2 is an example for electronics. Informa-
tion is extracted automatically from online repositories (e.g.,
Amazon) to identify some of the relationships between object
categories. These relationships are used to create a subset of
the tree, e.g., some of the nodes and links from root node
to primary categories in Figure 2. Robots use sensor inputs
and human feedback to add instances of objects in the KB
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and revise the tree, e.g., room1 has a printer (shown as red
triangle) and two scanners (red diamonds). All objects are
visually distinguishable, including targets such as a new printer
(yellow triangle) that is in room1 unknown to the robot.

The following predicates represent some relations between
elements: (1) is(X,C) implies category C is an ancestor
of object or category X, e.g., is(tv, electronics);
(2) observed(O,R,S) implies that object O is observed
in room R at timestep S; (3) located(C,R,S) implies
that object(s) of category C can be (inferred) in room R at
timestep S; and (4) location(R,X,Y) provides the (X,Y)
coordinates of the center of room R in a learned domain map.

The following rules are used for reasoning: (1) if object O
of category C is observed in room R, it is believed that objects
of category C can be in R; (2) if objects of category C can
be in room R, objects of the parent category (and all ancestor
categories) of C can be in R; and (3) (rules of inertia) an object
retains its location until it is known to be elsewhere and a room
remains accessible until it is known to inaccessible.

located(C,R,S) :- observed(O,R,S), is(O,C)

located(C1,R,S) :- located(C2,R,S), is(C2,C1)

observed(O,R1,S+1):- observed(O,R1,S),

not observed(O,R2,S+1), R1 != R2

accessible(R,S+1):- accessible(R,S),

not ¬ accessible(R,S+1)

Consider the following illustrative example of non-monotonic
reasoning in ASP:
• Test-case 1 has the following facts:
step(1..2). observed(printer1, lab, 1).
is(printer1, printer).

Reasoning in ASP produces the following answer set (ex-
isting facts are not repeated):
observed(printer1, lab, 2).
located(printer, lab, 1).
located(printer, lab, 2).

• Now consider Test-case 2 that has a new fact about an
object’s current location:
step(1..2). observed(printer1, lab, 1).
is(printer1, printer).
observed(printer1, office, 2). % new fact

Reasoning in ASP now produces the following new answer
set (existing facts not repeated):
located(printer, lab, 1).
located(printer, office, 2).

Adding a new fact has thus reduced the set of consequences
and revised the outcome of the previous inference step—see
Baral [1] for more details on ASP. We use the Clingo grounder
and solver [7] to solve ASP programs.

B. Uncertainty Modeling with POMDP
Let us assume that ASP has provided candidate locations

for a target object in a learned map of an office. The robot now
has to move and analyze a sequence of images of a sequence
of scenes. This objective is posed as a planning task and
addressed using our prior work on hierarchical POMDPs for
reliable and efficient visual sensing and information processing
on robots [21]. This hierarchy is briefly summarized below.

The high-level (HL) POMDP determines the sequence of
3D scenes to process to locate the target. The 3D area is
represented as a discrete 2D occupancy grid. Each entry of
the state vector corresponds to the event that the target is in
the corresponding grid cell. To estimate the state, a probability
distribution of target occurrence is maintained over the states,
called the belief state. Uncertainty in belief is measured by
computing the entropy:

H (Bt) =−
N

∑
i=1

bi,t log(bi,t) (1)

where bi,t is the ith entry of belief state at time t. The reward
of action at is defined as the reduction in entropy between
belief state Bt−1 and the resultant belief state Bt . The robot
learns an observation function to model the probability of
target detection as a function of robot position, target position,
camera’s field of view and lower levels of the hierarchy. A
policy gradient solver [2] is then used to compute a policy
that maps belief states to actions by minimizing entropy over
a planning horizon. The number of grid cells can increase
exponentially and change arbitrarily in real-world domains,
making real-time solutions difficult. The robot hence learns a
convolutional policy kernel from the policy for a small region,
exploiting the rotation and shift invariance properties of visual
search [3]. This kernel is used to automatically and efficiently
generate policies for larger maps. Since movement between
grid cells expends time and introduces errors, movement is
associated with a cost proportional to the distance to be
traveled. The robot also improves computational efficiency by
planning a path through grids that have a significantly higher
probability than their immediate neighbors.

For any chosen scene, the remaining layers of the hierarchy
plan the sequence of algorithms to be applied on a sequence
of regions of interest (ROIs) in a sequence of images. Salient
ROIs are extracted from each image of the scene and each ROI
is modeled as a lower-level (LL) POMDP. Each LL policy
provides the sequence of information operators (e.g., detect
color) to apply on a specific ROI to detect the target object.
LL policies of all image ROIs are used to automatically create
an intermediate-level (IL) POMDP. Executing an action in the
IL policy directs attention to a specific ROI. Executing the
corresponding LL policy (until termination) provides an obser-
vation that causes an IL belief update and action choice until
presence or absence of the target in the image is determined.
This provides an HL observation and belief update, resulting
in the robot choosing a scene for subsequent analysis. This
process continues until the object is found or the belief does
not converge over a period of time. The entire hierarchy adapts
automatically to the task at hand—see [19], [21] for details.

C. Integrating ASP and POMDP
The ASP formulation (Section III-A) models domain knowl-

edge and provides an answer set that represents the result
of non-monotonic logical inference. The POMDP formulation
models the uncertainty in sensing and navigation to adapt sens-
ing and processing to any given task. This section describes
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a psychophysics-inspired strategy to convert answer sets to
beliefs that initialize or revise POMDP beliefs. The entropy
of POMDP beliefs is then used to identify the need for high-
level human feedback, using information extracted from sensor
inputs and human feedback to augment and revise the KB.

1) Bias Generation and Belief Merging: Merging the
beliefs encoded by an answer set and a POMDP belief
distribution proceeds in two steps: (1) a bias distribution is
generated using literals in the answer set relevant to the
current task; and (2) the bias distribution is merged with the
POMDP belief distribution.

Bias Generation: The bias distribution is computed us-
ing the object categories in the KB and the following hypothe-
ses that capture co-occurrence relationships between objects:

1. An object is more likely to be co-located with close
“relatives”, where closeness is defined as the distance to
the lowest common ancestor in the tree of object categories.
E.g., in Figure 2, a printer is more likely to be co-located
with scanners than DVD players.

2. For any category, the influence of “siblings”, i.e., of cat-
egories with a common parent, increases as the number of
“siblings” decreases. The influence of a “sibling” category
increases when there is sufficient support for the sibling’s
existence (predicate observed/3).

These hypotheses enable robust evidence propagation. The
relationship between object occurrence probabilities (i.e., be-
lief state entries) and evidence provided by categories (and
siblings) is inspired by Fechner’s law1. For ease of explana-
tion, consider the bias distribution in the context of locating a
specific target in a set of rooms:

bA
i = α ln

1+
Mi

∑
m=1

NF
i,m

∏
Ki,m−1
k=0 NS

i,k,m

 (2)

where bA
i , the probability that the target is in room i, is

a logarithmic function (inspired by Fechner’s law) of the
evidence from the current answer set, and α is a normalizer.
The parameter m is the index of primary category Cm, ranging
from 1 to the total number of primary categories with leaf
objects known to be in room i (i.e., Mi)—NF

i,m counts the
number of objects of Cm known in room i. Values of Mi
and NF

i,m are obtained by counting the number of relevant
located/3 and observed/3 literals (respectively) in the
answer set. Ki,m is the height (in object category tree) of the
lowest common ancestor of Cm and the target object. The
product in the denominator accounts for category nodes along
the path from Cm to the lowest common ancestor. Variable k
represents the height of nodes along this path, ranging from
0 (object level) to Ki,m − 1, one level less than the lowest
common ancestor. NS

i,k,m is the number of siblings of the node
(including itself) on the path at height k, and NS

i,0,m = 1.

1Fechner’s law was introduced in 1860 and serves as the basis of modern
Psychophysics. It states that subjective sensation is proportional to the
logarithm of stimulus intensity.

Belief Merging: Since the KB (and hence the answer set)
can contain incomplete or outdated information, the answer
set-based bias distribution and POMDP beliefs are merged
using relative trust factors, resulting in a r-norm probability
that is a generalized form of linear and logarithmic averaging
methods [5], e.g., it computes the arithmetic average for r = 1.

b′i = β

{
(1−Ω)(bi)

r +Ω(bA
i )

r
}1/r

(3)

where bA
i is the answer set-based belief of target occurrence

in room i (Equation 2), while bi and b′i are the beliefs of
target occurrence in room i before and after belief merging
(respectively), and β is a normalizer. The parameter Ω∈ [0,1]
represents the relative trust in the beliefs encoded by the an-
swer set. The effects of Ω and r on accuracy and computational
efficiency are analyzed experimentally in Section IV.

Consider the illustrative example in Figure 2. The cor-
responding answer set is used to compute the ASP-based
bias distribution bA = [0.3890,0.3361,0.0000,0.2749]. The
initial POMDP belief distribution (uniform in the absence of
knowledge) is then revised as described in Equation 3, with
r = 1 (arithmetic average) and the trust factor Ω set such that
POMDP and ASP are trusted equally. The revised belief vector
for the target is [0.3195,0.2931,0.1250,0.2625]. The belief for
each room is spread over grid cells in the room using a large-
variance Gaussian centered in the middle of the room to induce
the robot to move to a central location. Prior knowledge about
likely locations of objects within rooms suitably revises the
mean and variance of the Gaussian. The updated beliefs are
used in the learned HL-POMDP policy to choose an action,
resulting in the robot moving to analyze a specific scene.

2) Knowledge acquisition: The final component of the
framework (in Figure 1) is the knowledge acquisition from
sensor inputs and human-robot interaction (HRI). To simulate
high-level feedback from non-expert humans with limited
time, human feedback is limited to simplistic verbal inputs.

As the robot moves in the application domain, images are
processed periodically to detect humans (specific humans are
not modeled separately). When a human is detected nearby,
the robot computes the need for human feedback based on
entropy of the belief distribution for the object being localized.
A low entropy implies that the robot is confident of the target
object’s location—the human is then ignored (except for safe
navigation). If the entropy is high, the robot draws the human’s
attention, followed by a query about a room’s accessibility or
the target object’s location. These queries and responses are
based on simplistic templates such as:

Robot: Where is the [object]?
Human: In [room]./I do not know.
Robot: Is [room] accessible?
Human: Yes./No./I do not know.

In addition to human feedback, the robot processes images
at specific locations in the domain and low-resolution images
as it moves between locations, detecting objects using learned
object models. An object detected with high certainty is added
to the knowledge base, using the detected position to form a
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suitable fact. This piece of information may be relevant to
the current task and/or to future tasks. In addition to domain
objects of interest, robot may observe unforeseen changes in
object configurations and obstacle locations, e.g., a door that
was open may now be closed. The robot can confirm such
changes using human feedback, and changes detected with
high certainty also update the KB. These updates and additions
to the KB occur incrementally and continuously, adding and
eliminating areas for subsequent analysis.

IV. EXPERIMENTAL EVALUATION

Experimental trials were conducted in simulation and on
wheeled robots visually identifying the locations of target
objects in indoor domains. The following hypotheses were
evaluated: (I) integrating ASP and POMDP enables reliable
target localization while significantly reducing target localiza-
tion time in comparison with using ASP or POMDP individu-
ally; and (II) entropy-based strategy enables the robot to make
best use of human feedback to localize targets.

A. Experiments in Simulated Domains
A realistic simulated domain was designed to extensively

evaluate the framework, using learned object models and
observation models to simulate motion and perception. Fig-
ure 3(a) shows an instance where four rooms are connected
by a surrounding hallway in a 15× 15 grid. Fifty stationary
objects in 10 primary categories are simulated, and one or
more of these objects are randomly selected as targets whose
positions are unknown to the robot. The robot automatically
creates the corresponding category tree from the KB. Each
data point in the results described below is the average
of 5000 simulated trials. In each trial, the robot’s location,
target object(s) and location(s) of target object(s) are chosen
randomly. Unless stated otherwise, a trial ends when the belief
in a grid cell exceeds a threshold (e.g., 0.90).

Hypothesis I is evaluated using three measures: accuracy,
localization time and the ratio of these values. The accuracy
is maximum when reported position and ground truth position
of an object are identical (e.g., same grid cell), and drops off
exponentially as the distance between reported position and
ground truth position increases. Figures 4(a)-4(c) summarize
experimental results, with the x-axis depicting the extent to
which ASP beliefs are trusted (Ω)—all results in these figures
are statistically significant. Figure 4(a) shows that when ASP
beliefs are not considered (0 along the x-axis), the accuracy
is high (≈ 0.95) irrespective of the value of r (Equation 3).
Even the few errors correspond to objects close to the edge
of a grid cell being localized in one of the neighboring cells.
However, the corresponding target localization time is large,
as shown in Figure 4(b). As the robot starts considering ASP-
based beliefs, i.e., Ω grows from 0 to 1, the target localization
time decreases substantially. The effect of ASP-based beliefs
on accuracy also depends on the value of r, e.g., a decrease in
accuracy is observed very soon for r = 0.05 but not for r = 0.2.
Target localization accuracy and time have different relative
importance in different situations. The trade-off between these

two measures is modeled by computing their ratio. Figure 4(c)
displays the value of this third measure as a function of the
value of Ω. We observe that irrespective of the value of r, the
best accuracy-time balance occurs when the value of Ω (i.e.,
trust in ASP-based beliefs) is neither too high nor too low. We
therefore conclude that combining answer sets and POMDP
beliefs exploits their complementary properties, resulting in
high accuracy while reducing the target localization time.

Some errors in the experimental trials are due to the
incorrect organization of the categories (extracted from online
repositories), and the robot not receiving sufficient observa-
tions to correct these KB errors. Another reason is that the
evidence from “related” objects can sometimes overwhelm
certain facts. For instance, when the scanner in room2 is
selected as the target in Figure 2, room1 has the highest initial
belief based on the answer set. It is a challenge for robots to
recover from such situations if ASP-based beliefs are trusted
substantially, especially when this trust is combined with false
positive observations of target(s).

Next, to evaluate hypothesis II, human feedback is consid-
ered in addition to sensor inputs. The simulator uses known
ground truth to simulate human feedback that is available to
the robot approximately once every five actions. In addition,
there is a 20% likelihood of the feedback being incorrect.
The results in Figure 3(b) are for the domain in Figure 3(a).
Humans can help identify the room containing the target (but
not the exact location) and comment on accessibility of rooms,
as described in Section III-C2. The x-axis shows the belief
entropy threshold above which the robot seeks human input.
The three solid lines correspond to different costs associated
with human feedback (in units of time). As a baseline for
comparison, the three dashed lines (different colors correspond
to different costs) represent the random acquisition of human
feedback without considering the entropy. The trust factor
for ASP is chosen in the range (≈ 0.2− 0.6) that results in
good performance in Figures 4(a)–4(c) and r is 1. When the
threshold equals the maximum entropy (≈ 5.4), the robot never
asks for human feedback, whereas the robot always solicits
human feedback (when available) when the threshold is 0.
Since human feedback can be unreliable, acquiring and using
a lot of human feedback increases target localization time.
At the same time, if the robot rarely solicits human feedback
(high entropy threshold), target localization takes more time.
For any entropy threshold between 2.5− 5.0, time taken by
the robot to localize targets is minimum. Human feedback
thus helps significantly if used when needed. Furthermore, as
cost of interacting with humans increases, feedback should be
acquired more judiciously.

B. Experiments on Physical Robots
Experiments were also conducted on physical robots op-

erating on two floors of the Computer Science department
at our University. The second floor, for instance, has three
classrooms, a conference room, eight offices, a research lab,
a kitchen and a common area—see Figure 5(a). The test
platform was a wheeled robot (inset in Figure 5(a)) equipped



In International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), San Diego, USA,
November 7-9, 2012.

(a) Simulated domain. (b) Effect of human input.

Fig. 3: (a) Illustrative example of simulated domain; (b) target localization time when robot solicits human feedback based on
belief state entropy—target localization takes longer with too little or too much use of human feedback.

(a) Accuracy. (b) Localization time. (c) Accuracy/time.

Fig. 4: Performance measures for our framework that integrates ASP and POMDP: accuracy of target localization, target
localization time, and the ratio of these measures, as a function of trust in ASP (Ω). Results are statistically significant.

with cameras, range finder, microphones and on-board 2GHz
processor. Algorithms were implemented on the robot using
the Robot Operating System [15].

Figure 5(b) shows examples of target objects in this domain.
Objects are characterized using visual features such as color
and local image gradients. The robot uses our visual learning
algorithm to autonomously learn object models as a combina-
tion of models for these individual features [14]. Inputs from
sensors and humans are processed to populate the KB. Plan
execution in the lowest level of hierarchical POMDPs causes
the robot to apply a sequence of actions, i.e., operators based
on individual feature models in the learned object models, on
input images, merging evidence to identify target objects.

We conducted 30 experimental trials—in each trial, the
robot’s starting location, targets (e.g., a coffee maker or a
printer) and target locations were chosen randomly. The robot
starts with learned object models, learned domain map and
some domain knowledge, which are revised incrementally.
In all experimental trials, the robot successfully localized
target objects in the appropriate positions. The results were
similar to the simulated trials summarized in Figure 3(b)
and Figure 4. In these trials, target localization times vary
substantially depending on the initial positions of robot and
targets. We therefore do not report the actual target localization
times measured in the individual trials. However, using ASP-

based beliefs and POMDP beliefs significantly reduces the
target localization time by a factor of ≈ 0.6 (on average,
with Ω = 0.4) compared with just using POMDP beliefs.
Trusting ASP beliefs a lot more than POMDP beliefs reduces
localization accuracy—just using ASP beliefs results in trials
where the robot does not find the targets even after a long
period of time. Furthermore, judicious use of human feedback
enables the robot to interact with different humans and further
reduce target localization time.

Consider a trial where the robot knows the presence of
a refrigerator and a microwave in the “kitchen” and has to
localize a coffee maker. Based on the object category tree
of the current knowledge base, the robot concludes that the
coffee maker is highly likely to occur in the same room with
other kitchenware, resulting in high initial belief (of target
occurrence) in the kitchen after merging the answer set-based
bias distribution with the POMDP beliefs. As the robot moves
to the kitchen, it meets a human but does not ask for input
because the belief entropy is not high. In the main office
outside the kitchen, the robot detects an HP printer that had
recently been moved from the floor above, and the door to
an instructor’s office that was closed recently. These pieces
of information, though not relevant to the current task, revise
the KB for later use. When the robot reaches the kitchen, it
processes images of different scenes and localizes the coffee
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(a) Domain map and wheeled robot platform. (b) Examples of target objects in domain.

Fig. 5: Domain description for experiments on physical robots.

maker. If the robot has to enter the instructor’s office or
find the (recently moved) HP printer in subsequent trials, it
uses the existing knowledge to automatically generate suitable
initial belief distributions and solicits human input appropri-
ately. The video of an experimental trial is available online:
www.cs.ttu.edu/∼smohan/Movies/Planning/aspPomdp.mp4

V. CONCLUSIONS

This paper presented a novel framework that integrates
answer set programming, hierarchical POMDPs and a
psychophysics-inspired strategy to enable a mobile robot to:
represent, reason with and revise domain knowledge, auto-
matically adapt sensing and information processing to the
task at hand, merge non-monotonic logical inference with
probabilistic beliefs, and acquire and use high-level human
feedback when such feedback is available and necessary.
Experimental results show that the framework enables a robot
to localize objects in complex indoor domains, making best
use of domain knowledge, sensor inputs and human feedback.

The framework opens many directions of future research.
We will explore a tighter coupling between logical inference
and probabilistic planning for intelligent robots and agents.
We will also investigate other algorithms for bias generation
from answer sets, and consider other tasks such as information
gathering and area coverage for evaluating the framework. An-
other research direction is the choice of questions for human
feedback to enable more realistic human-robot interaction.
The ultimate goal is to enable widespread deployment of
mobile robots that can interact and collaborate with humans
in complex real-world domains.
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