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Abstract

Ad hoc teamwork focuses on enabling an agent to collaborate with teammates without prior
coordination. State of the art ad hoc teamwork methods use data-driven methods and a large
labeled dataset of prior observations to model the behavior of other agent types and to determine
the ad hoc agent’s behavior. These methods are computationally expensive, lack transparency,
and make it difficult to adapt to changes in team composition. Our recent work introduced
a proof of concept architecture that determined an ad hoc agent’s behavior based on non-
monotonic logical reasoning with prior commonsense domain knowledge and predictive models of
other agents’ behaviour that were learned from limited examples. In this paper, we use KR tools
to substantially expand the architecture’s capabilities, supporting: (a) online adaptation and
choice of learned models of other agents’ behavior; and (b) collaboration in the presence of partial
observability and limited communication. Experimental evaluation in two different simulated
benchmark domains for ad hoc teamwork demonstrates performance comparable or better than
state of the art data-driven baselines in both simple and complex scenarios, particularly in the
presence of limited training data, partial observability, and changes in team composition.

KEYWORDS: Knowledge Representation, Non-monotonic logical reasoning, Ecological ratio-
nality, Ad hoc teamwork, Applications of logic programming

1 Introduction

Ad Hoc Teamwork (AHT) is the challenge of enabling an agent (called the ad hoc agent)

to collaborate with previously unknown teammates toward a shared goal (Stone et al.

2010). As motivating examples, consider the simulated multiagent domain Fort Attack

(FA, Figure 1a), where a team of guards has to protect a fort from a team of attack-

ers (Deka and Sycara 2021), and the Half Field Offense domain (HFO, Figure 1d), where

a team of offense agents has to score a goal against defenders (Hausknecht et al. 2016).

Agents in these domains have limited knowledge of each other’s capabilities, no prior

experience of working as a team, ability to observe only part of the environment (Fig-

ure 1b), and limited communication bandwidth. Such scenarios are representative of

practical multiagent application domains such as disaster rescue and surveillance.

The state of the art in AHT has transitioned from the use of predetermined policies

for selecting actions in specific states to the use of a key “data-driven” component.

This component uses probabilistic or deep network methods to model the behavior (i.e.,

action choice in specific states) of other agents or agent types, and to optimize the
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(a) Fully observable (b) Partial observable (c) Limited version (d) Full version

Fig. 1: Screenshots: (a-b) fort attack environment; (c-d) half-field offense environment.

ad hoc agent’s behavior, based on a long history of prior experience. It is difficult to

obtain such training examples, and computationally expensive to build the necessary

models or to revise them in response to new situations in complex domains. At the same

time, just reasoning with prior knowledge will not allow the ad hoc agent to accurately

anticipate the behavior of other agents and it is not possible to encode comprehensive

knowledge about all possible situations. In a departure from existing work, we pursue

a cognitive systems approach, which recognizes that AHT jointly poses representation,

reasoning, and learning challenges, and seeks to leverage the complementary strengths of

knowledge-based reasoning and data-driven learning from limited examples. Specifically,

our knowledge-driven AHT architecture (KAT) builds on KR tools to support:

1. Non-monotonic logical reasoning with prior commonsense domain knowledge and

rapidly-learned predictive models of other agents’ behaviors;

2. Use of reasoning and observations to trigger the selection of relevant agent behavior

models and the learning of new models as needed; and

3. Use of reasoning to guide collaboration with teammates under partial observability.

In this paper, we build on and significantly extend our recent work, which provided a proof

of concept demonstration of just the first capability in the FA domain (Dodampegama

and Sridharan 2023a). We use Answer Set Prolog (ASP) for non-monotonic logical rea-

soning, and heuristic methods based on ecological rationality principles (Gigerenzer 2020)

for rapidly learning and revising agents’ behavior models. We evaluate KAT’s capabilities

in the FA domain and the more complex HFO domain. We demonstrate that KAT’s per-

formance is better than that of just the non-monotonic logical reasoning component, and

is comparable or better than state of the art data-driven methods, even in the presence

of partial observability and changes in team composition.

2 Related Work

Methods for AHT have been developed under different names, as described in a recent

survey (Mirsky et al. 2022). Early work used specific protocols (‘plays’) to define how

an agent should behave in different scenarios (states) (Bowling and McCracken 2005).

Subsequent work used sample-based methods such as Upper Confidence bounds for Trees

(UCT) (Barrett et al. 2013), or combined UCT with methods that learned models from

historical data for online planning (Wu et al. 2011). More recent methods have included a

key data-driven component, using probabilistic, deep-network, and reinforcement learn-

ing (RL)-based methods to learn action (behavior) choice policies for different types

of teammates based on a long history or prior observations of similar agents or situa-
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tions (Barrett et al. 2017; Rahman et al. 2021). For example, RL methods have been used

to choose the most useful policy (from a set of learned policies) for each situation (Bar-

rett et al. 2017), or consider predictions from learned policies when selecting an ad hoc

agent’s actions for different types of agents (Santos et al. 2021). Attention-based deep

neural networks have been used to jointly learn policies for different agent types (Chen

et al. 2020) and for different team compositions (Rahman et al. 2021). Other work has

combined sampling strategies with learning methods to optimize performance (Zand et al.

2022), and used deep network-based learned sequential and hierarchical models with ap-

proximate belief inference methods (Zintgraf et al. 2021). In addition, researchers have

explored different communication strategies for AHT, e.g., a multiagent, multi-armed

bandit formulation to broadcast messages to teammates at a cost (Barrett et al. 2017),

or heuristic method to assess the cost and value of different queries (Macke et al. 2021).

These methods require considerable resources (e.g., computation, training examples),

build opaque models, and make it difficult to adapt to changes in team composition.

There has been considerable research in developing action languages and logics for

single- and multiagent domains. This includes action language A for an agent computing

cooperative actions in multiagent domains (Son and Sakama 2010), and action language

C for modeling benchmark multiagent domains with minimal extensions (Baral et al.

2010b). Action language B has also been combined with Prolog and ASP to implement

a distributed multiagent planning system that supports communication in a team of

collaborative agents (Son et al. 2010). More recent work has used B for planning in

single agents and multiagent teams, including a distributed approach based on negoti-

ations for non-cooperative or partially-collaborative agents (Son and Balduccini 2018).

To model realistic interactions and revise the domain knowledge of agents, researchers

have introduced specific action types, e.g., world-altering, sensing, and communication

actions (Baral et al. 2010a). Recent work has represented these action types in action

language mA∗ while also supporting epistemic planning and dynamic awareness of action

occurrences (Baral et al. 2022). These studies have demonstrated that ASP can be used to

represent and reason in multiagent domains. Our work draws on these findings to address

the reasoning and learning challenges faced by an ad hoc agent that has to collaborate

with teammates under conditions of partial observability and limited communication.

3 Architecture

Figure 2 is an overview of our KAT architecture. Our ad hoc agent performs non-

monotonic logical reasoning with prior commonsense domain knowledge, and with in-

crementally learned behavior models of teammate and opponent agents. At each step,

valid observations of the domain state are available to all the agents, who then inde-

pendently determine and execute their individual actions in the environment. KAT’s

components are described using two example domains.

Example Domain 1: Fort Attack (FA). Three guards are protecting a fort from

three attackers. One guard is the ad hoc agent that can adapt to changes in the team

and domain. An episode ends if: (a) guards manage to protect the fort for a period of

time; (b) all members of a team are eliminated; or (c) an attacker reaches the fort.

At each step, each agent can move in one of the four cardinal direction with a particular

velocity, turn clockwise or anticlockwise, do nothing, or shoot to kill any agent in the
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Fig. 2: Our KAT architecture combines complementary strengths of knowledge-based

and data-driven heuristic reasoning and learning.

shooting range. The environment provides four types of built-in policies for guards and

attackers (see Section 4.1). The original FA domain is fully observable, i.e., each agent

knows the state of other agents at each step. We simulate partial observability by creating

a “forest” in Figure 1b; any agent in this region is hidden from others.

Example Domain 2: Half Field Offense (HFO). This simulated 2D soccer domain

is a complex benchmark for multiagent systems and AHT (Hausknecht et al. 2016). The

ad hoc agent is a member of the offense team that seeks to score a goal against a defense

team. An episode ends when: (a) offense team scores a goal; (b) ball leaves field; (c)

defense team captures the ball; or (d) maximum episode length (500) is reached.

There are two version of the domain: (i) limited : two offense agents and two defense

agents (including goalkeeper); and (ii) full : four offense agents, five defense agents (in-

cluding goalkeeper). Agents other than the ad hoc agent are selected from teams created

in the RoboCup 2D simulation league competitions. Similar to prior AHT methods, other

offense team agents can be based on the binary files of five teams: helios, gliders, cyrus,

axiom, aut. For defenders, we use agent2D agents, whose policy was derived from helios.

The strategies of these agent types were trained using data-driven (probabilistic, deep,

reinforcement) learning methods. HFO supports two state space abstractions: low, high;

we use the high-level features. There are three abstractions of the action space: primitive,

mid-level, and high-level; we use a combination of mid-level and high-level actions.

Prior commonsense knowledge in FA and HFO includes relational descriptions of some

domain attributes (e.g., safe regions), agent attributes (e.g., location), default statements,

and axioms governing change, e.g., an agent can only move to a location nearby, only

shoot others within its shooting range (FA), and only score a goal from a certain angle

(HFO). This knowledge may need to be revised over time.

3.1 Knowledge Representation and Reasoning

In our architecture, the transition diagrams of any domains are described in an extension

of the action languageALd (Gelfond and Inclezan 2013). The domain representation com-

prises a system description D, a collection of statements of ALd, and a history H. D has a

sorted signature Σ which consists of actions, statics, i.e., attributes whose values cannot
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be changed, and fluents, i.e., attributes whose values can be changed by actions. For ex-

ample, Σ in the HFO domain includes basic sorts such as ad hoc agent, external agent,

agent, offense agent, defense agent, x val, y val, and sort step for temporal rea-

soning; some sorts (e.g., offense agent, defense agent,) can be subsorts of others

(external agent). Statics in Σ are relations such as next to(x val, y val, x val, y val)

that encode the relative arrangement of locations. Σ includes inertial fluents that obey

inertia laws and can be changed by actions, and defined fluents that do not obey inertia

laws are not directly changed by actions. Inertial fluents in the HFO domain include:

loc(ad hoc agent, x val, y val), ball loc(x val, y val), has ball(agent) (1)

which describe the location of the ad hoc agent, location of the ball, and the agent that

has control of the ball. Defined fluents of the HFO domain include:

agent loc(external agent, x val, y val), (2)

defense close(agent, defense agent), far from goal(ad hoc agent)

which encode the location of the external (i.e., non-ad hoc) agents, and describe whether

a defense agent is too close to another agent, and whether the ad hoc agent is far from

the goal. Next, actions in the HFO domain include:

move(ad hoc agent, x val, y val), kick goal(ad hoc agent), (3)

dribble(ad hoc agent, x val, y val), pass(ad hoc agent, offense agent)

which state the ad hoc agent’s ability to move to a location, kick toward the goal, dribble

to a location, and pass to a teammate. Axioms in D describe domain dynamics using

elements in Σ in causal laws, state constraints, and executability conditions such as:

move(R,X, Y ) causes loc(R,X, Y ) (4a)

dribble(R,X, Y ) causes ball loc(X,Y ) (4b)

¬has ball(A1) if has ball(A2), A1 ̸= A2 (4c)

impossible shoot(R) if far from goal(R) (4d)

where Statements 4(a-b) are causal laws that imply that moving and dribbling change the

ad hoc agent’s and ball’s location (respectively) to the desired location. Statement 4(c)

is a state constraint that implies only one agent can control the ball at any time. State-

ment 4(d) is an executability condition that prevents the consideration of a shooting

action (during planning) if the ad hoc agent is far from the goal. Finally, history H is a

record of observations of fluents, i.e., obs(fluent, boolean, step), and action executions,

i.e., hpd(action, step) at specific time steps. It also includes initial state defaults, i.e.,

statements that are initially believed to be true in all but a few exceptional circumstances.

To enable an ad hoc agent to reason with prior knowledge, the domain description

in ALd is automatically translated to program Π(D,H) in CR-Prolog (Balduccini and

Gelfond 2003), an extension to ASP that supports consistency restoring (CR) rules.

ASP encodes default negation and epistemic disjunction, and supports non-monotonic

reasoning; this ability to revise previously held conclusions is essential in AHT. Π(D,H)
includes the relation holds(fluent, step) to state that a particular fluent is true at a

given step, and occurs(action, step) to state that a particular action occurs in a plan at

a given step. It includes inertia axioms, reality check axioms, closed world assumptions for
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defined fluents and actions, and helper axioms (e.g., to define goals and drive diagnosis).

Reasoning tasks such as planning, diagnosis, and inference are then reduced to computing

answer sets of Π. The ad hoc agent may need to prioritize different goals at different times,

e.g., score a goal when it has control of the ball, and position itself otherwise:

goal(I)← holds(scored goal, I). goal(I)← holds(loc(ad hoc agent,X, Y ), I). (5)

A suitable goal is selected and included at run-time based on current state, and the cost

is minimized when computing a plan of actions for a given goal:

total(S)← S = sum{C,A : occurs(A, I), cost(A,C)}. #minimize{S@p, S : total(S)}.

We use the SPARC system (Balai et al. 2013) to write and solve CR-Prolog programs;

examples are in our open source repository (Dodampegama and Sridharan 2023b). For

computational efficiency, our programs build on prior work in our group to represent and

reason at two tightly-coupled resolutions—see (Sridharan et al. 2019) for details.

3.2 Agent Models and Model Selection

Since reasoning with just prior domain knowledge can lead to poor team performance

under AHT settings (see Section 4.2), KAT enables the ad hoc agent to also reason

with models that predict (i.e., anticipate) the action choices of other agents. State of the

methods attempt to optimize performance under different (known) situations by learning

models offline from many (e.g., millions of) examples. It is intractable to obtain such

labeled examples of different situations in complex domains. KAT thus chooses relevant

attributes for models that can be: (a) learned from limited (e.g., 10K) training examples

acquired from simple hand-crafted policies (e.g., spread and shoot in FA, pass when

possible in HFO); and (b) revised rapidly during run-time to provide reasonable accuracy.

Tables 1 and 2 list the identified attributes in the FA and HFO domain respectively.

Similar to our recent work (Dodampegama and Sridharan 2023a), predictive models are

learned using the Ecological Rationality (ER) approach, which draws on insights from hu-

man cognition, Herb Simon’s definition of Bounded Rationality, and an algorithmic model

of heuristics (Gigerenzer 2020; Gigerenzer and Gaissmaier 2011). ER focuses on decision

making under true uncertainty (e.g., open worlds), characterizes behavior as a func-

tion of internal (cognitive) processes and environment, and focuses on satisficing based

on differences between observed and predicted behavior. Also, heuristic methods (e.g.,

one-reason, lexicographic) are viewed as a strategy to ignore part of the information in

order to make decisions more quickly, frugally, and/or accurately than complex methods,

experimentally choosing the method that best leverages domain structure. Specifically,

KAT enables the ad hoc agent to learn an ensemble of “fast and frugal” (FF) decision

trees that predict the behavior of other agents; each tree provides a binary class label

and the number of leaves is limited by number of attributes (Katsikopoulos et al. 2021).

The ad hoc agent’s teammates and opponents may include different types of agents

whose behavior may change over time. Unlike our prior work that used static models, we

enabled the ad hoc agent to automatically identify and respond to such changes by revis-

ing, switching between, or learning new models. Existing models are revised by changing

the parameters of FF trees, and Algorithm 1 describes an instance of our model selec-

tion approach for models predicting the pose (i.e., position and orientation) of agents.

Specifically, the ad hoc agent periodically compares the predictions of the existing models
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Table 1: Attributes considered for models of other agents’ behavior in FA domain. Num-

ber of attributes represent the size of attribute times the number of agents.

Description of attribute Number

x, y position of agent 12
distance from agent to center of field 6
agents’ polar angle with center of field 6
orientation of the agent 6

Description of attribute Number

distance from agent to fort 6
distance to nearest attacker from fort 1
number of attackers not alive 1
previous action of the agent 1

Table 2: Attributes for models of teammates and defense agents’ behavior in HFO domain.

Number of attributes represent the size of attribute times the number of agents.

Description of attribute Number

x position of agent 4
y position of agent 4
goal opening angle 2
proximity to the nearest opponent 2
x position of the ball 1
y position of the ball 1

Description of attribute Number

x position of agent 4
y position of agent 4
x position of the ball 1
y position of the ball 1

with the actual (i.e., observed) action choices of each agent (teammate, opponent) over

a sliding window of information about the domain state and the agents’ action choices.

Also, a graded strategy for computing the error penalizes e.g. differences in orientation

less than differences in position (Lines 4-6, Algorithm 1). An existing model is used (and

revised) or a new one is learned based on the degree of match (Line 10, Algorithm 1).

3.3 Partial Observability and Communication

In practical AHT domains, any single agent cannot observe the entire domain and com-

munication is a scarce resource. To explore the interplay between partial observability

and communication, we modified the original domains (FA, HFO). Specifically, in the FA

domain, we introduced a forest region where attackers can hide from the view of the two

Algorithm 1: Model Selection

Input: A: other agents;M: subset of behaviour models; {ar}: actual action
choices of agents, {ap}: action predictions from behaviour models

1 for i = 0 to A do

2 for m = 0 toM do

3 if ap ̸= ar then

4 lr, or ← real location orientation(ar)

5 lp, op ← pred location orientation(ap)

6 penalty ← abs(lr − lp) + abs(or − op)/10

7 end

8 scores = scores - penalty

9 end

10 update model scores(M, scores)

11 end
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guards (other than ad hoc agent), giving them an opportunity to secretly approach the

fort—Figure 1b. The ad hoc agent has visibility of the forest region; it can decide when

to communicate with its teammates, e.g., when: (a) one of more attackers are hidden in

the forest; and (b) one of the other guards is closer to the hidden attacker(s) than it.

The associated reasoning can be encoded using statements such as:

holds(shoots(G,AA), I + 1)←occurs(communicate(AHA,G,AA), I) (6a)

holds(in forest(AA), I)←holds(agent loc(AA,X, Y ), I), forest(X,Y ), (6b)

not holds(shot(AA), I)

−occurs(communicate(AHA,G,AA), I)← not holds(in range(G,AA), I). (6c)

where Statement 6(c) encodes that communication is used only when a hidden attacker

is within range of a teammate; Statement 6(b) defines when an attacker is hidden; and

Statement 6(a) describes the ad hoc agent’s belief that a teammate receiving information

about a hidden attacker will shoot it, although the teammate acts independently and may

choose to ignore this information. If there are multiple guards satisfying these conditions,

the ad hoc agent may only communicate with the guard closest to the hidden attacker(s).

In the HFO domain, we represent partial observability using the builtin ability to limit

each agent’s perception to a specific viewing cone, i.e., the agent is only able to sense

objects (i.e., agents, ball) within this cone. Given this use of builtin functions, we added

some helper axioms that ensured the ad hoc agent only reasoned with visible objects; no

additional communication action was implemented.

4 Experimental setup and results

We experimentally evaluated three hypotheses about our architecture’s capabilities:

H1: Our architecture’s performance is comparable or better than state of the art base-

lines in different scenarios while requiring much less training;

H2: Our architecture enables adaptation to unforeseen changes in the type and number

of other agents (teammates and opponents); and

H3: Our architecture supports adaptation to partial observability with limited commu-

nication capabilities.

We evaluated aspects of H1 and H2 in both domains (FA, HFO) under full observabil-

ity. For H3, we considered partial observability in both domains, and explored limited

communication in the FA domain. Each game in the FA domain had three guards and

three attackers, with our ad hoc agent replacing one of the guards. In HFO domain, each

game had two offense and two defense players (including one goalkeeper) in the limited

version; and four offense players and five defense agents (including one goalkeeper) in

the full version. Our ad hoc agent replaced one of the offense agents in the HFO domain.

In the FA domain, the key performance measure was the win percentage of the guards

team. In the HFO domain, the key performance measure was the fraction of games in

which the offense team scored a goal. In both domains, we also measured the accuracy of

the predictive models. Further details of experiments and baselines are provided below.

4.1 Experimental Setup

In the FA domain, we used two kinds of policies for the agents other than our ad hoc

agent: hand-crafted policies and built-in policies. Hand-crafted policies were constructed
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as simple strategies that produce basic behaviour. Built-in policies were provided with the

domain; they are based on graph neural networks trained using many training examples.

Hand-Crafted Policies.

• Policy1: guards stay near the fort and shoot attackers who spread and approach.

• Policy2: both guards and attackers spread and shoot their opponents.

Built-in Policies.

• Policy220: guards place themselves in front of the fort and shoot continuously;

attackers try to approach the fort.

• Policy650: guards try to block the fort; attackers try to sneak in from all sides.

• Policy1240: guards spread and shoot the attackers; attackers sneak from all sides.

• Policy1600: guards are willing to move from the fort; some attackers approach

the fort and shoot to distract the guards while others try to sneak in.

The ad hoc agent was evaluated in two experiments: Exp1, in which other agents followed

the hand-crafted policies; and Exp2, in which other agents followed the built-in policies.

As stated earlier, the ad hoc agent built behavior models in the form of FF trees from

10000 state-action observations obtained by running the hand-crafted policies. It did not

receive any prior experience or models of the built-in policies.

Our previous work documented the accuracy of static behavior models and the per-

formance of a proof of concept AHT architecture in the FA domain (Dodampegama and

Sridharan 2023a). In this paper, we focused on evaluating the ability to select and revise

the relevant predictive models, and adapt to partial observability. For the former, each

agent other than our ad hoc agent was assigned a policy selected randomly from the

available policies (described above). The baselines for this experiment were:

• Base1: other agents followed a random mix of hand-crafted policies; ad hoc agent

did not revise behavior models or use the model selection algorithm.

• Base2: other agents followed a random mix of hand-crafted policies; ad hoc agent

used a model selection algorithm without a graded strategy to compare predicted

and actual actions (i.e., binary comparison instead of Line 6 in Algorithm 1).

• Base3: other agents followed a random mix of builtin policies; ad hoc agent did

not revise models or use the model selection algorithm.

• Base4: other agents followed a random mix of built-in policies; ad hoc agent used

the model selection algorithm without a graded strategy to compare predicted and

actual actions (i.e., binary comparison instead of Line 6 in Algorithm 1).

The baselines for evaluating partial observability and communication were:

• Base5: in Exp1, other agents followed hand-crafted policies and ad hoc agent did

not use any communication actions.

• Base6: in Exp2, other agents followed built-in policies and the ad hoc agent did

not use any communication actions.

Each experiment involved 150 episodes and results were tested for statistical significance.

In the HFO domain, we used six external agent teams from the 2013 RoboCup simula-

tion competition to create the ad hoc agent’s teammates and opponents. Five teams were

used to create offense agents: helios, gliders, cyrus, axiom and aut ; agents of the defense

team were based on agent2d team. Similar to the initial phase in the FA domain, we
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deployed the existing agent teams in the HFO domain and collected state observations.

Since the actions of other agents are not directly observable, they were computed from

the observed state transitions. To evaluate the ability to learn from limited data, we only

used data from 300 episodes for each type of agent to create the tree models for behavior

prediction, which were then used by the ad hoc agent during reasoning.

We first compared KAT’s performance with a baseline that only used non-monotonic

logical reasoning with prior knowledge but without any behavior prediction models

(Exp3), i.e., it was unable to anticipate the actions of other agents. Next, we evalu-

ated KAT’s performance with each built-in external team, i.e., all offense agents other

than the ad hoc agent were based on one external team at a time. In Exp4, we measured

performance in the limited version, i.e., two offense players (including ad hoc agent)

against two defense agents (including goalkeeper). In Exp5, we measured performance

in the full version, i.e., four offense players (including ad hoc agent) played against five

defense agents (including goalkeeper). In Exp6 and Exp7, we evaluated performance

under partial observability in the limited and full versions respectively. As the baselines

for Exp4-Exp5, we used recent (state of the art) AHT methods: PPAS (Santos et al.

2021), and PLASTIC (Barrett et al. 2017). These methods used the same external agent

types for comparison, allowing us to compare our results with those in their papers. For

Exp6-Exp7, we used the external agent teams as baselines. We conducted 1000 episodes

for each experiment, and tested results for statistical significance.

4.2 Experiment Results

We begin with the results of experiments in the FA domain. First, Table 3 summarizes

the results of using our model selection algorithm in Exp1. When the other agents

followed the hand-crafted policies and the model selection mechanism was not used by the

ad hoc agent (Base1), the team of guards had the lowest winning percentage. When the

ad hoc agent used the model selection algorithm without a graded strategy for comparing

predicted and actual actions (Base2), the performance of the team of guards improves.

When the ad hoc agent used our model selection method (Algorithm 1), the winning

percentage of the team of guards is substantially higher. These results demonstrated

that adaptively selecting behavior models improved our architecture’s performance.

Next, the results of Exp2 are summarized in Table 4. We observed that KAT enabled

the ad hoc agent to adapt to unforeseen teammates and opponents that were using

the FA domain’s built-in policies, based on online revision of the behavior models (i.e.,

the FF trees) learned from the hand-crafted policies and the model selection algorithm.

KAT provided the best performance compared with not using any model adaptation

or selection (Base3), and when model selection was used without the graded strategy

(Base4). These results and those in Table 3 support hypotheses H1 and H2.

The results from Exp1 under partial observability, with and without communication

(Base5), are summarized in Table 5. Other agents used the FA domain’s hand-crafted

policies in this experiment. When the communication actions were enabled for the ad hoc

(guard) agent, the winning percentage of the team of guards was substantially higher than

the winning percentage of the team of guards when they could not use the communication

actions. Policy2 is a particularly challenging scenario (both guards and attackers shoot),

which justified the lower (overall) winning percentage.
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Table 3: Wins (%) for guards with hand-

crafted policies (Exp1). Model adaptation

improves performance.

Experiment Win %

Without model selection (Base1) 63
When using direct comparison (Base2) 68
With model selection algorithm (KAT) 73

Table 4: Wins (%) for guards with built-

in policies (Exp2). Model adaptation im-

proves performance.

Experiment Win %

Without model selection (Base3) 47
When using direct comparison (Base4) 45
With model selection algorithm (KAT) 55

Table 5: Wins (%) for guards with hand-

crafted policies (Exp1). Communication

addresses partial observability.

Policy With Comm. (%)
Without Comm.

(%, Base5)

Policy1 73 58
Policy2 19 8

Table 6: Wins (%) for team of guards

built-in policies (Exp2). Communication

addresses partial observability.

Policy With Comm. (%)
Without Comm.

(%, Base6)

Policy220 79 85
Policy650 42 41
Policy1240 46 43
Policy1600 18 17

Next, the results from Exp2 under partial observability, with and without communica-

tion (Base6) strategies, are summarized in Table 6. Other agents used the FA domain’s

built-in policies. We observed that the winning percentage of the team of guards when

following the policies 650, 1240, and 1600 was comparable or higher when the communi-

cation actions were enabled compared with the absence of these actions (Base6). With

Policy 220, the performance was slightly worse with the communication actions. However,

unlike the other policies, Policy 220 results in the guards spreading themselves in-front of

the fort and shooting continuously. As a result, partial observability and communication

strategies did not contribute significantly to the outcome. These results support H3.

We next describe the results from the HFO domain. Table 7 summarizes results of

Exp3, which compared KAT’s performance with a baseline that had the ad hoc agent

only reasoning with prior knowledge, i.e., without any learned models predicting the

behavior of other agents. With KAT, the fraction of goals scored by the offense team was

significantly higher than with the baseline. Leveraging the interplay between representa-

tion, reasoning, and learning led to this improved performance that supports H1.

Next, the prediction accuracy of the learned behavior models created for the limited

version (Exp4) and full version (Exp5) of the HFO domain are summarized in Tables 8

and 9 respectively. Recall that these behavior models were learned for the agents other

than the ad hoc agent using data from 300 episodes (for each external agent type). This

was much smaller than the number of samples (often a few million) used by state of

the art data-driven methods that do not reason with domain knowledge. The prediction

accuracy varied over a range for the different agent types. Although the accuracy values

were not very high, the models could be learned and revised quickly during run-time.

The results of Exp4 and Exp5 comparing KAT’s performance with the state of the art

baselines for the HFO domain (PPAS, PLASTIC), are summarized in Table 10. Recall

that these data-driven baselines require millions of training examples and do not include

knowledge-based reasoning. The fraction of goals scored (and games won) by the team of
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Table 7: Fraction of goals scored by the offense team in HFO domain in Exp3.

Version KAT Logical Reasoner

Limited (2v2) 79 67
Full (4v5) 30 26

Table 8: Prediction accuracy of the learned

agent behaviour models in limited (2v2)

version of the HFO domain (Exp4).

Agent Type Accuracy (%)

Helios 78.2
Gliders 83.2
Cyrus 69.5
Aut 72.4
Axiom 76.2
Agent2D 79.8

Table 9: Prediction accuracy of the learned

agent behaviour models in full (4v5) ver-

sion of the HFO domain (Exp5).

Agent Type Accuracy (%)

Helios 86.0
Gliders 66.4
Cyrus 77.6
Aut 67.7
Axiom 73.6
Agent2D 71.9

offense agents including our ad hoc agent was comparable with the goals scored by the

baselines for the limited version, and substantially better than the baselines for the full

version. These results strongly support hypotheses H1 and H2.

The results of evaluating KAT under partial observability (in HFO domain) are sum-

marized in Table 11 compared with teams of external agent types without any ad hoc

agent. Although the numbers indicated that KAT’s performance is slightly lower than

teams without any ad hoc agents, the difference is not significant and mainly due to noise

(e.g., in perceived angle to the goal). The ability to provide performance comparable with

teams whose training datasets are orders of magnitude larger strongly supports H3.

Due to space constraints, additional video results, including that of experimental trials

involving unexpected changes in the number and type of other agents, are provided in

our open-source repository (Dodampegama and Sridharan 2023b).

5 Conclusions

Ad hoc teamwork (AHT) refers to the problem of enabling an agent to collaborate with

others without any prior coordination. State of the art AHT methods are data-driven,

requiring a large labeled dataset of prior observations to learn offline models that predict

the behavior of other agents (or agent types) and determine the ad hoc agent’s behavior.

This paper described KAT, a knowledge-driven AHT architecture that supports non-

monotonic logical reasoning with prior commonsense domain knowledge and models that

predict other agents’ behaviors that are learned and revised rapidly online using heuristic

methods. KAT leverages KR tools and the interplay between reasoning and learning to

automate the online selection and revision of the behavior prediction models, and to

guide collaboration and communication under partial observability and changes in team

composition. Experimental results in two benchmark simulated domains, Fort Attack and

Half Field Offense, demonstrated that KAT’s performance is better than that of just the

non-monotonic logical reasoning component, and is comparable or better than state of the

art data-driven methods that require much larger training datasets. In the future, we will

investigate the introduction of multiple ad hoc agents in complex multiagent collaboration
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Table 10: Fraction of goals scored by the offense team in HFO domain in the limited

version(2v2) and full version(4v5).

Version KAT (%) PPAS (%) PLASTIC (%)

Limited (2v2) 79 80 80
Full (4v5) 30 20 20

Table 11: Goals scored by offense team in HFO domain under partial observability. KAT’s

performance comparable with baseline that had no ad hoc agents in the team.

Version KAT (%) Original Team (%)

Limited (2v2) 71 76
Full (4v5) 18 20

domains. We will also further explore the interplay between reasoning and learning for

AHT in teams of many more agents, and for AHT on physical robots collaborating

with humans. Furthermore, we will build on other work in our group (Mota et al. 2021;

Sridharan and Mota 2023) to demonstrate the ad hoc agent’s ability to revise existing

knowledge and provide relational descriptions as explanations of its decisions and beliefs.
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