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Abstract—Our architecture seeks to enable robots collabo-
rating with humans to describe their decisions and evolution
of beliefs. To achieve the desired transparency in integrated
robot systems that support knowledge-based reasoning and data-
driven learning, we build on a baseline system that supports
non-monotonic logical reasoning with incomplete commonsense
domain knowledge, data-driven learning from a limited set of
examples, and inductive learning of previously unknown axioms
governing domain dynamics. In the context of a simulated robot
providing on-demand, relational descriptions as explanations of
its decisions and beliefs, we introduce an interactive system that
automatically traces beliefs, and addresses ambiguity in the hu-
man queries by constructing and posing suitable disambiguation
queries. We present results of evaluation in scene understanding
and planning tasks to demonstrate our architecture’s abilities.

Index Terms—Explainable reasoning and learning, non-
monotonic logical reasoning, deep learning, HRI

I. INTRODUCTION

Consider a robot estimating the occlusion of objects and
stability of object structures while arranging objects in desired
configurations on a table; some example simulated scenes are
shown in Figure 1. The robot extracts information from camera
images, reasons with this information and incomplete domain
knowledge, and executes actions to achieve desired outcomes.
The robot also learns previously unknown axioms governing
domain dynamics, and provides on-demand explanatory de-
scriptions of its decisions and beliefs in the form of relations
between domain attributes, robot attributes, and robot actions.
Let the goal in Figure 1(left) be to have the yellow cylinder
on the occluded green block. One plan is to move the objects
on the yellow cylinder to the table, move the yellow block
(on the green block) to the table, and then move the yellow
cylinder on the green block. When asked to justify a plan step,
e.g., ”why do you want to put the yellow duck on the table
first?”, the robot answers ”the yellow duck is on the yellow
cylinder that I need to put on the green block”. However, the
question ”why did you pick up the yellow object?” posed after
plan execution is ambiguous in the object and time step being
referred to. Recognizing this ambiguity, the robot constructs
and poses a question likely to resolve the ambiguity, e.g., ”are
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Fig. 1. Simulated scenes in which reference to a ”yellow object” is ambiguous.

you referring to the yellow cylinder or yellow block?”, and
uses the answer to respond to the original query.

We seek to enable such on-demand explanations of a robot’s
decisions and beliefs in the form of descriptions of relations
between object attributes, actions, and robot attributes. This
is difficult to achieve with integrated robot systems that
include knowledge-based reasoning and data-driven learning
methods. Inspired by cognitive systems research that indicates
the benefits of coupling different representations and reasoning
schemes [1], [2], our architecture combines the complementary
strengths of knowledge representation tools and data-driven
methods to provide transparent decision making. It builds on
our prior work that combined the principles of non-monotonic
logical reasoning and deep learning for scene understanding
in simulated images, and demonstrated the use of learned
state constraints to partially describe some decisions [3]–[5].
The new contributions of this paper significantly extend the
explanation generation capabilities by:

• Using knowledge representation tools to automatically
trace the evolution of any given belief by inferring the
application of a suitable sequence of known or learned
axioms governing domain dynamics.

• Automatically constructing disambiguation queries by
introducing new heuristic measures of ambiguity, human
confusion, and the relative utility of attributes, to address
ambiguity in human queries.

We illustrate the architecture’s capabilities in the context of a
robot: (i) computing and executing plans to arrange objects in
desired configurations; and (ii) estimating occlusion of objects
and stability of object configurations, in simulated scenes.

II. RELATED WORK

Early work on explanation generation drew on research
in psychology and linguistics to characterize explanations in



terms of generality, objectivity, connectivity, relevance, and
content [6]. Studies with human subjects supported these
findings [7], and computational methods were developed for
explaining unexpected outcomes [8].

There is much interest in understanding the operation of AI
and machine learning methods, and making automation more
acceptable [9]. Recent work on explainable AI/planning can
be broadly categorized into two groups. Methods in one group
modify or transform learned models or reasoning systems
to make decisions interpretable, e.g., by tracing decisions to
inputs [10], learning equivalent interpretable models [11], or
biasing a planning system towards making decisions easier for
humans to understand [12]. Methods in the other group pro-
vide descriptions that make decisions more transparent, e.g.,
describing planning decisions [13], using rules with monotonic
operators to define proof trees that provide a declarative view
(i.e., explanation) of computation [14], or describing solutions
obtained through non-monotonic logical reasoning [15]. These
methods are often agnostic to how an explanation is structured
or assume comprehensive domain knowledge. Methods are
also being developed to make the operation of deep networks
more interpretable, e.g., by computing gradients and heat maps
of relevant features [16] or using neuro-symbolic methods to
answer questions about images of scenes [17].

To provide explanations in response to a human query, the
robot system needs the ability to identify and use the informa-
tion relevant to the query. The robot can address ambiguity in
the query by constructing clarification questions. Researchers
have evaluated how the type of question posed by an agent
affects the quality of human responses [18], the ability to learn
from answers [19], or the ability to minimize ambiguity in the
human response [20]. These methods measured the accuracy
of the information obtained, or the ability to learn from the
human response; they do not jointly explore reasoning with
incomplete domain knowledge (to construct questions) and
improving the quality of the explanations.

The focus of our work is on integrated robot systems that
use knowledge-based and data-driven algorithms to represent,
reason with, and learn from incomplete commonsense domain
knowledge and noisy observations. We seek to enable such
robots to generate accurate relational descriptions of decisions
and evolution of beliefs, capabilities that are not supported by
existing systems [9], [21].

III. ARCHITECTURE

Figure 2 depicts the overall architecture for knowledge
representation, explainable reasoning, and interactive learning.
This architecture first attempts to perform non-monotonic log-
ical reasoning with incomplete commonsense domain knowl-
edge, which is encoded as an Answer Set Prolog (ASP) [22]
program, to complete any given visual scene understanding
or planning task. If it is unable to do so, it automatically
identifies relevant regions of interest (ROIs) in the images
to guide the training of deep network models for this task.
Information from these ROIs is also used to induce previously
unknown axioms that are used for subsequent reasoning. The
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Fig. 2. Architecture combines complementary strengths of non-monotonic
logical reasoning, deep learning, and inductive learning. Robot resolves
ambiguity in explanatory queries by automatically constructing and posing
relevant clarification question(s).

program analyzer takes the parsed human input, and triggers
reasoning and/or constructs an explanation of the desired
decisions and evolution of beliefs, including the construc-
tion of the disambiguation queries. Below, we summarize
all components of the architecture, but focus on the new
explanation generation capabilities supported by enabling the
robot to trace the evolution of beliefs, and by constructing and
posing disambiguation questions, while reasoning with and
learning contextual information. We do so in the context of
the following running example.

Example Domain 1: [Assistive Robot (AR) Domain] Con-
sider a robot analyzing scenes of objects stacked in different
configurations to: (i) rearrange object structures according to
human requirements; and (ii) provide on-demand, relational
descriptions of decisions and beliefs before, during, or after
planning and execution. The robot has the ability to visually
recognize objects and them to achieve desired object config-
urations. The robot’s prior domain knowledge includes some
object attributes such as size (small, medium, large), surface
(flat, irregular) and shape (cube, apple, duck), and the spatial
relation between objects (above, below, front, behind, right,
left, near). It also includes axioms governing domain dynamics
but some axioms may be unknown, e.g.:

• Placing an object on top of an object with an irregular
surface causes instability;

• Removing all objects in front of an object causes this
object to be not occluded.

These axioms can be learned, revised, and used for reasoning.

A. Knowledge Representation and Reasoning

To represent and reason with domain knowledge, we use
CR-Prolog, an extension to ASP; we use the terms CR-Prolog
and ASP interchangeably. ASP is a declarative language that
can represent recursive definitions, defaults, causal relations,
and constructs that occur frequently in non-mathematical do-
mains, and are difficult to express in classical logic formalisms.

A domain’s description in ASP comprises a system de-
scription D and a history H. D comprises a sorted signature
Σ and axioms. Σ comprises sorts arranged hierarchically;
statics, i.e., domain attributes that do not change over time;



fluents, i.e., domain attributes whose value can be changed;
and actions. In the AR domain, sorts include object, robot,
size, relation, surface, and step. Statics include object
attributes such as obj size(object, size) and obj surface(obj,
surface). The Fluents include spatial relations between objects,
obj relation(relation, object, object), e.g., obj relation(above,
A, B) implies that object A is above object B (the last
argument is the reference object), and other relations, e.g.,
in hand(robot, object). Actions of the AR domain include
pickup(robot, object) and putdown(robot, object, location), and
relation holds(fluent, step) implies that a particular fluent holds
true at a particular time step.

The domain’s transitions are described by axioms encoded
in an action language and translated automatically to ASP
statements, e.g., axiom for the AR domain include:

holds(in hand(robot, object), I + 1) ←
occurs(pickup(robot, object), I)

holds(obj relation(above,A,B), I) ←
holds(obj relation(below,B,A), I)

¬occurs(pickup(robot, object), I) ←
holds(in hand(robot, object), I)

which represent a causal law, a state constraint, and an exe-
cutability condition respectively. The spatial relations extracted
from images are also converted to ASP statements. In addition,
we include axioms encoding generic (commonsense) domain
knowledge, e.g., statements of the form “larger objects placed
on smaller objects are typically unstable”.

History H includes records of observations received and
actions executed by the robot at particular time steps. This can
be expanded to represent initial state defaults, i.e., statements
that are initially assumed to be true in all but a few exceptional
circumstances. For example, we encode “a book is usually in
the library; if not there, it is usually found in the office”, and
exceptions, e.g., cookbooks are in the kitchen [23].

To reason with domain knowledge, the robot automatically
constructs the CR-Prolog program Π(D,H), including helper
axioms for reasoning; our program for the AR domain is in
our open-source repository [24]. Planning, diagnostics, and
inference can then be reduced to computing answer sets of
Π; each answer set is a possible world comprising beliefs of
the robot associated with Π. We use the SPARC system [25] to
compute answer set(s) of ASP programs, and extract relevant
literals (e.g., plans) as needed. In other work we combined
ASP-based non-monotonic logical reasoning with probabilistic
reasoning for more precise action execution at a finer granu-
larity [23]. For ease of understanding and to focus on the
interplay between reasoning and learning, we limit ourselves
to logical reasoning at a coarser resolution in this paper.

B. Features Extraction, Classification, and Learning

Next we describe the extraction of features from images and
their use in performing estimation and learning tasks.

Feature extraction: The main inputs are RGB images of
simulated scenes (e.g., Figure 1) with different object config-

urations. For any image, we extract spatial relations between
objects using our prior work on incrementally revising the
grounding (i.e., meaning in physical world) of spatial relations
encoded by prepositional words such as “above”, and “be-
hind” [26]. We also extract object attributes, e.g., color, shape,
and size using probabilistic algorithms, with the most likely
outcome encoded as ASP statements with complete certainty.

Classification and Learning: The classification block com-
prises three sub-components, and encodes a processing strat-
egy. For any given image, the agent first attempts to address the
classification task (e.g., estimate object occlusion and stability
of object structures) using ASP-based reasoning with domain
knowledge. If an answer is not found, or an incorrect answer
is found (during training), the robot automatically extracts
relevant regions of interest (ROIs) from the corresponding
image. Information from these ROIs is used to train and
use a deep (convolutional) neural network, the second sub-
component, for the classification task.

Images processed using deep networks are considered to
contain information that is missing (or incorrect) in the exist-
ing knowledge. Image features and object relations extracted
from the ROIs in each such image, along with the ground
truth label for occlusion and stability, are used by the third
sub-component to incrementally learn a decision tree (during
training) that summarizes the experiences of state transitions.
Branches in this decision tree with sufficient support among
the training examples are used to induce axioms that are
merged with existing axioms and used for reasoning.

C. Answering Explanatory Questions

Next, we describe the components that provide explanatory
descriptions of decisions and beliefs.

Text and audio interface: Human (verbal) input is first
transcribed using existing software [27], labeled using a part-
of-speech tagger, and normalized with the lemma list [28] and
their synonyms and antonyms retrieved from WordNet [29].
The processed text helps identify the type of request, which
may be task execution or an explanation. In the former
case, the related goal is passed to the ASP program for
planning. In the latter case, the “Program Analyzer” module
(see below) automatically infers and extracts relevant literals
to compose an answer. These literals are used with generic
sentence templates to produce human-understandable (textual)
explanations; this can be converted to synthetic speech [30].

Beliefs tracing: Our architecture’s ability to construct rela-
tional (explanatory) descriptions depends on the ability to
infer the sequence of axioms that explain the evolution of
any given belief. We adapt existing methods for generating
“proof trees” [14] to our non-monotonic (logical) reasoning
formulation. For any belief of interest, i.e., a positive or
negative literal of a fluent or an action, we proceed as follows:

1) Select axioms whose head matches the belief of interest.
2) Ground literals in the body of each selected axiom and

check whether these are supported by the answer set.



3) Create a new branch in a proof tree (with target belief as
root) for each axiom supported by the answer set, and
store axiom and supporting ground literals in nodes.

4) Repeat Steps 1-3 with the supporting ground literals in
Step 3 as target beliefs in Step 1, until all branches reach
a leaf with no further supporting axioms.

The paths from the root to the leaves in these trees help
construct the desired explanations.

Program Analyzer: Our approach automatically identifies
and reasons with relevant information to construct relational
descriptions for four types of explanatory questions or re-
quests. The first three were introduced as question types
to be considered by any explainable planning system [31];
we also consider questions about the robot’s beliefs at any
point in time. The shortest answer is selected when multiple
explanations are found; if multiple explanations of the same
complexity exist, one is chosen at random.

1) Plan description When asked to describe a plan, the
robot parses the related answer set(s) and extracts a
sequence of actions such as occurs(action1, step1), ...,
occurs(actionN, stepN) to construct the response.

2) Action justification: Why action X at step I? To
justify an action’s execution at a particular time step:

a) For each action that occurred after time step I ,
the robot examines relevant executability condi-
tion(s) and identifies literal(s) that would prevent
the action’s execution at step I . For picking up the
red block in Figure 1(right), assume that the exe-
cuted actions are occurs(pickup(robot, green mug),
0), occurs(putdown(robot, green mug, table), 1),
and occurs(pickup(robot, red block), 2). If the fo-
cus is on the first pickup action, an executability
condition related to the second pickup action:

¬occurs(pickup(robot, A), I) ←
holds(obj rel(below,A,B), I)

is ground in the scene to obtain obj rel(below,
red block, green mug) as a literal of interest.

b) If any identified literal is in the answer set at the
time step of interest (0 in this example) and is
absent (or its negation is present) in the next step,
it is a reason for executing the action of interest.

c) The condition modified by executing the action
of interest is paired with the subsequent action to
construct the answer. The question “Why did you
pick up the green mug at time step 0?”, receives
the answer “I had to pick up the red block, and the
red block was below the green mug”.

A similar approach is used to justify the selection of any
action in a plan that has not been executed.

3) Hypothetical actions: Why not action X at step I? For
questions about actions not selected:

a) The robot identifies executability conditions with
the hypothetical action in the head, i.e., conditions
that prevent selection of the action during planning.

b) For each such executability condition, if the literals
in the body are satisfied by the corresponding
answer set, they form the answer.

Continuing with our example, for the question “Why did
you not put the green mug on the yellow duck at time
step 1?”, the following axiom is identified:

¬occurs(putdown(robot, A, B), I) ←
has surface(B, irregular)

which implies that an object cannot be placed on another
with an irregular surface. Since the robot knows that
the yellow duck has an irregular surface, it answers
“Because the yellow duck has an irregular surface”.

4) Belief query: Why belief Y at step I? To explain any
particular belief, the robot uses belief tracing to identify
supporting axioms and literals that form the answer. For
instance, to explain the belief that object ob1 is unstable
in step I , the robot finds the axiom:

¬holds(stable(ob1), I) ← holds(small base(ob1), I)

Assume that the current beliefs include that ob1 has a
small base. Tracing this belief identifies the axiom:

holds(small base(ob1), I) ←
holds(relation(below, ob2, ob1), I),

has size(ob2, small), has size(ob1, big)

When asked “why do you believe ob1 is unstable at step
I?”, the robot answers “Because ob2 is below ob1, ob2
is small, and ob1 is big”.

D. Disambiguation Queries

Questions posed by humans may be ambiguous in terms of
the objects and time steps that they refer to. Our architecture
enables the robot to address this ambiguity by constructing and
posing clarification questions based on the domain attributes.
Since different disambiguation queries can be formed based
on the attributes characterizing domain objects, our approach
draws inspiration from findings in psychology and cognitive
science [6], [7] to construct queries most likely to address the
ambiguity. This approach is based on three heuristic measures
applied in the following order:

1) Unambiguity: this measure selects attributes that match
the least number of ambiguous objects in the context of
the human query and the current scene.

2) Human confusion: based on the understanding that
queries with many attributes are more likely to confuse
a human, this measure selects questions based on as few
attributes as possible.

3) Attribute/Feature rank: this measure identifies ques-
tions comprising more ”useful” attributes. The rank of



TABLE I
EXAMPLE OF COMPUTING THE RANK OF ATTRIBUTES.

features human preference detection complexity rank
Color 0.5 0.9 0.66
Size 0.3 0.8 0.5

Shape 0.2 0.6 0.36

each attribute is a linear combination of its human
preference and detection complexity:

Attribute rank = α× (human preference) +

β × (detection complexity).

where the values of α and β are dynamically updated to
reflect the relative importance of the measures. Here, human
preference seeks to capture the preference of humans to use
certain attributes for describing certain objects, whereas the
detection complexity reflects the level of difficulty a robot
has in detecting each attribute. These are domain-specific
measures whose values are determined from prior knowledge
and statistics collected in an initial training phase. For instance,
suppose a robot is able to detect color, size and shape of
objects, and the current values for α and β are 0.6 and
0.4 respectively. Illustrative examples of the values of human
preference and detection complexity, computed experimentally,
and the resulting rank of each attribute, are summarized in
Table I. The computed values can also be revised over time,
although we do not do so in our experiments.

A simple method for constructing disambiguation queries
would be to consider all possible combinations of attributes
not included in the human (input) query. The three measures
could then be applied to these queries to select the question(s)
to be posed to address the ambiguity. Such an approach
would be computationally expensive in complex domains.
Instead, our architecture uses the belief tracing approach
to automatically identify information that can be used to
address the current ambiguity. Recall that any human query
is translated to literals compatible with the current knowledge
(i.e., the knowledge base). For simplicity, assume that there
is a single such literal; this literal is ground for each entity
in the current scene that matches the query. The negation
of such literals are used as the initial beliefs in the beliefs
tracing approach to identify information not supported by
the knowledge base. For instance, in the scene in Figure 1
(right), the human request “Put the green mug on the yellow
object”, is ambiguous since there are three yellow objects in
the scene. Our approach finds three negated action literals
of interest: ¬ occurs(putdown(rob1,mug, yellow duck), I),
¬ occurs(putdown(rob1,mug, yellow cylinder), I), and
¬ occurs(putdown(rob1,mug, yellow block), I). Since the
first two literals are supported by the knowledge base, i.e.,
the robot knows these actions cannot be executed in the
current state given the existing axioms, the robot prioritizes
the yellow cube as being the object of interest and biases the
disambiguation question towards confirming this intuition; in
this example, the candidate disambiguation query is: “Do you
want the mug on top of the yellow block?”. Section IV-B
describes an example of using this approach.

IV. EXPERIMENTAL SETUP AND RESULTS

We first describe the setup for evaluating the architecture’s
abilities (Section IV-A), followed by the execution traces
(Section IV-B) and quantitative results (Section IV-C).

A. Experimental Setup

The reasoning and learning capabilities of our baselines ar-
chitecture have been described in our prior work [3], [4]. Here
we focus on belief tracing and generation of disambiguation
queries, and evaluate the following hypotheses:

H1 : Our disambiguation approach reduces the number of
queries posed by the robot and the attributes used in the
queries, and increases the accuracy of the explanatory
responses after the first disambiguation question; and

H2 : The contextual information retrieved by belief tracing
enables the robot to construct queries better suited to
address the ambiguity in the human query or request.

Experimental trials considered simulated images of the AR do-
main. We used a real-time physics engine (Bullet) to create 200
simulated images, each with 7−15 objects stacked in different
configurations or spread on a flat surface. Objects included
cylinders, spheres, cubes/blocks, a duck, and five household
objects from the Yale-CMU-Berkeley dataset (apple, pitcher,
mustard bottle, mug, and box of crackers). We considered
questions containing 2 − 10 ambiguous objects, with 2 − 10
attributes available for disambiguation. One hundred images
containing up to 10 objects were used for questions containing
up to six ambiguous entities whereas the other 100 were used
for question with more than six ambiguous entities. For each
ambiguous question, we stored the number of attributes and
interactions required, and the accuracy in the robot’s responses
after posing the disambiguation queries. We compared the
proposed method with a baseline approach that randomly
and incrementally selects attributes from the set of attributes
considered to be relevant to the original human query, until
the ambiguity is eliminated or all available attributes are
exhausted. The baseline initially uses the same number of
attributes as our method, and then adds one attribute at a time;
each such addition is considered an additional interaction.

B. Execution Trace

The following execution traces illustrate our architecture’s
ability to construct and use disambiguation queries, and to pro-
vide relational descriptions in response to the human queries.

Execution Example 1: [Disambiguation Example]
Consider the following interaction in the scenario in Fig-
ure 1(right); object attributes are color, shape, and size.

• Human: “Please pick up the yellow object.”
This is an ambiguous statement because there are multiple
yellow objects in the scene.

• The baseline disambiguation strategy randomly chooses
and uses one of the two unused attributes to ask a
clarification question:
Robot: “What is the size of the yellow object?”
In this case, the three yellow objects are of comparable



size (medium), so the robot would need at least one more
question for disambiguation.

• Our disambiguation approach chooses the best attributes
to construct queries. Assume that all possible combina-
tions of the two unused attributes are considered to con-
struct candidate disambiguation queries, i.e., it considers
size, shape, and size and shape respectively.

• Using the unambiguity measure, the robot chooses at-
tribute(s) resulting in the least number of matching enti-
ties. Since yellow objects are of a similar size (medium),
no candidate query is constructed based just on size.

• Based on the human confusion measure, the robot seeks
to construct queries based on the minimum number of
attributes. In our example, the candidate query con-
taining only the shape attribute is preferred over the
other combining size and shape. As a result, only one
disambiguation question is constructed:
Robot: “What is the shape of the yellow object?”

• Only two measures were used to select a disambiguation
query in this example. However, when two or more
queries are constructed in more complex situations, the
third (attribute/feature rank) measure will also be used.

Execution Example 2: [Disambiguation and Axioms]
We continue with the previous example as described below.

• Human: “Please move the mug on top of the yellow
object.” Similar to Execution Example 1, this statement
is ambiguous because the robot is unsure which of the
three yellow objects the human is referring to.

• Unlike Execution Example 1, we consider the known
axioms to provide contextual information that reduces the
search space for constructing disambiguation queries.

• Assume that the robot knows the following axioms:

¬holds(stable(Ob1), I) ← (2a)
holds(obj relation(above,Ob1, Ob2), I),

has surface(Ob2, irregular)

¬occurs(putdown(rob1, Ob1, Obj2), I) ← (2b)
holds(obj relation(below,Ob2, Ob3), I)

Statement 2(a) eliminates the duck as a possible target
location (for the mug) since it is known to have an
irregular surface. Statement 2(b) favors the yellow block
(on top of the green block) as the possible target location.

• It is possible to place the mug on the yellow cylinder
after removing the red block, but the yellow block offers
a simpler solution (based on the unambiguity measure).
The following disambiguation query is thus constructed:
Robot: “Should I move the mug on top of yellow block?”

Execution Example 3: [Disambiguation and Explanation]
Next, consider a different request in the same scenario.

• Human: “Move the yellow object on the green cube.”
Once again, there is ambiguity in the reference to an
yellow object. As the yellow cube is already in the desired
position, and the yellow cylinder is below other objects,
the yellow duck would be the simpler solution based on

the ambiguity measure, resulting in the question:
Robot: “Should I move the yellow duck on top of the
green cube?”
Human: “No. Please move the yellow cylinder on top of
the green cube.”

• To attend to this request, the robot computes and executes
the plan: pick up the mug; put down the mug on the table;
pick up the red cube; put down the red cube on the table;
pick up the yellow cube; put down the yellow cube on the
table; pick up the yellow cylinder; put down the yellow
cylinder on the top of the green cube.

• The human asks a question related to the plan:
Human: “Why did you put the cube on the table?”
This is an ambiguous question because the red and yellow
cubes have been moved to the table at different time steps.
Since these cubes have similar size and shape, color is
used automatically for disambiguation.
Robot: “What is the color of the cube?”
Human: “Yellow.”

• The question about the executed plan is now answered.
Robot: “I had to put the yellow cylinder on top of the
green cube. The green cube was below the yellow cube.”

• The human asks about a particular belief.
Human: “Why did you believe the green cube was below
the yellow cube?”
Robot: “Because I observed the green cube below the
yellow cube at step zero.”

C. Experimental Results

Next, we discuss quantitative results of evaluating the
hypotheses listed in Section IV-A. Unless stated otherwise,
all claims are statistically significant at the 95% significance
level. The first set of experiments was designed to evaluate
hypothesis H1:

1) 100 initial object configurations were constructed ran-
domly. The information extracted from each image (e.g.,
object attributes, spatial relations) was included as initial
state in the corresponding ASP program.

2) For each initial state, we considered questions in which
2−10 objects were ambiguous, and 2−10 attributes were
available for the constructing disambiguation queries.

3) The number of attributes used for disambiguation was
recorded for the baseline algorithm and for our al-
gorithm. When a sufficient number of attributes were
not available for disambiguation, all the attributes were
considered to be available.

4) We ran the baseline for the same 100 scenes mentioned
above, and considered any extra attribute needed in
addition to the number of attributes required by our
disambiguation approach as an extra interaction.

Recall that for both the baseline and our approach, only
attributes related to the objects in the ambiguous queries
are considered. The average number of attributes used is
reported as a function of the number of ambiguous objects in
Figure 3. The average number of interactions as a function
of the number of ambiguous objects is in Figure 4. Our



Fig. 3. Percentage of attributes used in disambiguation queries expressed as
a function of the number of ambiguous objects in the scene. Our proposed
method uses a smaller number of attributes.

Fig. 4. Average number of interactions required for disambiguation. Our pro-
posed approach uses a significantly smaller number of interactions compared
with the baseline.

method significantly reduces the number of attributes used for
disambiguation. Also, the baseline approach requires at least
two interactions to achieve the expected response whereas our
method typically requires only one. These results support H1.

The second set of experiments was designed as follows to
evaluate hypotheses H1 and H2:

1) 100 initial object configurations were constructed ran-
domly. The information extracted from each such image
(e.g., object attributes, spatial relations) was encoded as
initial state in the corresponding ASP program.

2) For each initial state, we considered questions with 2−
10 ambiguous objects, and 2−10 attributes available for
the construction of disambiguation queries.

3) The accuracy for the answers provided by the robot (to
the original question) after asking the disambiguation
question is computed for the baseline and our proposed
method; with out method, we also computed accu-
racy with and without contextual knowledge identified
through reasoning (and belief tracing) with existing

Fig. 5. Accuracy of answers provided by the robot after constructing
disambiguation queries using the baseline and the proposed method (with
and without contextual knowledge). Using the proposed method improves
accuracy, and using contextual information further improves performance.

knowledge. Results are plotted in Figure 5 as baseline,
proposed, and proposed+context respectively.

Figure 5 indicates that our method improves accuracy of the
responses, which further supports H1. We also observe that
extracting and using the contextual information to construct
the disambiguation queries helps obtain useful information
from the human, improving the accuracy of the answers to
the original human queries. These results support H2.

V. CONCLUSION

The architecture described in this paper is a step to-
wards greater transparency in reasoning and learning for
integrated robot systems that include methods for knowledge-
based reasoning and data-driven learning. Our architecture
exploits the complementary principles and strengths of non-
monotonic logical reasoning with incomplete commonsense
domain knowledge, data-driven deep learning from a limited
set of examples, and inductive learning of previously unknown
axioms governing domain dynamics. We also described a
strategy to trace the evolution of beliefs, and construct and
pose suitable disambiguation queries. Experimental results
using simulated images demonstrate the ability to construct
suitable disambiguation queries and provide more accurate
relational descriptions (as explanations) of decisions and the
evolution of beliefs in response to the human queries.

Our architecture presents multiple directions for further
research. We will further explore the interplay between rea-
soning and learning in the context of explaining decisions and
beliefs while performing scene understanding and planning
tasks in more complex domains. We will also investigate the
use of our architecture on a robot interacting with humans
in the physical (i.e., real) world through noisy sensors and
actuators, building on other work in our group on combining
non-monotonic logical reasoning with probabilistic reasoning
at different resolutions [23]. The longer-term objective is to
support explainable reasoning and learning in integrated robot
systems in complex domains.
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