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Abstract— Although mobile robots are increasingly being
used in real-world applications, the ability to robustly sense and
interact with the environment is still missing. A key requirement
for the widespread deployment of mobile robots is the ability
to operate autonomously by learning desired environmental
models and revising the learned models in response to en-
vironmental changes. This paper presents an approach that
enables a mobile robot to autonomously learn layered models
for environmental objects using temporal, local and global
visual cues. A temporal assessment of image gradient features
is used to detect candidate objects, which are then modeled
using color distribution statistics and a spatial representation
of gradient features. The robot incrementally revises the learned
models and uses them for object recognition and tracking
based on a matching scheme comprising a spatial similarity
measure and second order distribution statistics. All algorithms
are implemented and tested on a wheeled robot platform in
dynamic indoor environments.
Keywords: Visual learning; Recognition; Wheeled robots.

I. INTRODUCTION

Mobile robots are increasingly being used in a range

of real-world applications such as health care and naviga-

tion [1], [2]. However, autonomous operation continues to be

a major challenge to the widespread deployment of robots

in the real world. The challenge is all the more formidable

when visual input from color cameras is considered, due

to the sensitivity to environmental factors and the compu-

tational complexity of visual input processing algorithms.

As a result, despite being a rich source of information,

vision remains under-utilized in many robot applications. For

instance, many sophisticated algorithms have been developed

for object recognition, a key component of a robot vision

system. Unlike classical algorithms that require templates

of target objects under different viewpoints, methods based

on image gradient features are used extensively on mobile

robots [3], [4]. However, gradient features are unsuitable for

representing objects with texture-less surfaces (e.g., walls).

In addition, many methods based on gradient features are

computationally expensive and require an extensive training

phase, while mobile robots operating in the real-world are

faced with dynamic, unpredictable changes.

The above-mentioned challenges are offset by the fact

that real-world domains are characterized by a significant

amount of structure. Objects with unique characteristics (e.g.,

color and shape) may exist at specific locations, though

these characteristics and locations may not be known in

advance and may change over time. This paper describes

an approach that enables a mobile robot to autonomously

learn models for novel objects introduced in its environment.

The approach draws its inspiration from nature: a chameleon

that has camouflaged itself can be detected when it starts

moving, and the human visual system is very sensitive to

motion. The proposed approach therefore identifies candidate

objects using temporal visual cues based on tracking gradient

features over successive frames. Each candidate object is

then characterized by image gradients and color distributions

extracted from the corresponding image regions. The learned

models are augmented with a spatial coherence vector and

second-order statistics for robustness. The learned object

models are then used in a probabilistic matching strategy

to detect and track the corresponding objects in subsequent

frames. The main advantage of the learning method is that it

bootstraps off of the available information: the learned mod-

els are revised incrementally as the corresponding objects are

recognized, leading to a more accurate recognition of these

objects in subsequent frames. All algorithms are evaluated

on mobile robots in dynamic indoor environments.

The remainder of this paper is organized as follows.

Section II reviews some related work, while Section III

describes the components of the proposed learning algorithm.

Section IV describes the experimental platform and experi-

mental results, followed by the conclusions in Section V.

II. RELATED WORK

Vision research has provided sophisticated algorithms for

object recognition. Schmid and Mohr [3] represented objects

using gray-value invariants computed at interest points, and

used a voting algorithm and semi-local constraints on test

images. Lowe [5] used image gradient features, known as

the scale invariant feature transform (SIFT), for reliable

matching across different views of an object. Matas et al. [6]

represented objects with an affine-invariant set of extremal

regions, the maximally stable extremal regions (MSER).

Liebe et al. [7] estimated object shape by probabilistically

combining the information from different training samples

using a probabilistic generalized Hough transform.

Object recognition using local gradient features or color is

a key component of a robot vision system [1], [8], [9], [10].

Se et al. [4] enabled a mobile robot to use scale invariant vi-

sual landmarks to localize globally and build a 3D map of the



environment. Color-based visual features have also been used

to enable a mobile robot to track moving obstacles [11]. Ess

et al. [12] jointly estimate camera position and stereo depth

while detecting objects and their trajectories based on visual

information. Recent focus has been on the development of

algorithms for unsupervised learning of object models. For

instance, Roman et al. [13] proposed a hierarchical scheme

that relies on the stability of a subset of features extracted

from sensory inputs to perform an initial robust classification

based on unsupervised methods. Parikh et al. [14] described

an approach for unsupervised learning of hierarchical spatial

structures from images, using a rule-based model and a

graph-based representation for each rule. However, most

of these methods are computationally expensive or require

extensive prior knowledge for modeling the target objects.

This paper focuses on autonomously learning object models

using local, global and temporal visual cues.

III. PROPOSED ALGORITHM

The proposed work is based on our observation that it

is typically more important for a mobile robot to learn

models for, and keep track of, the moving objects in its

environment. Stationary objects can be considered as part

of the background that the robot learns as it maps its

surroundings [15]. The learning algorithm is hence triggered

by object motion, and it extracts local and global visual cues

from appropriate image regions to build the layered object

model. The learned models are then used to recognize and

track the desired objects in the subsequent images.

The proposed algorithm consists of four components:

unsupervised detection and learning of object models (Sec-

tion III-A); incorporation of spatial (feature) coherence vec-

tors (Section III-B) and second-order (color) distribution

statistics (Section III-C) for improved robustness; and the

effective fusion of different visual cues for robust object

recognition and tracking (Section III-D). Specific details are

described in the sections below.

A. Unsupervised Learning of Object Models

The first step in the proposed algorithm is the unsupervised

detection of novel moving target objects. In computer vision

literature, optical flow methods have been used to detect

motion of pixels in an image sequence [16]. Here, the

detection of motion is based on tracking image gradient

features. Our prior research showed that a combination of an

efficient feature detector (MSER [6]) and a reliable feature

descriptor (SIFT [5]) results in reliable and efficient object

recognition [10]. MSER-SIFT features were hence used to

characterize objects and detect their motion.

The detection of object motion proceeds as follows. Con-

sider, for instance, the images captured at time t and t + 1,

i.e., It and It+1. Consider the set of MSER-SIFT features ex-

tracted from these two images: MSt = {mst,1, . . . ,mst,N}
and MSt+1 = {mst+1,1, . . . ,mst+1,M}, where each feature

is a 128D vector. The features in these two sets are matched

with each other using the nearest neighbor algorithm [17].

The matched features are then clustered based on their rel-

ative displacement between the two images. The underlying

hypothesis is that unique features corresponding to a single

object are likely to have similar relative motion between

two consecutive images. Clusters with more than a threshold

number of matched features are considered as candidate

novel objects that are in motion. Convex boundaries are

computed for each set of matched and clustered features.

If a boundary includes many features that were not in the

corresponding cluster, the cluster is removed from the list

of candidate objects. In addition, the detection of candidate

objects is made robust by performing the pair-wise matching

over a set of three consecutive images.

The candidate objects are characterized using local gra-

dient features and color distributions because of their com-

plementary properties. Local gradients are robust to scale,

orientation, viewpoint and illumination, but they neglect the

global information in color images and are not appropriate

for texture-less surfaces. Color features, on the other hand,

provide a more global representation but do not have the

robustness of local gradients. Each object model therefore

consists of: (a) a set of MSER-SIFT features corresponding

to the cluster of features matched across the set of images;

and (b) a set of probability distributions (pdfs), where each

pdf is a normalized histogram in the HSV color space.

The color pdfs are generated using the image pixels within

the convex boundary around the clustered gradient features

corresponding to each object. The key fact is that the

learning of object models is triggered by object motion and

accomplished autonomously.

Though MSER-SIFT features are robust to many factors

(e.g., scale and viewpoint), spurious matches can still occur

because the features only consider a small (local) image

region. For instance, the features from a wheel of a car may

be similar to those from a different wheel or a different car.

Similarly, color distributions of an image region need not be

unique. If these learned object models are used for object

recognition in subsequent images, there is a high likelihood

that some of the matches would be incorrect. The learned ob-

ject models are hence augmented using spatial arrangement

of gradient features and second-order distribution statistics.

B. Spatial Coherence Vector

Similar to the color coherence vector for color his-

tograms [18], the spatial arrangement of local gradient fea-

tures corresponding to a specific object is captured using a

spatial coherence vector (SCV). The SCV is then used to

compute a probabilistic spatial similarity measure (SSM) for

object recognition in test images.

The motivation underlying the SCV computation is that

though the individual features may not be unique, the spatial

arrangement of features corresponding to a rigid object

cannot be duplicated easily. The relative arrangement of the

MSER-SIFT features corresponding to an object is hence

used to increase robustness. The spatial coherence of each

feature is defined as its position in the image relative to

every other feature corresponding to this object. This relative



coherence is computed separately along the x and y axes. Let

the object be characterized by N MSER-SIFT features. The

SCV for the ith feature is defined as:

SCVx,i = {dx
i,1, d

x
i,2, . . . , d

x
i,N} (1)

SCVy,i = {dy
i,1, d

y
i,2, . . . , d

y
i,N}

where dx
i,j is the relative position of feature i w.r.t feature j

along the x-axis; dy
i,j is the corresponding relative position

along the y-axis. For instance:

dx
i,j =







1 if xi > xj

0 if xi = xj

−1 if xi < xj

(2)

where xi and xj are the x coordinate values of feature i and

j respectively in the image plane.

The SCV computation is an additional layer in the repre-

sentation described in Section III-A. Consider the situation

described in Figure 1, where three SIFT features that share

the same velocity v are shown enclosed in a rectangular box.

Fig. 1: SCV computation of MSER-SIFT features.

The SCVs of these three features along the x and y axes

are shown in Table I and Table II.

1 2 3

1 − −1 −1

2 1 − 1

3 1 −1 −

TABLE I: X-axis SCV

1 2 3

1 − 1 1

2 −1 − 1

3 −1 −1 −

TABLE II: Y-axis SCV

If the learned model for a novel object has N MSER-

SIFT features (each feature is a 128D vector), the model

is augmented with a 2(N − 1)-dimensional vector for each

feature that corresponds to the SCV along the x and y axes.

As shown later, the augmented model results in robust object

models and better object recognition.

C. Color Distribution Statistics

For each candidate object, the robot extracts pixels within

the corresponding image region to build normalized his-

tograms, i.e., color space pdfs, in the HSV color space that is

inherently robust to minor illumination changes. Pixel values

in RGB are converted to HSV and normalized:

h =
H/360

H/360 + S + V
s =

S

H/360 + S + V
(3)

v =
V

H/360 + S + V

where hue (H), saturation (S) and value (V ) are the dimen-

sions of the color space. After normalization, any two of the

three dimensions are a sufficient statistic for pixel values.

Each color pdf is hence modeled as a normalized histogram

in the (h, v) space, quantized into ten bins in each dimension.

As stated above, color distributions do not constitute a

stable or unique representation for an object. Based on prior

work on color learning on mobile robots [11], the robot

computes the distance between every pair of pdfs and models

the distribution of distances as a Gaussian. The distance

computation is based on the Jensen-Shannon (JS) measure:

JS(a, b) =
KL(a,m) + KL(b,m)

2
(4)

KL(a, b) =
∑

i

∑

j

(ai,j · ln
ai,j

bi,j

), m =
a + b

2

where (a, b) are the two distributions (i.e., pdfs) and m is

a distribution obtained by averaging the two pdfs. The JS

measure is based on the logarithm of pdfs, and it is robust

to spurious peaks in the observed pdfs, e.g., due to large

regions of a single color in the image under consideration.

This Gaussian distribution of distances is a second-order

statistic that is included in the learned object model to

represent the expected variance in the color distributions for

the corresponding object. This statistic can also be used by

the robot to detect and adapt to illumination changes, thereby

making the system more robust [11].

D. Information Fusion and Matching Strategy

As described above, the learned layered model for each

object consists of color space pdfs, second-order distribution

statistics, local gradient features and spatial coherence vec-

tors corresponding to these gradient features. The learning

algorithm is triggered by object motion, and the learned

models are used for recognizing and tracking the correspond-

ing objects in subsequent frames. In a new input image, the

MSER-SIFT features are computed first and matched against

the features in the learned models for different objects, using

the nearest neighbor classification scheme. For the features

in a learned object model, the nearest neighbors are found in

the new input image. The SCV is computed for the matched

features in the new image and compared against the SCV of

the learned object model. A probabilistic spatial similarity

measure (SSM) is introduced to compute the degree of

similarity between the two SCVs:

SSM =
Nx,correct + Ny,correct

2 ∗ (N − 1)
, SSM ∈ [0, 1] (5)

where Nx,correct and Ny,correct represent the number of

values in the test image SCV that match the learned model’s

SCV along the x and y axes respectively, while N is the

number of values in the learned model’s SCV. The SSM

values range from [0, 1], and SSM = 1 implies that the

spatial arrangement of gradient features in the test image

perfectly matches the arrangement of features of the corre-

sponding learned object model. The SSM can hence be used

as a probability measure of occurrence (in the test image) of

the object under consideration.

A match measure is also computed using the color dis-

tribution features. For the set of matched features in the

test image, the pixels within the convex boundary around



these matched features are used to compute a normalized

color space histogram (i.e., a pdf). The mean (JS) distance

is computed between this test image pdf and the set of pdfs

corresponding to the learned object model under consider-

ation. The deviation of this mean distance from the mean

of the Gaussian distribution of the distances computed for

this object model (i.e., the second-order statistic) provides a

match probability based on the color distribution features.

Algorithm 1 Object Model Learning and Recognition

Require: : Ability to learn object models based on gradient

features and color distributions.

Require: Learned map of the surroundings for navigation.

1: Initialize: numObjects = 0 (no prior knowledge).

2: while true do

3: if modelLearn then

4: Compute local gradient features for It and It−1.

5: if DetectObject() then

6: Compute SCV, color distributions and second-

order statistics.

7: if numObjects > 0 and ObjMatch(objID)
then

8: MergeLearnedModel(objID)
9: else

10: ComputeNewModel()
11: numObjects = numObjects + 1
12: end if

13: end if

14: else

15: Compute color and gradient features, SCV and

second-order statistics for It.

16: if numObjects > 0 then

17: if ObjMatch(objID) then

18: State recognition of object objID.

19: end if

20: end if

21: end if

22: Track learned object models with Kalman filters [17].

23: end while

Assuming that there are K learned object models, the

SSM and JS distance-based matching schemes will each

compute probabilities that the test image contains each of

these objects. The net match probability is then given by the

product of these two individual probabilities:

pi = pssm,i · pjs,i, ∀i ∈ [0,K − 1] (6)

pi =
pi

∑K−1

j=0
pj

where pssm,i and pjs,i are the probabilities, based on the

gradient features and color features respectively, that the

test image contains the ith object. A discrete distribution

of match probabilities is hence computed over the range of

learned object models, for the gradient features and color

distributions. The net probability of match is obtained by

multiplying the individual probabilities and normalizing the

resulting distribution. This match probability can be used

for two purposes: (1) to find the closest match and hence

perform object recognition; and (2) to detect new objects

when the probability of match is below a threshold, i.e.,

pi < probThresh. Experimental results show that this

strategy elegantly exploits the advantages of color features

and gradient features to provide robust performance.

The overall algorithm is described in Algorithm 1. The

robot begins with no prior knowledge of object models,

though it has the ability to build models based on local

gradients and color features given a specific image region.

The robot has a learned map of the world (using range

finders) for safe navigation, but has no initial learned model

of the desired objects (numObjects = 0). If the robot

is to learn object models (modelLearn = true in line 3

of Algorithm 1), the robot considers the images captured

at that time-step and the immediate preceding time-step

(It, It−1). The MSER-SIFT features are extracted from these

images and matched to arrive at the candidate object clusters

(Section III-A). If a valid object is detected (line 5), the robot

computes the spatial coherence vector, color distributions and

second-order statistics to populate a model for that object.

Next, if prior learned object models exist, the robot attempts

to match the new model with an existing model (line 7 and

Section III-D). If a match with a sufficiently high probability

is found (pi > probThresh in Equation 6), the robot merges

this new model with the existing learned model (line 8).

However, if a match is not found, the robot stores a new

model corresponding to this object and increments the count

of learned object models (line 10-11).

If model learning is turned off, the robot can still per-

form object recognition if learned object models exist. The

recognition can be done with a single image and even with

a stationary object. The robot begins by computing the color

and gradient features, along with the SCV and second-order

distribution statistics for the current image (It)—line 15. The

robot then attempts to match the computed model with one

of the existing models. If a match with sufficiently high

probability is found (ObjMatch() in line 17), the recognized

object is reported. Learning and recognition are separated

in Algorithm 1 only for ease of explanation. As such,

the robot can (and does) perform learning and recognition

concurrently. In each frame, all detected object models are

tracked using Kalman filters [10], [17].

IV. EXPERIMENTAL SETUP AND RESULTS

This section describes the robot test platform and the

results of evaluating the proposed algorithms on the robot.

A. Experimental Platform

The ERA-MOBI robot platform (a.k.a “erratic”) created by

Videre Design [19] was used as the test platform. As shown

in Figure 2, it is a compact robot base (40cm×41cm×15cm)

equipped with a stereo camera, a monocular camera, laser

range finders and a pan-tilt unit. The on-board processor is a

1.6GHz Core2 Duo with 1GB RAM. The experiments below

use one of the cameras of the stereo unit, which provides

images at a resolution of 640×480. The laser range finder on



Fig. 2: Robot test platform.
Fig. 3: Object categories
used.

the robot is the Hokuyo UTM device with a maximum range

of 30 meters, which can be used to map the environment.

Though the robot has Wi-Fi capabilities to communicate with

other robots or computers, all experiments were performed

on-board the robot.

B. Experimental Results

Four object categories were used in the experiments:

humanoid robots, humans, boxes and cars—Figure 3 shows

examples of each category. The category “car” was used

for evaluation in outdoor environments, while the other

three categories were used for indoor experiments. Different

object models were learned for different objects within the

same category. Figure 4 shows examples of objects within

each category, which were used in the experiments. For

instance, different boxes, humans, and the front and back

of the humanoid robots result in different learned models. In

addition, different colored patterns were taped to the waist of

the humanoid robots to result in different object models. The

objects were placed in environments with other background

objects (see Figure 5) that made the learning of object models

and the subsequent recognition quite challenging. During

experimental trials, the mobile objects (i.e., human, car and

humanoid robot) moved in random directions, while the

boxes were moved on wheeled trolleys.

Fig. 4: Examples of objects that resulted in different learned models
in each category: (a) Humanoid (b) Box (c) Human and (d) Car.

The experiments were conducted over a set of ≈ 200
images captured by the robot over a period of time. The

robot was allowed to move during the experiments and used

Fig. 5: Experiments included indoor and outdoor environments.

image input to learn models for moving objects, and detect

these objects in subsequent images irrespective of whether

they were moving or stationary. As described in Algorithm 1,

candidate objects are either merged with existing models or

used to create new models. The robot also uses the learned

models to detect the corresponding objects in test images.

Figure 6 shows a test image with a human walking down a

corridor. At this point, the robot had already learned models

for 13 different objects across the four categories. Figure 7

shows the result of using the SSM and JS distance-based

matching scheme to compute the probability of occurrence

of each of the learned objects in the test image. For ease of

explanation, only the top five matches among the 13 available

models are shown. The test images were different from those

used to learn the object models—the images along the x-

axis of Figure 7 are just snapshots of the object models.

Figure 8 shows the merged probabilities for the top five

matches, computed using Equation 6.

Fig. 6: Example test image.

Fig. 7: Match probabilities based on SSM and color models.



Fig. 8: The merged match probabilities for the test image.

The detection of novel objects is based on a threshold on

the probability of match with the existing models. However,

the method is not sensitive to the choice of threshold. For

instance, when features extracted from images containing a

“box” were compared with the corresponding learned model,

the average match probability was high: 0.7668 ± 0.1384.

However, when features from images without a box were

compared with the box models, the average match probability

was much lower: 0.3571 ± 0.1227. Similar results were

obtained for other categories, and a threshold of 0.55 was

hence used in all the experiments.

Category Trials Accuracy Trials Accuracy
with object without object

Humanoid 120 0.925 90 0.878

Box 110 0.936 100 0.928

Human 30 0.767 180 0.867

Car 30 0.733 180 0.833

TABLE III: The classification accuracy for each object category.
Errors are due to within-class misclassifications.

Table III shows the classification accuracy averaged over

the object models in each category. The classification is

considered to be correct if the robot matches the object in the

test image to the appropriate model within the corresponding

category. In other words, if the robot matches an image of a

human in human-class1 to the learned model human-class2,

it is considered to be incorrect. Most of the classification

errors in Table III correspond to erroneous classifications

within a category—an object is never assigned a label from a

different category. Furthermore, images are analyzed at 3−7
frames/second, and efficiency can be improved further by

processing only the relevant regions of input images.

The true-positive accuracy was high for the “humanoid”

and “box” categories, and the true-negative accuracy was

high for all categories. The accuracy was lower in the “hu-

man” and “car” categories that involved many experiments

in outdoor or cluttered environments. In these cases, the

learned models had many non-unique features. For instance,

the features in the shirt of one human were similar to the

features extracted from the image of a different human. This

problem predominantly occurred when the human or car was

close to the camera—when observed at a reasonable distance

from the camera, suitable models were learned for objects in

all categories. One future direction of research is to compute

motion cues based on other image features in order to learn

more unique models for categories with a significant amount

of within-category similarity.

V. CONCLUSIONS AND FUTURE WORK

Autonomous operation is a key requirement for mobile

robots in dynamic real-world domains. This paper described

an algorithm that enables a mobile robot to autonomously

detect candidate objects based on motion cues, and to

learn layered object models based on gradient features and

color distributions. Spatial coherence vectors and second-

order statistics are incorporated for increased robustness. A

probabilistic matching scheme based on the learned object

models is used to recognize the corresponding objects in test

images and track them in subsequent images.

Future work will incorporate other visual cues in the

approach in order to achieve robust learning of unique object

models. In addition, the experiments summarized above only

had a couple of objects moving at a time. One direction

of further research is to investigate the extension to several

moving objects. Furthermore, the approach can be extended

to a team of robots collaborating in dynamic environments.
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