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Abstract— In recent years, there has been a resurgence
in methods that use distributed (neural) representations to
represent and reason about semantic knowledge for robotics
applications. However, while robots often observe previously
unknown concepts, these representations typically assume that
all concepts are known a priori, and incorporating new infor-
mation requires all concepts to be learned afresh. Our work
relaxes this limiting assumption of existing representations and
tackles the incremental knowledge graph embedding problem
by leveraging the principles of a range of continual learning
methods. Through an experimental evaluation with several
knowledge graphs and embedding representations, we provide
insights about trade-offs for practitioners to match a semantics-
driven robotics applications to a suitable continual knowledge
graph embedding method.

I. INTRODUCTION

Representing and reasoning about semantic knowledge is
a key task in robotics. In recent years, there has been a
resurgence in methods that use distributed (neural) repre-
sentations, e.g., word and knowledge graph embeddings, for
this task in the context of navigation [1], grounding [2], affor-
dance modeling [3], success detection [4], manipulation [5],
and instruction following [6]. While robots frequently ob-
serve previously unknown concepts, these embedding al-
gorithms typically assume that all embedding concepts are
known a priori, and incorporating new information requires
all concepts to be learned afresh. In addition, in robotics
applications, the limited availability of computational re-
sources and storage, and concerns regarding storing sensitive
information, can make batch learning with all observed
data infeasible. We seek to relax this static assumption in
knowledge graph embedding and enable adaptive revision of
distributed representation of semantic knowledge for robots.

Towards achieving our objective, we draw on Continual
Learning, the research area which focuses on the chal-
lenging problem of incrementally revising learned neural
representations [7]. Existing continual learning methods have
predominantly been applied to object recognition and include
regularization [8], [9], architecture modification [10], [11],
generative replay [12], [13], and a reformulation of regu-
larization for knowledge graph embedding [14]. However,
continual learning methods remain largely unexplored for

1Georgia Institute of Technology, Atlanta, GA. Email: {adaruna3,
mgupta320, chernova}@gatech.edu

2University of Birmingham, Birmingham, UK. Email:
m.sridharan@bham.ac.uk

This work is supported in part by NSF IIS 1564080, NSF GRFP DGE-
1650044, and ONR N00014-16-1-2835. Mohan Sridharan was supported in
part by ONR N00014-17-1-2434. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the supporters.

knowledge graph embedding. Furthermore, the implications
of any related assumptions for robotics is not well docu-
mented because existing methods focus on the final inference
performance and define different task specific measures [15].

Our work makes three contributions. First, we reformulate
and extend the underlying principles of five representative
continual learning methods: (i) Progressive Neural Net-
works [10]; (ii) Copy Weight Re-Init [11]; (iii) L2 regulariza-
tion [9]; (iv) Synaptic Intelligence [16]; and (v) Deep Gener-
ative Replay [12], and apply them to the continual knowledge
graph embedding (CKGE) problem. Second, we introduce an
empirically evaluated heuristic sampling strategy to generate
CKGE datasets from knowledge graphs, since benchmark
datasets do not exist for the CKGE problem. Third, we build
on existing continual learning measures [17] to characterize
the use of each reformulated method for robot tasks that
leverage semantic knowledge.

For evaluation, we consider two knowledge graph em-
bedding representations with different assumptions and loss
functions: TransE [18] and Analogy [19]; and three bench-
mark knowledge graphs (WN18RR, FB15K237 [20], and
AI2Thor [3]). We also evaluated each adapted method under
unconstrained, data-constrained, and time-constrained set-
tings by sampling from a knowledge graph used in prior
robotics work [3], containing actions, locations, objects, and
other concepts. Experimental results indicate that: (i) our
generative replay approach outperforms other methods; (ii)
there are interesting trade-offs between inference capability,
learning speed, and memory usage that should be considered
when choosing a CKGE method; and (iii) insights gained
from exploring these trade-offs enable us to select a CKGE
method that best matches the constraints of a given robotics
application that models semantic knowledge.

II. RELATED WORK & BACKGROUND

We motivate our contributions by discussing background
information and related work.

Modeling Semantic Knowledge in Robotics is often
achieved using an explicit model of world semantics in
the form of a knowledge graph G composed of individual
facts or triples (h, r, t); h and t are the head and tail
entities (respectively) for which the relation r holds, e.g.,
(cup, hasAction, fill) [21], [22], [23], [24]. Recent work has
modeled G using distributed representations because of their
ability to approximate proximity of meaning from vector
computations [1], [2], [3], [4], [5], [6].

Multi-relational (knowledge graph) embeddings are
distributed representations that model G in vector space [25],



learning a continuous vector representation from a dataset of
triples D=

{
(h, r, t)i, yi|hi, ti∈E , ri∈R, yi∈{0, 1}

}
, with

i∈{1...|D|}. Here yi denotes whether relation ri ∈ R holds
between hi, ti ∈ E . Each entity e∈E is encoded as a vector
ve ∈RdE , and each relation r∈R is encoded as a mapping
between vectors Wr ∈ RdR , where dE and dR are the
dimensions of vectors and mappings respectively [25], [26].
The embeddings for E and R are typically learned using a
scoring function f(h, r, t) that assigns higher (lower) values
to positive (negative) triples [26]. The learning objective is
thus to find a set of embeddings Θ =

{
{ve| e ∈ E}, {Wr| r ∈

R}
}

that minimizes the loss LD over D. Loss LD can take
many forms depending on the multi-relational embedding
representation used, e.g., Margin-Ranking Loss [18] or Neg-
ative Log-Likelihood Loss [19]. However, all entities and
relations are assumed to be known before training [25], [26],
which may be infeasible for robots observing new concepts
or new facts about existing concepts.

Continual learning has evolved as a subarea of life-long
machine learning. It focuses on neural networks and seeks
to learn new domains, classes, or tasks over time without
forgetting previously learned knowledge [7]. Methods pro-
posed in the narrow context of object recognition include
regularization [8], [9], architecture modification [10], [11],
and generative replay [12], [13]. We explore and adapt five
representative methods [9], [10], [11], [12], [16]. Different
categories of continual learning scenarios exist in the litera-
ture based on whether there are shifts in the input or output
distributions, and whether the inputs and outputs share the
same representation space [27]. Among existing categories,
we chose Incremental Class Learning (ICL) because it
best matches the assumptions of robot systems representing
semantic knowledge, with the distribution of input data and
target labels changing across learning sessions as the robot
incrementally observes disjoint sets of new facts about new
and existing concepts.

In CKGE, the dataset D of a knowledge graph G is split
into multiple datasets Dn where n indicates the learning
session [14]. Each Dn contains a disjoint set of all triples of
a subset of entities and relations. For a robot observing new
facts, the size of the set of observed entities, relations, and
triples grows, (e.g., |En| ≤ |En+1|), and the embedding must
consider new facts and concepts in each learning session.
In such a learning scenario, the objective is to find a set
of embeddings Θn =

{
{vne | e ∈ En}, {Wn

r | r ∈ Rn}
}

that minimize the loss LDn over the dataset for all time
steps. Of the range of continual learning methods, only L2-
regularization has been applied to CKGE [14]; more sophis-
ticated methods that have shown promise in other domains,
e.g., generative replay, remain unexplored. Also, important
measures for robotics, such as learning efficiency and model
complexity, are not well documented for representative tech-
niques [17], making it difficult to evaluate the suitability of
these methods for modeling semantic knowledge in robotics.
Our work is designed to fill these gaps.

Dynamic Graph Embedding is a related approach fo-
cused on modeling dynamic graphs with applications to

social networks, biology, computational finance, and other
domains [28]. A work from [28] on dynamic knowledge
graph embedding [29] assumes the knowledge graph in
each time step is complete, and models the changes in the
knowledge graph across learning sessions taking as inputs the
knowledge graph from the prior and current learning session.
Our work uses a different set of assumptions because we
model a scenario where a robot is observing disjoint subsets
of a complete knowledge graph. We view our approach
as a variant of dynamic knowledge graph embedding in
which only a subset of the complete knowledge graph is
available for training each learning session. As a result, our
algorithms need to take into account problems of catastrophic
forgetting. Catastrophic forgetting [7] occurs when a neural
representation that was optimized for a prior dataset is trained
with new dataset. The neural network’s weights are tuned to
the new dataset, resulting in a potential loss in performance
for classes and tasks not included in the new dataset.

III. CONTINUAL KNOWLEDGE GRAPH EMBEDDING

We seek to characterize the use of continual learning
methods for knowledge graph embedding in robotics by
exploring the associated assumptions and trade-offs. In this
section, we describe how we reformulate and extend the
principles of five carefully selected representative continual
learning techniques to develop continual knowledge graph
embedding (CKGE) methods. These methods were designed
for traditional neural networks and required varying levels
of innovation to support knowledge graph embeddings. In
each case, we carefully considered the suitability of its
principles to support the desired capabilities and assumptions
of knowledge graph embeddings.

A. Architectural Modification Methods

Among the methods that modify the architecture of a
neural network to accommodate new training data while
minimizing performance losses over older data, we adapted
two methods for knowledge graph embeddings.

Progressive Neural Networks (PNN) [10] add copies of
existing layers of a multi-layered neural network for each
new learning session. When a new learning session begins,
existing weights are frozen so that back-propagated gradients
do not affect the performance over data from previous ses-
sions. Also, lateral connections are made between successive
layer copies to enable the forward transfer of previously
learned weights. To make PNNs applicable to knowledge
graph embedding, we first expand the embedding matrices
vn ∈R|En|×dE and Wn ∈R|Rn|×dR to include new entities
and relations in the learning session n. Second, we freeze
embeddings for entities and relations encountered in prior
learning sessions to prevent their corruption in the current
learning session. Instead of creating separate copies of these
embedding matrices for each learning session, we only
expand the existing matrices to promote forward transfer of
prior embeddings in new learning sessions.

Copy Weight with ReInit (CWR) [11] maintains the
weights of the final layer of the network during a new



learning session (i.e. temporary weights, TW), separate from
the corresponding weights trained in prior learning sessions
(i.e. consolidated weights, CW) to avoid corruption. Other
than the two sets of final layer weights considered during
(continual) learning, the weights of other layers are frozen
and shared across learning sessions. TW are re-sized and re-
initialized in each learning session according to the number
of classes being trained. After each learning session, the TW
for new classes are copied over to CW, which acts as a
memory buffer separate from the network. If a previously
trained class is encountered, relevant entries in TW are
averaged with those in CW. Training for the subsequent
session begins by re-sizing and re-initializing TW.

To apply the principles of CWR to knowledge graph
embedding, we first introduce two sets of embeddings:
consolidated embeddings (CE) {vn

ce,Wn
ce} and temporary

embeddings (TE) {vnte,Wn
te}. Second, for each learning ses-

sion, we resize and re-initialize the TE for entities vn
te and

relations Wn
te based on the number of entities and relations

(respectively) in the session. After the session, we move TE
into CE by copying new embeddings or averaging existing
ones. As a result, the number of CE increases monotonically
in each learning session with the number of observed entities
En and relations Rn so that vnce ∈ R|En|×dE and Wn

ce ∈
R|Rn|×dR ) (respectively); the number of TE changes in each
learning session according to the number of entities and
relations in that learning session’s dataset Dn.

B. Regularization Methods

Freezing previously learned weights prevents their cor-
ruption in subsequent sessions, but also prevents shared
weights from being revised to better accommodate new con-
cepts. Some continual learning methods allow adjustments to
shared weights that perform well for prior and new sessions;
they do so by enforcing some regularization terms in new
learning sessions. We reformulate two such approaches for
knowledge graph embeddings.

L2 Regularization (L2R) [9], [14], [27] is adapted in
our approach by adding a regularization term to the learning
session loss LDn , encouraging the trained weights to not
deviate from their previous values:

LDn + λ ·
(
||vne − vn−1||22 + ||Wn

r −Wn−1||22
)

(1)

where e ∈ En−1, r ∈ Rn−1, and λ is a regularization
scaling term tuned as a hyper-parameter. L2R can be rather
strict because it penalizes all dimensions of an embedding
equally, whereas a subset of the embedding dimensions often
contribute more to loss or predictive abilities than others.

Synaptic Intelligence (SI) [16] extends L2R by consid-
ering the weight-specific contributions to the reduction in
loss over a learning session. These contributions are quanti-
fied by summing the gradients that each weight adjustment
contributes to the loss and using the total loss reduction as a
normalizer. SI is generic enough to apply to knowledge graph
embeddings with minimal changes because it is formulated in
terms of the weight and loss trajectories. Equation 2 defines

our implementation of SI for knowledge graph embedding,
re-using terms from [16]:

LDn + λ ·
(
||Ωe(vne − vn−1)||22 + ||Ωr(Wn

r −Wn−1)||22
)

(2)

where e∈En−1, r∈Rn−1, Ω is the parameter regularization
strength [16], and λ is a regularization scaling term tuned
as a hyper-parameter for a particular representation. Elastic
Weight Consolidation (EWC) [9] was also considered but
not used because the assumptions made by the Fisher Infor-
mation matrix of EWC are not satisfied by many knowledge
graph embeddings, e.g., those using Margin-Ranking Loss.

C. Generative Replay Methods

Fig. 1: DGR architecture.
Layers with white outline
are linear.

Instead of maintaining model
weights across learning ses-
sions, generative replay meth-
ods learn generative models of
the distribution of training data
from previous learning sessions.
Then, batch learning is ap-
proximated by sampling from
the learned distribution and the
training data from the current
learning session. We reformu-
late one such method for knowl-
edge graph embeddings.

Deep Generative Replay
(DGR) [12], [13] is a contin-
ual learning method that uses
a generative model G to ap-
proximate the distribution of all
observed training examples (i.e.
D), and trains a discriminative
model (i.e., solver) to perform
a task. In the initial learning
session, generator G0 and solver
are trained using examples in
D0. In any subsequent learning session i, a new generator
Gi and solver are trained using examples in Di and sam-
ples from Gi−1 that approximate Di−1, thus approximating
training with Di−1 ∪ Di.

The challenge in applying the principles of DGR to
knowledge graph embeddings is designing an effective gen-
erator, as the solver is determined by the representation
used, i.e., Θ =

{
{ve| e ∈ E}, {Wr| r ∈ R}

}
). Sampling

training examples is a known problem in knowledge graph
embedding1, but prior work has shown that a Variational
Auto-Encoder (VAE) can be used to sample sequences of
discrete tokens [33]. We treat each triple as a sequence of
discrete tokens to design our VAE-based generator.

Figure 1 shows our VAE architecture that uses Gated-
Recurrent Units to encode and decode the triples to and
from the latent space z. Input triples (h, r, t) to the encoder
are first transformed into token embedding sequences x =

1Others have used GANs to generate negative examples [30], [31], [32],
but we cannot use these methods because their generators require positive
examples as input.



(νh, νr, νt), where ν∈R|En|+|Rn|×dV is a token embedding
learned by the encoder with dimensionality dV . The encoder,
shown in blue in Figure 1, is a learned posterior recognition
model q(z|x) that approximates the posterior distribution
over z, conditioned on the input triple sequences x. Unlike
a standard auto-encoder, the encoder is encouraged to keep
the learned posterior q(z|x) close to the prior over the latent
space p(z), which is a standard Gaussian. A similarity con-
straint based on the KL divergence measure in the objective
function allows samples to be generated from the latent
space. These samples are decoded using the decoder, shown
in green in Figure 1, to maximize p(x|z), the likelihood
of a triple sequence x conditioned on its encoded latent
space vector z, as in a standard auto-encoder. The output
sequences of the VAE are transformed back into a triples
using a Softmax function over all tokens (i.e., e ∈ En and
r∈Rn). The objective function for this architecture is:

−KL
(
q(z|x)||p(z)

)
· α(epoch) + Eq(z|x)

[
log p(x|z)

]
(3)

where an additional term α(·) is included to anneal the KL
divergence loss, preventing issues such as vanishing gradients
caused by posterior sampling and KL divergence loss terms
being driven to zero [33]. α(·) is a function of the number
of epochs trained for the learning session:

α(epoch) =
λam

1 + e−λas

(
epoch−λap

) (4)

where λam, λas, and λap are hyper-parameters tuned during
training to control the maximum value, slope, and position
of the annealing function, respectively.

IV. EXPERIMENTAL SETUP

We evaluate our CKGE methods on two multi-relational
embedding representations: TransE [18] and Analogy [19];
and three benchmark knowledge graphs: AI2Thor [3],
FB15K237 [20], and WN18RR [20]. The last two knowledge
graphs are challenging and have been widely used in the
graph embedding literature [20], [31], [34]. AI2Thor contains
relations and entities related to service robotics, e.g., loca-
tions of objects, actions that can be performed on objects,
and the outcomes that result from these actions [3]. We
report the accuracy and complexity of each method based
on seven performance measures chosen from prior continual
learning work in robotics [17]. In each trial, the evaluation
task is triplet prediction, a fundamental knowledge graph
embedding task [1], [3] with a well-defined experimental
setup [18], [25] as described later in this section.

CKGE datasets: Since there is no established benchmark
dataset for CKGE, we introduce three standard evaluation
datasets that we obtain by sampling. Our heuristic sampling
strategy emulates the New Instances and Concepts scenario
presented in [17] under the categorization of the nature of
data samples within training sets. Therefore, our sampling
strategy models the scenario where a robot explores a world
and discovers new triple instances that contain new concepts
(i.e. entities or relations), new triple instances that contain
previously observed concepts, and triple instances that have
been previously observed. Consider a knowledge graph G

TABLE I: CKGE Datasets; Benchmarks
WN18RR-5-LS

LS-1 LS-2 LS-3 LS-4 LS-5

|En| 20,368/(50%) 20,389/(73%) 20,249/(87%) 20,463/(95%) 20,437/(99%)
|Rn| 11/(100%) 11/(100%) 11/(100%) 11/(100%) 11/(100%)
|DnTr| 17,367/(20%) 17,367/(40%) 17,367/(60%) 17,367/(80%) 17,367/(100%)
|DnV a| 1,117/(37%) 1,141/(57%) 1,187/(71%) 1,190/(80%) 1,184/(86%)
|DnTe| 1,168/(37%) 1,159/(57%) 1,218/(72%) 1,173/(81%) 1,175/(87%)

FB15K237-5-LS

LS-1 LS-2 LS-3 LS-4 LS-5

|En| 13,143/(90%) 13,106/(96%) 13,115/(98%) 13,089/(99%) 13,163/(100%)
|Rn| 237/(100%) 237/(100%) 237/(100%) 237/(100%) 237/(100%)
|DnTr| 54,423/(20%) 54,423/(40%) 54,423/(60%) 54,423/(80%) 54,423/(100%)
|DnV a| 17,013/(97%) 16,929/(99%) 16,917/(100%) 16,882/(100%) 16,905/(100%)
|DnTe| 19,776/(97%) 19,727/(99%) 19,734/(99%) 19,758/(100%) 19,801/(100%)

TABLE II: CKGE Datasets; Robotics
LS-1 LS-2 LS-3 LS-4 LS-5

|En| 176/(84%) 175/(95%) 177/(97%) 171/(99%) 169/(99%)
|Rn| 11/(100%) 11/(100%) 11/(100%) 11/(100%) 11/(100%)
|DnTr| 17,367/(20%) 17,367/(40%) 17,367/(60%) 17,367/(80%) 17,367/(100%)
|DnV a| 1,117/(37%) 1,141/(57%) 1,187/(71%) 1,190/(80%) 1,184/(86%)
|DnTe| 1,168/(37%) 1,159/(57%) 1,218/(72%) 1,173/(81%) 1,175/(87%)

whose triples D have been split into a training set DTr,
validation set DV a, and test set DTe. Our approach for
generating datasets for n = {1, ..., N} learning sessions is:

1. Sample training triples: uniformly sample without re-
placement |DTr|

N triples from training set DTr of G.
These triples form training dataset Dn

Tr.
2. Extract entities and relations: create a set of entities En

and a set of relations Rn for this session from the triples
in Dn

Tr. The set of all observed entities (relations), i.e.,
En (Rn) is the union of current and prior En (Rn).

3. Construct nth validation and test sets: extract from
DV a and DTe the triples whose head, relation, and tail
belong to En and Rn (respectively). These triples form
validation set Dn

V a and test set Dn
Te of the nth session.

4. Remove sampled training triples: remove Dn
Tr from

DTr of G.
5. Repeat steps 1-4 until no training triples exist in G or a

predefined number of iterations are completed.
We generated three CKGE datasets with n = 5 sessions
using our approach on two established benchmark knowledge
graphs in the graph embedding community (WN18RR and
FB15K237 [20]) and a knowledge graph used in robotics
(AI2Thor [3]). Tables I and II report statistics of each
dataset. The columns of the tables denote the learning session
(LS-X, X∈ [1, 5]), while rows correspond to the statistics,
e.g., |En| is the size of the entity set. Individual cells
indicate the value, with coverage with respect to the original
knowledge graph shown in parentheses. For instance, in LS-
2 of WN18RR-5-LS, there are 20, 389 entities and 73%
of all entities in WN18RR have been observed. Note that
our sampling strategy empirically produces datasets with
better coverage and higher percentages of new training triples
each learning session, i.e., more challenging datasets for
CKGE, than previous methods such as entity sampling [14].
Furthermore, our sampling strategy makes the distribution of
the n training sets more closely match the original DTr than
entity sampling by ensuring sampling without replacement(
Dn

Tr

⋂
Dn+1

Tr =∅ ∀n
)
.

Evaluation procedure: The evaluation task is to predict



complete triplets from incomplete ones in test splits Dn
Te,

i.e., predict h given (r, t) or t given (h, r). To perform
triplet prediction, each test triplet (h, r, t) is first corrupted by
replacing the head (or tail) entity with every other possible
entity in the current session En. Then, to avoid underesti-
mating the embedding performance, we remove all corrupted
test triplets that still represent a valid relationship between
the corresponding entities; this is known as the “filtered”
setting in the literature [18]. Last, scores are computed for
each test triplet and its (remaining) corrupted triplets using
the scoring function f(h, r, t) (defined below), then ranked
in descending order.

Recall that we consider two knowledge graph embed-
ding representations to show the generality of our meth-
ods: TransE and Analogy. TransE represents relationships
as translations between entities, i.e., vh + Wr = vt [18].
It uses the scoring and margin ranking loss functions in
Equations 5 and 6, where [x]+ = max(0, x), γ is the margin,
and (h′, r, t′) are corrupted triples in a corrupted knowl-
edge graph G′. Embeddings are subject to normalization
constraints (i.e. ||ve||2 ≤ 1∀ e ∈ E and ||Wr||2 ≤ 1 ∀ r ∈ R)
to prevent trivial minimization of L by increasing entity
embedding norms during training.

f(h, r, t) = ||vh + Wr − vt||1 (5)

L =
∑

(h,r,t)∈G,
(h′,r,t′)∈G′

[f(h, r, t) + γ − f(h′, r, t′)]+ (6)

Analogy, on the other hand, represents relationships as
(bi)linear mappings between entities, i.e., v>h Wr = v>t [19].
It uses the scoring and negative log loss functions in Equa-
tions 7 and 8 where σ is a sigmoid function, y is a label
indicating whether the triple is corrupted, and G′ is the
corrupted knowledge graph. Additionally, the linear map-
pings (i.e. relations) are constrained to form a commuting
family of normal mappings, i.e., WrW>r = W>r Wr ∀ r ∈ R
and WrWr′ = Wr′Wr ∀ r, r′ ∈ R, to promote analogical
structure within the embedding space.

f(h, r, t) = 〈v>h Wr, vt〉 (7)

L =
∑

(h,r,t,y)∈G,G′
−logσ(y · f(h, r, t)) (8)

Evaluation measures: We build on existing measures
to characterize each of our CKGE methods. We consider
different factors important for robotics applications modeling
semantic knowledge, e.g., inference, memory usage, and
learning efficiency. In addition to the only measure provided
in prior CKGE work [14] (i.e. inference performance), we
report seven other robotics-oriented metrics cataloged in [17]
that measure unique aspects of continual learning algo-
rithms. Specifically, for inference performance, we consider
the mean reciprocal rank of correct triplets (MRR) and
the proportion of the correct triplets ranked in the top 10
(Hits@10). During each learning session, we compute the
evaluation measures for the test sets of all learning sessions
to characterize the effect of learning on prior, current, and
future learning sessions. During the nth learning session of
N total sessions, the two training-test inference performance

matrices M ∈ RN×N (for MRR and Hits@10) are used to
compute four measures that summarize accuracy and forget-
ting across learning sessions: (i) Average accuracy (ACC)
measures the average accuracy across learning sessions—
Equation 9; (ii) Forward Transfer (FWT) measures zero-shot
learning in future sessions by transferring weights learned
in prior session(s)—Equation 10; (iii) Backwards Transfer
(+BWT) measures the improvement over expected perfor-
mance of a prior learning session as a result of learning in
future sessions—Equation 12; and (iv) Remembering (REM)
measures how performance in a learning session degrades as
a result of learning in subsequent sessions—Equation 13.

ACC =

∑N
i≥j Mi,j

N(N+1)
2

(9) FWT =

∑N
i<j Mi,j

N(N−1)
2

(10)

BWT =

∑N
i=2

∑i−1
j=1(Mi,j −Mj,j)
N(N−1)

2

(11)

+BWT=max(0,BWT) (12) REM=1−|min(0,BWT)| (13)

Other measures important for robotics applications that lever-
age semantics are space complexity and learning speed [17].
We capture space complexity for each CKGE method using
Model Size (MS) and Samples Storage Size (SSS) mea-
sures [17]. MS measures the growth in memory usage U for
model parameters θ across learning sessions for a particular
method—Equation 14. Samples Storage Size (SSS) measures
the growth in memory usage U for stored samples SS across
learning sessions as a proportion of the total number of
training samples for the task, i.e., DTr, in Equation 15.
For learning speed, we use the Learning Curve Area (LCA)
measure [17], which we modify to range between zero and
one (like other measures). For a performance measure m,
it computes the area covered by the learning curve of the
learning method up to the best measured performance m∗

at time t as a proportion of the area achieved by perfect
zero-shot learning (Equation 16).

MS=min(1,

∑N
.E
U(θ1)
U(θi)

N
) (14)

SSS=1−min(1,

∑N
i=1

U(SSi)
U(DTr)

N
) (15)

LCA=

∫ t
0
mdm

m∗ × t (16)

Software implementation: Please see supplementary ma-
terial2 for details about the tuning of hyper-parameters of
CKGE methods, each knowledge graph embedding repre-
sentation used for evaluation, and evaluation datasets, exper-
iments, and results that are omitted here for brevity.

V. EXPERIMENTAL RESULTS

Results reported in this section are the average of five test
runs in each experimental scenario; statistical significance
is tested using repeated-measures ANOVA and a post-hoc
Tukey’s test. Any mention of ‘significance’ implies statistical
significance at 95% significance level (i.e. p < 0.05).

2https://github.com/adaruna3/continual-kge



In addition to the CKGE methods, we considered two
additional methods that served as upper and lower bounds
(i.e., baselines) for the expected inference performance of
the CKGE methods. Batch represents the inference upper
bound because it can store all prior examples to train a
new embedding in each learning session. Finetune represents
the lower bound because it fine-tunes the embedding with
examples only from the current learning session and has no
means to prevent catastrophic forgetting.

Benchmark evaluations: Figure 2a summarizes the re-
sults of experiments using benchmark knowledge graph
datasets of Table I (WN18RR, FB15K237), where the range
of each measure is [0, 1] and larger values are better.
Although DGR significantly outperforms other methods in
terms of inference (i.e., using ACC and FWT), there are
insights and trade-offs to consider based on other factors.
• Figure 2b shows that DGR has a significantly lower

(a)

(b)

(c)

Fig. 2: Measures averaged for all datasets in Table I and graph
embedding representations in Section IV. Hits@10 used for ACC,
FWT, +BWT, and REM. Best viewed in color.

learning speed (based on LCA) than the other methods
since a new generative model must be trained in each
learning session. If the number of epochs to train the
generative model are ignored, DGR’s LCA is compara-
ble to Batch (DGR′ in Figure 2b) but still significantly
lower than the regularization techniques (L2R and SI).

• Figure 2c indicates that methods with good inference
performance also tend to have higher model memory
growth (i.e., MS measure); among the methods with sig-
nificantly better inference performance than Finetune,
L2R has the smallest MS followed by SI and DGR.

• Since they regularize prior embeddings, L2R and SI
initially perform better than DGR, as does the Batch
baseline, as seen in the Hits@10 plots for each method
at the start and end of each learning session (Figure 3).

• Figures 2 and 3 indicate that the CKGE methods based
on architecture modification (i.e., PNN and CWR) have
significantly lower inference performance than Fine-
tune in all experiments. The difference in performance
between PNN and the regularization-based methods
shows the importance of flexibility over prior concepts
for CKGE. Also, CWR’s poor inference performance
highlights the challenges of directly manipulating the
embedding space because, although CWR can learn
TE well in isolation, CE is quickly corrupted by the
averaging performed to merge embeddings.

Service robotics evaluation: We constructed three evalu-
ation scenarios using the AI2Thor knowledge graph dataset
in Table II. Each scenario corresponds to a different class
of semantics-driven robotics applications. The first scenario,
Unconstrained in Figure 4a, corresponds to a robot that has
access to all prior training examples at training time. More
generally, this could represent robots with ready access to
cloud services for data storage and processing. However,
such a scenario may be unfeasible in some applications due
to hardware constraints or security concerns. Our second
scenario, Data Constrained in Figure 4b, represents robots

Fig. 3: Hits@10 from initial (bright) to final (transparent) epoch.
Black errors bars indicate standard deviation. L2R and SI perform
better than DGR in the initial epoch, but DGR outperforms in the
final epoch after the first learning session. Best viewed in color.
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Fig. 4: Semantics-driven robotics application scenarios: (a) Unconstrained; (b) Data Constrained; and (c) Time and Data Constrained. In
each line plot, shading indicates standard deviation. Best viewed in color.

with access to limited training examples, e.g., only from
the current learning session (Dn

Tr); this could be due to
storage constraints or dynamic domain changes. The final
scenario, Time and Data Constrained in Figure 4c, mimics a
mobile robot (or drone) operating under resource constraints;
the robot only has access to training examples for the
current learning session and has limited time to update the
knowledge graph embedding. For simplicity, we limited the
number of training epochs in each learning session to 100.
The ranges of each measure are in [0, 1] and larger values are
better. The results from each scenario provide key insights
about the choice of the CKGE method:

• In an unconstrained scenario (Figure 4a), such as one
in which a robot might have access to a cloud compute
service, Batch learning is the best choice despite its
significantly lower sample efficiency (SSS) and learning
speed (LCA) because it provides significantly higher
ACC and FWT compared with other methods.

• In a data constrained scenario (Figure 4b), e.g., the
robot can only update its semantic representation in-
termittently using limited on-board hardware. Batch’s
inference performance collapses because prior obser-
vations are unavailable. Given these constraints, DGR
is the best choice, with much better ACC and FWT
than other methods because it approximates Batch in
the unconstrained scenario. However, DGR incurs a
significant computational cost to train the generative
model, resulting in a significantly lower LCA value.

• In a data and time constrained scenario (Figure 4c), e.g.,
the robot is updating its own semantic model on-board

during a task, DGR is a poor choice because there is not
enough time to sufficiently train the generative model.
L2R and SI are better choices; SI with Analogy and L2R
with either graph embedding offer significantly better
inference performance than Finetune and significantly
better LCA than Batch. Compared with SI, L2R’s
memory growth (MS) is significantly lower.

VI. CONCLUSION

Knowledge graph embeddings are increasingly being used
as semantic representations in robotics applications, but it
is difficult to update these representations incrementally.
This paper introduced five representative continual learning-
inspired methods for continual knowledge graph embedding
(CKGE). We also introduced a heuristic sampling strategy
and generated CKGE datasets based on benchmark knowl-
edge graphs and a knowledge graph for the service robotics
domain. Furthermore, we identified and built on measures
for evaluating continual learning in robotics. We evaluated
our embedding-generic methods on two knowledge graph
embedding representations. Experimental evaluation using
the benchmark knowledge graphs provided key insights char-
acterizing the use of our CKGE methods in terms of factors
such as inference, learning speed, and memory requirements.
Our evaluation using the service robotics domain knowledge
characterized the use of CKGE methods in three different
classes of semantics-driven robotics applications. Future
work will further investigate the adaptation of continual
learning principles for CKGE in robot tasks that require
semantic knowledge representations, including data from
physical robots in complex, dynamic domains.
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