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Abstract—In application domains characterized by dynamic
changes and non-deterministic action outcomes, it is frequently
difficult for agents or robots to operate without any human
supervision. Although human feedback can help an agent learn a
rich representation of the task and domain, humans may not have
the expertise or time to provide elaborate and accurate feedback
in complex domains. Widespread deployment of intelligent agents
hence requires that the agents operate autonomously using
sensory inputs and limited high-level feedback from non-expert
human participants. Towards this objective, this paper describes
an augmented reinforcement learning framework that combines
bootstrap learning and reinforcement learning principles. In the
absence of human feedback, the agent learns by interacting with
the environment. When high-level human feedback is available,
the agent robustly merges it with environmental feedback by
incrementally revising the relative contributions of the feedback
mechanisms to the action choice policy. The framework is
evaluated in two simulated domains: Tetris and Keepaway soccer.

I. INTRODUCTION

Intelligent agents or robots interacting with humans in dy-

namic domains need the ability to operate reliably, efficiently

and autonomously [1], [2]. Existing approaches to human-

computer or human-robot interaction (HCI/HRI) predomi-

nantly focus on enabling the agent to operate autonomously

based on sensory inputs [3], [4], or to learn from extensive

manual training and domain knowledge [5], [6], [7], [8], [9].

In dynamic domains characterized by partial observability

and non-determinism, it is typically difficult for an agent to

operate without any human input [10], [11]. On the other

hand, although human feedback can help an agent learn a rich

representation of the task and domain, humans frequently do

not possess the expertise or time to provide elaborate, accurate

and real-time feedback in complex domains.

Widespread deployment of learning agents requires that

these agents be accessible to non-expert users who can pro-

vide limited high-level feedback in response to the agent’s

observed performance, e.g., positive/negative reinforcement

of the agent’s actions or a selection from multiple options

posed by the agent. Recent research has focused on enabling

a robot or an agent to acquire human feedback when needed

(or available) and merge it with the information extracted

from sensory cues. However, these methods do not model the

unreliability of human inputs and require elaborate knowledge

of the domain, limiting their use to simple simulated domains

or specific robot tasks [12], [13], [14]. This paper presents

an augmented reinforcement learning (ARL) framework that

enables an agent to merge limited and unreliable high-level

human feedback with the reinforcement obtained by interact-

ing with the environment. The ARL framework uses bootstrap

learning to enable the agent to continuously and incrementally

revise the relative contributions of environmental feedback and

human feedback to the agent’s action choices. The proposed

approach is evaluated in two simulated domains: (a) Tetris,

which consists of a single agent; and (b) Keepaway soccer,

which consists of multiagent teams.

The remainder of the paper is organized as follows. Sec-

tion II describes related work and Section III describes the

proposed scheme and test domains. Experimental results are

presented in Section IV, followed by conclusions in Section V.

II. RELATED WORK

Sophisticated approaches have been developed for key

human-computer and human-robot interaction (HCI and HRI)

challenges such as autonomous operation, engagement, safety,

acceptance and interaction protocol design [1], [2]. Many algo-

rithms have been developed to enable autonomous operation in

HCI/HRI, the focus of this paper, using a variety of sensory

inputs (e.g., visual, verbal and range data) to model social

and environmental cues [15]. Considerable work has been

done on using embodied relational agents and virtual agents

in applications such as health care [16]. However, existing

methods typically require a significant amount of domain

knowledge, limiting their use to specific applications.

Significant research has also been performed on enabling

a robot or a simulated agent to learn from demonstrations

provided by a human observer [6], [7], [17], [18]. Many of

these methods focus on building sophisticated mathematical

models using recent research findings in a wide range of

related fields such as control theory, biology and psychology.

Some approaches have been based on theories of social

interactions among humans and an understanding of the human

learning process. A key constraint of these schemes is that the

associated feedback and information can only be provided by

human participants who possess substantial knowledge of the

domain and the agent’s capabilities.



Researchers are increasingly focusing on using limited high-

level human feedback in robot/agent domains based on need

and availability. For instance, Rosenthal et al. [14] developed

a CoBot that associates each action with probability functions

of success and failure, and seeks human help (on failure) to

localize and navigate to desired locations. Knox and Stone [13]

developed the TAMER (Training an Agent Manually vis Eval-

uative Reinforcement) framework to enable a human to train a

learning agent, and used different linear functions to combine

human and environmental feedback and maximize a reward

function in simulated domains. The work described in this

paper is also based on reinforcement learning and a scheme

to combine human and environmental feedback. The key

difference is that the two feedback mechanisms bootstrap off

of each other to continuously revise their relative contributions

to the agent’s action choice policy, thereby making best use

of all the available information.

III. PROBLEM FORMULATION

This section describes the framework that combines boot-

strap learning with reinforcement learning, followed by a

description of the specific test domains.

A. The RL Framework and Bootstrap Learning

Reinforcement learning (RL) is a computational goal-

oriented approach, where an agent repeatedly performs actions

on the environment and receives a state estimate and a reward

signal [19]. It is common to model an RL task as a Markov de-

cision process (MDP). In this paper, the standard formulation

is augmented to include the human feedback signal, resulting

in the tuple 〈S,A,T,R,H〉:
• S is the set of states.

• A is the set of actions.

• T : S×A×S′ → [0,1], is the state transition function.

• R : S×A→ ℜ is the environmental reward function.

• H is the human reward signal.

At each step, the agent uses a policy to probabilistically select

an action a ∈ A in state s ∈ S:

π : S×A→ [0,1] (1)

The goal is to compute the policy that maximizes the expected

future reward over a planning horizon. One of many different

schemes such as policy iteration, value iteration and policy

gradient algorithms can be used to compute this policy. The

key difference with respect to the standard MDP formulation

is the inclusion of high-level human feedback that (like en-

vironmental feedback) can be unreliable. In addition, though

the environmental feedback is obtained instantaneously for a

given state and action, the human feedback can be a complex

function of current, past or future states and actions.

As shown in Figure 1, a bootstrap learning scheme models

the action choice policy as a function of the feedback signals:

a = argmax
a∈A

f (R,H) (2)

where R is the environmental feedback, H is the human

feedback and a is the action choice that maximizes the function

policy update
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Fig. 1: Augmented RL framework with bootstrap learning.

of R and H. In the experimental domains described below, the

following functions were evaluated:
a = argmax

a∈A
{wr ·R+wh ·H} (3)

a = argmax
a∈A

{wr ·R(1+Hwh)}

where wh is the “weight” assigned to the human feedback and

wr is the weight assigned to the environmental feedback. Since

the weights represent relative importance, we can set wr = 1

and use wh as the relative importance of human feedback. A

linear function was considered because a similar function re-

sulted in best performance in the Mountain Car domain when

the weight assigned to human input was randomly annealed at

the end of each iteration [13]. The novelty of our approach is

that the two feedback mechanisms bootstrap off of each other.

The weights are continuously revised based on the relative

ability of the feedback signals to maximize global performance

measures (e.g., time to complete task), resulting in improved

performance in more complex domains (Section IV). The other

combination scheme, called the exponential scheme because

the weight is used as an exponent, was used to investigate a

stronger correlation between the feedback signals—it provided

best results among a set of similar functions. The bootstrap

learning scheme to update the weights proceeds as follows:

• In the absence of human feedback, the agent generates

different policies by varying the parameters of the under-

lying RL algorithms (e.g., policy gradient) and evaluates

the policies using a suitable “performance measure”—see

Sections III-B, III-C for examples.

• At any given time, the agent keeps track of the top N

policies: πi, i ∈ [1,N], sorted in decreasing order of value

of the performance measures: pmi, i ∈ [1,N]. Actions are

chosen based on one of these policies (with wr = 1,H = 0

in Equation 3), where the probability of selecting a policy is

proportional to the value of its performance measure relative

to those of other policies.

• When human input is provided in the form of posi-

tive/negative reinforcements, the agent maintains a separate

policy based on these inputs. The agent also computes the

degree of match between the action chosen by the current

environmental feedback-based policy and action that would

be chosen based on the human feedback-based policy. The

degree of match can, for instance, be a count of the number

of times the two policies result in the same action choice.



• If mi, i ∈ [1,N] represent the degree of match between the

human feedback-based policy and the best environmental

feedback-based policies, the weight associated with the

human feedback can be estimated as:

wh =
∑i pmi×mi

∑i pmi

(4)

where a high value represents a high degree of belief

associated with the human feedback.

• A similar scheme can be used to weight the environmental

feedback with respect to one or more sources of human

feedback if substantial human feedback is available. In

addition, it is possible to update the weights incrementally

across different episodes. For instance, the weight wh can

be updated after episode k:

wk
h =

pmk−1wk−1
h + pmkmk

pmk−1 + pmk
(5)

based on the performance measure in this and the immedi-

ately previous episode (k−1).

The core component is the continuous and online update of the

action policy, where the agent alternately assumes the policy

(or policies) based on each feedback mechanism to be ground

truth, in order to update the weight of the policy based on the

other feedback mechanism. Since action choices are based on

the combined policy (Equation 3), the agent quickly adapts

to different humans, unreliability of environmental feedback,

and dynamic changes, e.g., the human observer gets tired or

bored. Specific instances of this learning scheme are described

below for the two simulated domains.

B. Tetris Domain

Tetris is a game played on a w×h grid in which “tetromi-

noes” (i.e., shapes) of four blocks fall one at a time from the

top of the grid, stacking up on the grid’s base or any blocks

below. If the blocks fall such that a row is completely filled

with blocks, then that row is cleared. All the blocks in that

row disappear and all the blocks in higher rows shift down

by a row. When the blocks stack up to the top of the grid,

the game ends. The goal of a Tetris player is to maneuver the

falling blocks to clear as many lines as possible and maximize

episode duration. The performance measure in this domain is

hence the number of lines cleared per game (i.e., per episode).

A screenshot of the domain is shown in Figure 2.

One challenge in this domain is the size of the state space—

the 20×10 board shown in Figure 2 has a state space of≈ 2200.

The action space consists of four actions: move left, move

right, rotate clockwise, drop, and the feedback signal from

the environment (or human) is assumed to be instantaneous.

Knox and Stone [13] developed a much smaller set of 21

features for this domain, e.g., column heights, maximum

height of columns, number of holes and difference in heights

of adjacent columns. An analysis of the significance of the

feature set shows that it is in fact possible to obtain similar

performance with just 12 features: maximum and average

height of columns, number of holes and difference in column

Fig. 2: The Tetris application domain

heights. However, for ease of comparison, we use the set of

21 features in our experiments. Two different RL algorithms

were used: the policy gradient (PG) algorithm implemented in

the libPG library [20] and the cross-entropy (CE) method [21]

as used in [13]. PG methods parametrize the policy function

and use gradient descent to converge on a stochastic policy

that optimizes the long-term reward—they are more robust to

changes in policy parameters. The CE method learns weights

for the feature vectors using sampling techniques in order to

maximize the reward—it has been shown to outperform many

RL methods in the Tetris domain.

C. Keepaway Soccer Domain

Keepaway is a subtask of robot soccer involving a small

number of players. One team, the keepers, tries to maintain

possession of a ball within a limited region, while another

team, the takers, tries to gain possession. Whenever the takers

take possession or the ball leaves the region, the episode

ends and the players are reset for another episode with the

keepers being given possession of the ball. This domain

is implemented within the RoboCup soccer simulator [22].

Parameters of the task include the size of the region, the

number of keepers and the number of takers. Figure 3 shows

a screen shot of an episode with 3 keepers and 2 takers (called

3vs.2 or 3v2 for short) playing in a 20m×20m region.

Keepaway is a challenging domain because the state space

is too large to explore exhaustively, each agent has partial

state information, and all agents in the team have to learn

simultaneously. Since it is based on the RoboCup simulator,

agents receive (noisy) visual perceptions every 150msec indi-

cating the relative distance and angle to visible objects. In each

episode, agents choose from high-level macro actions based on

available skills, e.g., HoldBall(), PassBall(k), GetOpen(), Go-

ToBall() and BlockPass(k), instead of executing parametrized

primitive actions, e.g., Turn(angle) and Dash(power). The

focus is on enabling the keepers to retain possession of the ball

for as long as possible—the episode length is hence used as the

performance measure. As in [22], the state space for keepers is

discretized to 13 variables that capture the distances and angles



Fig. 3: Keepaway (3v2) soccer domain.
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Fig. 4: Probability density function p(x) for credit assignment

estimated as gamma(2.5,0.3). The x-axis denotes time before

reinforcement (i.e., in the past).

between the keepers, takers and the center of the region. The

takers follow a policy of moving to the ball. The semi-Markov

decision process (SMDP) version of Sarsa(λ ) is used as the

RL algorithm to modify the behavior of the keepers. Despite

the reduction in state and action space, learning by exploration

is still a challenge. Tile coding is hence used to make learning

feasible, and the associated parameters are assigned values

based on those reported in [22].

Reinforcement signals in the keepaway domain are based on

the performance of the team of keepers. Though environmental

feedback can be encoded to occur instantaneously, the domain

changes too quickly for a human to provide feedback for a spe-

cific state and action, i.e., human feedback is not instantaneous

and is likely to be a function of a set of prior states and actions.

Based on prior work [23], [24], the credit assignment of

human feedback is modeled as a gamma distribution, as shown

in Figure 4. The parameters of this function were estimated

experimentally by conducting a study of the reaction times of

a set of human participants in standard cognitive experiments.

The resultant distribution is similar to that reported in [24].

If p(x) is the gamma distribution-based probability density

function (PDF), the credit assigned to a time interval as a

result of a unit reinforcement is computed by integrating the

PDF over the interval. In the experiments below, for a human

feedback at time t, the mean of the gamma PDF is located at

≈ (t−0.5) to assign credit to a set of states and actions. The

PDF indicates that human input is delayed and that the credit

drops off exponentially as prior time steps are considered.

IV. EXPERIMENTAL SETUP AND RESULTS

This section reports the results of experiments performed

in the Tetris and Keepaway domains. Two hypotheses were

evaluated: (a) combining human and environmental feedbacks

results in better performance than with the individual feedback

mechanisms; and (b) using the bootstrap learning scheme

significantly improves the performance obtained with the un-

derlying reinforcement learning algorithms. In the remainder

of this paper, ARL refers to the use of bootstrap learning in the

modified RL framework. All results are statistically significant

(at 99% level) unless otherwise stated.

Human Participants: The experiments involved four non-

expert human participants who had a high-level description of

the test domains, available action choices and the performance

measures to be maximized by the agent(s). The participants

had no knowledge of the states or the underlying algorithms,

and very little knowledge of the domains prior to these

experiments. Human feedback was in the form of positive or

negative reinforcement of the agent’s actions.

Experiments were conducted in the Tetris domain using

cross-entropy as the underlying RL algorithm. The ARL

approach and the linear combination function of Equation 3

were used to merge human feedback with the environmental

feedback. Performance was compared against the scheme

that combines the feedback signals by annealing the weight

assigned to human feedback at the end of each episode—this

scheme provided the best performance in the simple Mountain

Car domain [13]. Figure 5 shows experimental results, with

each data point obtained by averaging the results over a set of

20 trials. Human input was provided at infrequent intervals—

no more than 5 times in any episode and on average 2 times

per episode. The participants had breaks between trials.

The results show that the ARL approach significantly

improves performance (i.e., increases the number of lines

cleared) in comparison to the default CE approach and the

combination scheme that anneals the weight assigned to

human feedback between episodes [13]. The performance

improvement is due to the ARL approach’s ability to adapt

to the unreliability of feedback signals, thereby exploiting

their complementary properties. The performance of the ARL

approach is also much better than that obtained with just the

human feedback—these results are not included in Figure 5

because it is infeasible to provide human feedback over

different states and actions for a large number of episodes.
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Fig. 5: Performance in the Tetris domain using cross entropy

as the default RL algorithm. The ARL approach performs

significantly better than CE and the scheme that anneals the

weight factor for human feedback.
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Fig. 6: Performance in the Tetris domain using policy gradient

as the default algorithm. The ARL approach significantly

improves the performance of the PG algorithm.

Next the performance of the ARL approach was evaluated

using policy gradient (PG) as the underlying RL algorithm.

The results of these experiments are shown in Figure 6. As

expected, the default PG algorithm does not result in as many

lines being cleared as with the CE algorithm. However, the

ARL approach for merging the feedback mechanisms still

performs significantly better, i.e., clears a much larger number

of lines than the default PG algorithm.

Finally, experiments were conducted in the Keepaway soc-

cer domain, where the performance of the keepers was mea-

sured in terms of their ability to retain possession of the ball

for as long as possible. The underlying RL algorithm was the

SMDP version of Sarsa(λ ). The ARL approach was used to

incrementally determine the best combination of human feed-

back and environmental feedback to be used to determine the

action choice policy. Here, both the linear combination func-

tion and the exponential combination function (Equation 3)

were evaluated. As described in Section III-C, it is not possible

to provide instantaneous human feedback in this domain. In

order to measure the suitability of the gamma PDF (shown

in Figure 4) for credit assignment when human feedback is

provided, performance was measured with and without the use

of this PDF. Figure 7 summarizes the results, with each data

point (as in the Tetris domain) representing the average over 20

trials. Given that episode times can vary (as seen in Figure 7)

the human participants provided feedback infrequently—no

more than two times in any episode. The human participants

also provided (intentionally) incorrect feedback—on average,

one in every ten inputs is incorrect.
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Fig. 7: Performance in the Keepaway soccer domain using

policy gradient. The ARL approach performs better than the

default Sarsa(λ ) algorithm. Using the learned gamma distri-

bution for credit assignment significantly boosts performance.

The plots in Figure 7 indicate that all schemes that combine

the feedback mechanisms using the ARL approach perform

better than the default RL algorithm without any human

feedback, despite the unreliability in the human feedback.

When a human participant provides incorrect feedback, boot-

strap learning quickly revises the weights appropriately. The

performance is also better than using just the human feedback,

which is not shown in Figure 7 because it is difficult to

provide human inputs over a large number of episodes. The

weighted linear combination of the two feedback mechanisms

results in significantly better performance than the default

RL algorithm. The best performance is achieved when the

gamma PDF is used for credit assignment along with the linear

combination function. The exponential combination function

(even with the gamma PDF) does not improve performance

substantially, which indicates that this function does not re-

flect the true relationship between the feedback signals. The

experimental results in the two test domains indicate that using



the gamma PDF-based credit assignment and the bootstrap

learning scheme within the augmented reinforcement learning

framework is a promising option for merging human and

environmental feedbacks in other domains [25].

Threats to Validity: When human feedback is used in

domains with intelligent agents or autonomous robots, the

performance may be sensitive to the capabilities of the human

participants involved in the study. The experiments reported

in this paper used inputs provided by four human participants

at infrequent intervals. Though the performance of the partic-

ipants (when considered individually) were consistent across

the two different domains, additional trials may be required

in other domains to further substantiate the results reported

here. Specifically, future experiments will consider a larger

number of human participants, larger number of episodes,

varying amounts of added noise, other combination functions,

other appropriate application domains and thoroughly analyze

the corresponding experimental results.

V. CONCLUSIONS AND FUTURE WORK

Human participants can enable agents or robots to learn a

rich representation of the task and domain, thereby operating

reliably and efficiently in dynamic domains. It may however

be infeasible for a human to possess the time and expertise to

provide elaborate, accurate and real-time feedback to agents

in complex domains. This paper described an approach that

uses bootstrap learning in an augmented reinforcement learn-

ing framework to enable an agent to effectively merge the

limited and unreliable high-level feedback from a human with

the reinforcement signals obtained through interactions with

the environment. The agent incrementally and continuously

revises weights that determine the relative contribution of each

feedback mechanism to its action choice policy. The agent

is hence able to make best use of the available information.

Experimental results indicate that the approach described in

this paper outperforms the individual feedback mechanisms

and the existing schemes to combine these feedback signals.

The aim of the research reported in this paper is to robustly

combine human inputs and sensory cues. One direction of

further research is to incorporate an underlying probabilistic

belief representation to enable an agent (or a robot) to operate

in partially observable domains and automatically acquire

relevant human input when needed. Future research will also

focus on multiple agents or robots collaborating towards a

shared objective in real-world domains.
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