
In IEEE International Conference on Robotics and Automation (ICRA 11),
Shanghai, China, May 9-13 2011.

To Look or Not to Look: A Hierarchical Representation for Visual

Planning on Mobile Robots

Shiqi Zhang

Department of Computer Science

Texas Tech University, TX 79409

s.zhang@ttu.edu

Mohan Sridharan

Department of Computer Science

Texas Tech University, TX 79409

mohan.sridharan@ttu.edu

Xiang Li

Department of Computer Science

Texas Tech University, TX 79409

xiang.li@ttu.edu

Abstract— Mobile robots are increasingly being used in
real-world applications due to the ready availability of high-
fidelity sensors and the development of sophisticated infor-
mation processing algorithms. However, one key challenge to
the widespread deployment of mobile robots equipped with
multiple sensors and processing algorithms is the ability to
autonomously tailor sensing and information processing to the
task at hand. This paper poses this challenge as the task of
planning under uncertainty, and more specifically as an instance
of probabilistic sequential decision-making. A novel hierarchy
of partially observable Markov decision processes (POMDPs) is
incorporated, which uses constrained-convolutional policies and
automatic belief propagation to achieve efficient and reliable
operation on mobile robots. All algorithms are implemented and
evaluated on simulated and physical robot platforms for the task
of searching for target objects in dynamic indoor environments.
Keywords: Planning, Scheduling and Coordination; Computer
Vision for Robotics and Automation; Wheeled Robots.

I. INTRODUCTION

Mobile robots are increasingly playing an important role

in practical applications due to developments in sensor

technology and sensory input processing algorithms [5], [25].

However, real-world application domains are characterized

by partial observability (i.e., the state of the system is

not directly observable) and non-determinism (i.e., actuation

and sensing are unreliable), and algorithms with different

reliabilities and computational complexities can be used to

process the sensory inputs. The challenges are all the more

pronounced with visual input because of the inherent sensi-

tivity to environmental changes and the high computational

complexity of the corresponding processing algorithms. As

a result, despite being a rich source of information, vision

is still not fully exploited in robot applications. Widespread

deployment of mobile robots in the real-world requires

autonomous operation and full utilization of the relevant

sensory inputs. One solution is to retain capabilities to

support a wide variety of tasks, and automatically choose

the relevant subset based on the task at hand. This paper

presents such an approach for visual sensing and information

processing, i.e., for visual processing management.

Planning under uncertainty can be posed as an instance of

probabilistic sequential decision-making, and more specifi-

cally, using partially observable Markov decision processes

(POMDPs) [12]. However, POMDP formulations of practical

domains soon become intractable due to the associated state

space explosion and computational complexity, even when

approximate solvers are used [21]. This paper proposes a

hierarchical POMDP, whose layers jointly decide: where

to look?, what to process? and how to process? based on

the task at hand. Our prior work used an instance of the

intermediate and lower levels of the hierarchy to enable a

robot to plan visual processing in a tabletop scenario [22].

This paper extends this approach to enable a mobile robot

to direct sensing to locations that are relevant to the task, in

addition to considering the reliability and complexity of the

processing operators to determine the sequence of operators

most suitable for a given task. Constrained convolutional

policies are used to exploit the local invariance of visual

sensing, while learned sensor models and belief propagation

between the levels of the hierarchy are used to generate

POMDP models automatically, thereby resulting in reliable

and efficient operation. All algorithms are evaluated on

simulated and physical robots for the task of locating target

objects in dynamic indoor domains.

The remainder of the paper is organized as follows.

Section II briefly describes related work, while the proposed

hierarchical planning scheme is described in Section III. The

experimental setup and results are presented in Section IV,

followed by conclusions in Section V.

II. RELATED WORK

Classical planning research has produced many methods

for planning a pipeline of operators for a high-level goal.

Many such methods use deterministic models, where the

preconditions and effects of actions are propositions that are

required to be true a priori, or are made true by operator

execution [9]. However, robot domains are characterized by

partial observability and non-determinism. Recent research

has hence focused on relaxing some of the limitations

of classical planners. The PKS planner [19] uses a first-

order language to describe actions in terms of their effect

on the agent’s knowledge, rather than their effect on the

world. The state of the world is determined uniquely by the

actions performed, but the agent’s knowledge of that state

is not. Continual Planning (CP) [2] interleaves planning,

execution and monitoring, and postpones reasoning about

uncertain states, asserting that action preconditions will be

met when that point is reached during plan execution. If the

preconditions are not met during execution, or are met earlier,

replanning occurs. In robot domains, it may be necessary to



accumulate evidence by applying operators more than once,

which cannot be modeled using PKS or CP.

In vision research, image interpretation has been modeled

as an MDP or POMDP. For instance, Li et al. [15] use

human-annotated images to determine the reward structure,

explore the state space and compute value functions in

an MDP used for image interpretation. Online operation

involves action choices that maximize the learned functions.

Sensor placement and information processing have also been

posed as an active sensing problem [14]. Sensor placements

in spatial phenomena have also been modeled as Gaussian

processes using submodular functions [13]. However, many

visual planning tasks are not submodular, and modeling

probability densities using manual feedback and extensive

trials on mobile robots is infeasible.

Though a POMDP formulation is well-suited for domains

with partially observability and unreliable actions, the state

space explosion makes it intractable for most practical do-

mains. Hierarchical approaches have hence been proposed

for behavior control and navigation tasks on robots, with the

top level action being a collection of simpler actions modeled

as smaller POMDPs [8], [20] but a significant amount of

data for the hierarchy and model creation is typically hand-

coded. Recent work has also focused on learning POMDP

observation models [1]; using information maximization for

POMDP-based visual search [4]; developing faster solution

methods or discovering the hierarchy [21], [24], resulting

in real-world applications [10], [11]. However, these meth-

ods are computationally expensive or unable to create the

POMDP models automatically. This paper presents a novel

POMDP hierarchy that enables a robot to automatically tailor

visual sensing and processing in dynamic domains.

III. PROBLEM FORMULATION

This section first describes the problem domain, followed

by the proposed hierarchical POMDP formulation.

A. Domain Description

Figure 1(a) describes the long-term goal of this project:

creating autonomous robots that can assist humans in dy-

namic applications such as health care. Achieving this

goal requires, among other things, autonomous learning and

processing management. This paper addresses autonomous

visual processing management using hierarchical POMDPs.

Consider, for instance, the task of finding an object (e.g., a

humanoid). The intuitive approach would be to first decide

on the 3D scene likely to contain the target object. The robot

can then capture images of the scene, such as the one shown

in the top right of Figure 1(a). The images can be processed

to obtain salient regions of interest (ROIs). The robot can

process such ROIs using any of the available visual operators

for tasks such as segmentation, object recognition and scene

reconstruction. This paper models sensing and information

processing as actions, and uses the terms “operators” and

“actions” interchangeably. The goal is to analyze a subset

of ROIs in a sequence of images of a sequence of scenes

most relevant to the task at hand. The experimental platforms

are the humanoid robot [18] and the wheeled robot [6]

in Figure 1(c), which are equipped with cameras, range

finders, on-board processing (500MHz, 2.2GHz) and wi-

fi capabilities, in addition to a range of algorithms for

extracting information from different sensory inputs.

B. Hierarchical POMDPs

As shown in Figure 1(b), the three levels of the proposed

POMDP hierarchy match the functional requirements of

visual processing. The high-level POMDP (“HL-POMDP”)

chooses a sequence of 3D scenes to process based on the

task (where to look?). The intermediate-level POMDP (“IL-

POMDP”) analyzes images of a chosen scene to select the

salient region of interest (ROI) in the image to be processed

next (what to process?). Finally, each ROI is modeled using

a lower-level POMDP (“LL-POMDP”) that computes the

sequence of visual operators to be applied in order to address

the specific task (how to process?). Our prior work used an

instance of the intermediate and lower levels of the hierarchy

to enable human-robot interaction in a tabletop scenario [22].

However, target objects in real-world domains, e.g., an office,

can exist in different locations within a room or in different

rooms. The robot has to move to analyze different scenes and

locate the object. The work described in this paper builds

on prior work to enable a mobile robot to locate desired

objects in complex indoor environments. The description

below focuses on the HL visual sensing, while more details

on the IL-POMDPs and LL-POMDPs are in [22].

Consider the task of locating a target object. Assume that

the robot has learned an environmental map using a Simul-

taneous Localization And Mapping (SLAM) algorithm [7].

The 3D area is then represented as a 2D occupancy grid—

top left of Figure 1(b). Each grid-cell is associated with a

probability that represents the likelihood of occurrence of the

target object. The HL-POMDP poses sensing as the task of

maximizing information gain, i.e., reducing the entropy in

the belief state. For a grid with N cells, the HL-POMDP

tuple 〈SH ,AH , T H ,ZH ,OH ,RH〉 is defined as:

• SH : si, i ∈ [1, N ] is the state vector; si corresponds to

the event that a target is in grid-cell i. The assumption is

that an object only exists in one grid-cell at a time.

• AH : ai, i ∈ [1, N ] is the set of actions, where ai

corresponds to the event that the robot moves to to grid-

cell i and analyzes the corresponding scene.

• T H : SH × AH × S ′H → [0, 1] is the state transition

function. It is an identity matrix for actions that only

observe the state.

• ZH : {present, absent} is the set of observations, indi-

cating the presence or absence of the target in the cell

being analyzed.

• OH : SH × AH × ZH → [0, 1] is the observation

function. It is computed automatically, as described below.

• RH : SH ×AH → ℜ is the reward specification, which

is based on belief entropy as described below.

Since the true state of the system cannot be observed,

the robot maintains a probability distribution over the state

(belief state). For belief state Bt at time t, reward RH of an



��
��
��
��

��
��
��

��
��
��

Bootstrap
Learning

Overall
Framework

Human−Robot
Interaction

Scenario

Planning
Hierarchical

Robot Human

Specific Scene

(a) Framework Overview.

Domain Map

Specific Scene

Color

Sift

Where to Look?

What to Process?

How to Process?

IL−POMDP

HL−POMDP

LL−POMDP

(b) Proposed Hierarchy. (c) Robot platforms.

Fig. 1. Visual processing management: (a) Overall scenario and a sample image with regions-of-interest (ROIs) extracted and bounded by rectangles; (b)
The proposed planning hierarchy; (c) Robot platforms.

action is defined as the InfoMax objective function [4], i.e.,

the reduction in entropy in the resultant belief state Bt+1.

The entropy of the belief distribution Bt can be defined as:

H(Bt) = −

N∑
i=1

bi
tlog(bi

t) (1)

where bi is the ith entry of the belief state distributed over

the map with N cells. The reward function is defined as:

RH(at,i) := H(Bt−1) −H(Bt) (2)

=
∑

k

bk
t log(bk

t ) −
∑

j

bj
t−1log(bj

t−1)

When nothing is known about the target’s location, the

belief is uniformly distributed and entropy is maximum.

As the belief distribution converges to states likely to be

target locations, the entropy progressively reduces. Next,

the observation function is defined based on the expected

performance of the lower levels of the hierarchy:

O(zi, sj , ak) = Pr(zi = present|sj , ak) = η · e−
λµ2

2σ2 (3)

µ = fµ(sj , ak), σ2 = fσ2(O,OI |sj , ak)

where the probability of a particular observation in cell i
given that the target is in cell j and the focus is on cell k,

i.e., p(zi|sj , ak), is a Gaussian, whose mean depends on the

target location, the grid-cell being examined and the camera’s

field of view. The variance of the Gaussian is based on the

observation functions of the lower levels of the hierarchy

(O,OI ). This formulation of the observation function models

the fact that a robot can detect a target with the highest

likelihood when it is close to the target. The belief update

then proceeds as follows:

Bt+1(s
′) =

OH(s′, at, ot+1)
∑

s T
H(s, at, s

′) · Bt(s)

p(ot+1|at, bt)
(4)

POMDP solvers use such a model to compute a policy: πH :
Bt 7→ at+1 that maps belief states to action choices. The

computed policy has to minimize the entropy in Bt over a

planning horizon of T steps. In this paper, policy gradient

methods in the LibPG library [3] are used to compute the

HL policy. The policy is hence a probability distribution over

possible actions in the form of “weights” that are used to

choose the best action for a given belief state.

Fig. 2. Extract a 3×3 kernel from a 5×5 baseline policy.

1) Convolutional Kernels: In a practical domain, the

number of grid-cells can be quite large and the environment

can change dynamically. The exponential increase in state

space and the worst-case exponential time complexity of

POMDP solvers can pose a formidable challenge to solving

the associated HL-POMDP. The proposed approach therefore

learns a convolutional policy kernel that exploits the rotation

and shift-invariance of visual search:

K̄(s) = (πH ⊗ CK
m )(s) =

∫
πH(s̃)CK

m (s − s̃)ds̃ (5)

K = (
∑
ai

K̄) · /W

where πH is the HL-POMDP policy, K̄ is the un-normalized

kernel, K is the normalized kernel and CK
m is the convolution

operator whose size decides the size of target kernel.

In Figure 2, a 3 × 3 policy kernel is extracted from a

5× 5 baseline policy πH that is in the form of a 2D matrix

whose rows and columns correspond to specific states and

actions. Each row is re-arranged to obtain a 2D matrix of the

same size as the map—this matrix stores action weights when

focusing on a specific state. The policy is hence decomposed

into layers—see the leftmost column of Figure 2. When a

robot visits a specific grid-cell, only the beliefs immediately

around that grid-cell change. The proposed approach hence

learns a policy kernel that focuses on a local area and sets all

other weights to a much smaller value. A 3×3 policy kernel

K̄ is computed by convolving a 3 × 3 mask CK
m with these

policy layers, taking into account the weights in the region



Fig. 3. Extend a 3×3 kernel into a 7×7 policy by convolution.

covered by the mask—middle column of Figure 2. Since

the weights of the grid-cells outside the masked region are

not taken into account, the resultant kernel is not normalized.

The number of accumulated weights for each action is hence

counted and the matrix W , as shown in the right column of

Figure 2, is used to obtain the normalized kernel K.

The computed kernel does not assign action weights to

the grid-cells away from the center of the convolution mask.

Since these weights are usually much lower than the values

in the kernel, they are all set to a small value:

WB =

∑
actions

∑
states

πH −
∑

actions

∑
K̄

Nactions × Nstates −
∑

W
(6)

where Nactions and Nstates are the number of actions and

states respectively. When the learned policy kernel is used

to generate policies for larger maps, the number of states

covered by the kernel remains unchanged. The value of WB

is hence revised using a heuristic function, such that the ratio

of belief distributions over the area covered and uncovered

by the kernel is similar over different maps:

ŴB = WB − ln(
NE

states −
∑

W

NB
states −

∑
W

) (7)

where, NE
states and NB

states are the number of states in the

large map and baseline kernel respectively,

2) Policy Extension: The policy kernel is used to effi-

ciently compute the convolutional policy for a larger map:

πH
C (s) = (K ⊗ CE

m)(s) =

∫
K(s̃)CE

m(s − s̃)ds̃ (8)

where πH
C is the convolutional policy, K is the policy kernel

and CE
m is the convolution mask of the same size as the target

map. Consider Figure 3, where the policy for a 7×7 map is

computed by convolving the 3× 3 kernel with a 7× 7 mask

CE
m. The desired policy is generated one layer at a time, by

centering the kernel on the corresponding state. In each of

the 49 layers of the current example, values outside the 3×3
kernel are assigned the base weight of Equation 7.

A mobile robot has to physically move between grid-

cells. Since this movement is unreliable, it is associated with

a heuristic cost proportional to the distance to be moved.

During policy execution, each action’s weights are hence

revised based on distance, grid-cell size and speed:

ŵ(i) =

w(i) 1

1+
dist(aj,ai)

grid-size×speed

normalizer
(9)

where dist(aj , ai) is the distance between the current grid-

cell and the candidate grid-cell. The weight of a cell de-

creases as the time (to travel to that cell) increases. The

modified policy selects the grid-cell (i.e., 3D scene) suitable

for analysis by trading off the likelihood of locating the target

against the cost of traveling to that location. Once an action

is selected, the robot moves to this location, and analyzes

images of this scene using the IL-POMDP and LL-POMDPs.

Consider the task of locating a target object in an indoor

domain. The learned map of the domain is used to generate

the HL-POMDP, which is solved to obtain the HL policy for

the desired target object. The HL policy is used to choose an

appropriate scene of the environment to analyze. The robot

moves to this scene, captures an image of the scene and

detects salient regions of interest (ROIs) in the image. Each

image ROI is modeled as an LL-POMDP, where the action

choices are the specific information processing operators

(e.g., detect color or shape). The corresponding LL policy

provides the best sequence of operators to apply on the

specific ROI to investigate the presence of the target object.

The LL policies are used to automatically generate an IL-

POMDP that controls the processing of all the image ROIs.

The IL-POMDP is solved to get the IL policy, each of whose

actions directs the robot’s attention to a specific ROI. The

presence or absence of the object in the ROI is analyzed

using the corresponding LL policy and the result is used by

the IL policy to update the belief across all image ROIs and

choose a ROI to analyze further. The IL policy terminates

when the presence (in a specific ROI) or absence of the target

object in the image is computed. This information is used

by the HL policy for a belief update over the 2D grid map,

and the subsequent action choice leads to a similar analysis

of another 3D scene. The process terminates when the target

object is found with high confidence or a time threshold is

exceeded. The key fact is that the hierarchical scheme results

in reliable, efficient and autonomous operation.

IV. EXPERIMENTAL SETUP AND RESULTS

This section describes the experimental setup and dis-

cusses the experimental results.

A. Experimental Setup

In the experiments, the humanoid robot in Figure 1(c) was

used as the target object, characterized by color distributions

and local gradient features [17] extracted using a modified

version of the VLFeat [26] open-source library. The object

models were learned using an algorithm developed by our

research group [16]. All algorithms were evaluated in simu-

lation and on robots in complex office environments.

Given the focus on evaluating visual search, the individual

steps in the IL and LL-POMDPs are not described below.



When the HL policy made an action choice, the result of

applying the learned object models for target recognition in

the corresponding image ROIs was directly used for belief

updates. In addition, the obstacles and constraints present in

the dynamic environment were used to suitably modify the

HL policy computed from the convolutional kernel.

When the robot detects a target, it also computes the

relative distance and bearing of the target. However, includ-

ing the orientation in the observation set will increase the

complexity of the observation model and negate the local

invariance in policy space. The belief update was therefore

modified based on target presence or absence:

if absent (10)

b(s′) =
O(s′, a, o)

∑
s∈S T (s, a, s′)b(s)

Pr(o|a, b)
=

O(s′, a, o)b(s)

Pr(o|a, b)

else

b(s′) =
O(s′, â, o)

∑
s∈S T (s, â, s′)b(s)

Pr(o|â, b)
=

O(s′, â, o)b(s)

Pr(o|â, b)

where, b(s′) represents the updated belief state after action

a. Since the transition functions are identity matrices, the

update equation can be simplified as shown. When a target is

detected, the relative distance and bearing are used to find the

global location of the target in the grid map (based on robot’s

localization) and the belief update proceeds as if the action

corresponding to this global location had been executed: â.

This update scheme, known as directed re-weighting, was

used in all experiments conducted on robot platforms.

B. Simulation Experiments

Simulation experiments were included because of the

intractability of executing many trials on the physical robot.

The simulator is realistic because it uses the same model

parameters computed for the physical robot—Section III-B.

In each simulated trial, a grid map of a specific size was

generated with the locations of the target object and the robot

chosen randomly. Then, the ability of the robot to detect the

target with different initial beliefs was analyzed.

A baseline policy was computed for a relatively small grid

map: 5× 5, from which the 3× 3 policy kernel was derived.

The kernel computation is an one-time process. Though the

POMDP model for this grid has only 25 states, it takes ≈ 5
hours to get an acceptable policy with the average reward

still growing. Using the convolutional policy hence provides

significant benefits for larger maps.

First, the constrained convolutional (CC) policy was eval-

uated against the baseline (i.e., non-convolutional) policy on

simulated grids. Over a set of 1000 trials (with targets at

random locations), the CC policy’s detection accuracy was

similar to the baseline policy. A trial was deemed successful

if the target was identified in the correct grid-cell. Figure 4(a)

shows the results for a 5 × 5 grid—the x-axis shows the

number of times the policy was invoked, as a fraction of the

number of states. Unlike the baseline policy, the CC policy

was computed in no time from the 3 × 3 kernel.

The convolutional policy’s performance was then com-

pared against a policy that generates random actions, as a

TABLE I

AVERAGE NUMBER OF STEPS TO ACHIEVE ACCURACY OF 0.95

Bias Covariance
0.1 0.2 0.3

10% 0.877 1.132 1.357

30% 0.521 1.019 1.274

50% 0.462 1.000 1.236

function of the number of actions the robot is allowed to

execute (expressed as a fraction of the number of states).

These experiments used a 15 × 15 convolutional policy

generated from a 3 × 3 kernel. As before, the location of

the robot and the target were randomly selected. In order

to simulate prior knowledge of target location, 70% of the

belief was uniformly distributed over all grids, and 30% of

the belief was Gaussian-distributed surrounding the target.

Each point in Figure 4(b) is the average of 1000 trials.

At the end of each trial, the belief vector entry with the

largest value was taken as the target location. The robot’s

performance was scored as the weighted distance between

the actual target location and the detected location. The

convolutional policy was observed to greatly reduce the

number of steps taken to compute the target’s location. The

same CC policy was also used to compare directed re-

weighting (Equation 10) against the policy execution without

the special belief update scheme. Figure 4(c) shows that the

directed re-weighting provides better performance despite

added noise in the distance and bearing measurements.

The next experiment computed the number of actions

required to achieve a high detection accuracy (0.95), as a

function of the initial bias and variance. Table I reports the

average number of action steps as a fraction of the total

number of states. As expected, a smaller number of actions

are required to find a target with a larger initial bias. In

addition, if the initial bias has a larger variance, a larger

number of actions are required to find the target.

C. Implementation on robots

The algorithms were also evaluated on the robot platforms

of Figure 1(c). When the robot arrives at a specific grid-

cell, it processes a subset of ROIs of images of that scene

by extracting visual features from the ROIs and comparing

them with the learned object models. If no prior information

is available, the robot initially starts off with a random search

in nearby grid-cells. If some evidence of target presence in

a specific grid-cell is obtained, the robot checks that grid-

cell carefully to eliminate the effect of spurious observations.

In the real-world, the robot almost always has some prior

knowledge of possible target locations. This information is

exploited by the proposed planning scheme by incorporating

a bias in the initial belief, resulting in reliable and efficient

recognition of the desired target.

Next, the constrained convolutional policy was compared

with an ad-hoc policy on different grid-sizes. The ad-hoc

policy results in probabilistic updates, and a search based on

manually generated heuristics and some random actions [23].

Figure 4(b) summarizes the accuracy of performance over

1000 trials in simulation and 30 trials on the robot in indoor



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

Number of Steps

A
cc

u
ra

cy
Constrained Convolutional vs. Baseline Policy

 

 

Baseline Policy

Convolutional Policy

(a) CC vs. Baseline.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

Number of Steps

A
cc

u
ra

cy

Constrained Convolutional vs. Ad−hoc Policy

 

 

Ad−hoc Policy

Convolutional Policy

(b) CC vs. Ad-hoc.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

Number of Steps

A
cc

u
ra

cy

Directed vs. Undirected Re−weighting

 

 

Undirected Re−weighting

Directed Re−weighting

(c) Directed Re-weighting.

Fig. 4. (a) Constrained convolutional policies provide performance similar to an expensive baseline policy; (b) Convolutional policies performs better
than a ad-hoc search strategy; (c) Accuracy comparison from simulated trials and directed re-weighting.

corridors and offices that are mapped to a 15× 15 grid—the

individual grid-cells vary in size from 1m to 3m depending

on the field of view of the associated cameras. As stated

earlier, some simulation experiments were run with various

levels of added noise. The CC policy is consistently much

better than the ad-hoc policy. The errors in the CC policy

correspond to cases where the target object is close to the

edge between two grid-cells. On the physical robots, the

availability of different 3D views ensures that the target is

recognized in the correct location. Over extensive trials with

different grid-sizes (3 × 3 to 25 × 25), the CC policy is

more reliable and efficient than the ad-hoc strategy. Though

the reduction in planning time in comparison to the baseline

method depends on the size of the grid, the CC policy always

leads to the desired real-time operation. Furthermore, the CC

policy results in an (average) accuracy of 96% in comparison

to the 80% accuracy of the ad-hoc strategy.

V. CONCLUSION

This paper described a novel hierarchical planning scheme

that enables a mobile robot to tailor visual sensing and infor-

mation processing to the task at hand. The key contributions

are the constrained convolutional policies that exploit the lo-

cal invariance of visual search, automatic belief propagation

between the levels of the hierarchy, and the learned models of

the performance of the visual operators. As a result, the robot

is able to sequence a subset of the existing (unreliable) visual

sensing and information processing operators to accomplish

the task at hand. Future research will integrate operators

that change the physical state of the system, and enable the

simultaneous identification of multiple targets in complex

domains by a team of autonomous mobile robots.

REFERENCES

[1] A. Atrash and J. Pineau. A Bayesian Method for Learning POMDP
Observation Parameters for Robot Interaction Management Systems.
In The International POMDP Pratitioners Workshop, 2010.

[2] M. Brenner and B. Nebel. Continual Planning and Acting in Dynamic
Multiagent Environments. JAAMAS, 2008.

[3] O. Buffet and D. Aberdeen. The Factored Policy-Gradient Planner.
Artificial Intelligence, 173(5-6):722–747, 2009.

[4] N. J. Butko and J. R. Movellan. I-POMDP: An Infomax Model of
Eye Movement. In ICDL, 2008.

[5] J. Casper and R. R. Murphy. Human-robot interactions during urban
search and rescue at the wtc. In Transactions on SMC, 2003.

[6] Videre Design. Videre Design Robot and Sensors, 2010. http:

//www.videredesign.com/index.php?id=21.
[7] G. Dissanayake, P. Newman, and S. Clark. A Solution to the

Simultaneous Localization and Map Building (SLAM) Problem. IEEE

Transactions on Robotics and Automation, 17(3):229–241, 2001.
[8] A. F. Foka and P. E. Trahanias. Real-time Hierarchical POMDPs for

Autonomous Robot Navigation. In IJCAI Workshop on Reasoning

with Uncertainty in Robotics, 2005.
[9] M. Ghallab, D. Nau, and P. Traverso. Automated Planning: Theory

and Practice. Morgan Kaufmann, 2004.
[10] J. Hoey, A. Monk, and A. Mihailidis. People, Sensors,Decisions:

Customizable and Adaptive Technologies for Assistance in Healthcare.
In POMDP Pratitioners Workshop, 2010.

[11] K. Hsiao, L. P. Kaelbling, and T. Lozano-Perez. Grasping POMDPs.
In International Conference on Robotics and Automation, 2007.

[12] L. Kaelbling, M. Littman, and A. Cassandra. Planning and Acting
in Partially Observable Stochastic Domains. Artificial Intelligence,
101:99–134, 1998.

[13] A. Krause, A. Singh, and C. Guestrin. Near-optimal Sensor Placements
in Gaussian Processes: Theory, Efficient Algorithms and Empirical
Studies. Journal of Machine Learning Research, 9:235–284, 2008.

[14] C. Kreucher, K. Kastella, and A. Hero. Sensor Management using An
Active Sensing Approach. IEEE Transactions on Signal Processing,
85(3):607–624, 2005.

[15] L. Li, V. Bulitko, R. Greiner, and I. Levner. Improving an Adaptive
Image Interpretation System by Leveraging. In Australian and New

Zealand Conference on Intelligent Information Systems, 2003.
[16] X. Li and M. Sridharan. Safe Navigation on a Mobile Robot using

Local and Temporal Visual Cues. In International Conference on

Intelligent Autonomous Systems, 2010.
[17] D. Lowe. Distinctive Image Features from Scale-Invariant Keypoints.

International Journal of Computer Vision, 60(2):91–110, 2004.
[18] Nao. The Aldebaran Nao Robots, 2008. http://www.

aldebaran-robotics.com/.
[19] R. Petrick and F. Bacchus. Extending the Knowledge-Based approach

to Planning with Incomplete Information and Sensing. In ICAPS,
pages 2–11, 2004.

[20] J. Pineau, M. Montemerlo, M. Pollack, N. Roy, and S. Thrun. Towards
Robotic Assistants in Nursing Homes: Challenges and Results. In RAS

Special Issue on Socially Interactive Robots, 2003.
[21] S. Ross, J. Pineau, S. Paquet, and B. Chaib-draa. Online Planning

Algorithms for POMDPs. JAIR, 32:663–704, 2008.
[22] M. Sridharan, J. Wyatt, and R. Dearden. Planning to See: A

Hierarchical Aprroach to Planning Visual Actions on a Robot using
POMDPs. Artificial Intelligence, 174:704–725, 2010.

[23] P. Stone, M. Sridharan, D. Stronger, G. Kuhlmann, N. Kohl, P. Fidel-
man, and N. K. Jong. From Pixels to Multi-Robot Decision-Making:
A Study in Uncertainty. RAS, 54(11):933–943, 2006.

[24] G. Theocharous, K. Murphy, and L. P. Kaelbling. Representing
Hierarchical POMDPs as DBNs for Multi-scale Robot Localization. In
International Conference on Robotics and Automation (ICRA), 2004.

[25] S. Thrun. Stanley: The Robot that Won the DARPA Grand Challenge.
Journal of Field Robotics, 23(9):661–692, 2006.

[26] Andrea Vedaldi and Brian Fulkerson. Vlfeat: An open and portable
library of computer vision algorithms, 2009. www.vlfeat.org.


