
Sequence-Agnostic Multi-Object Navigation

Nandiraju Gireesh∗1, Ayush Agrawal∗1, Ahana Datta∗1, Snehasis Banerjee1,2, Mohan Sridharan3

Brojeshwar Bhowmick2, Madhava Krishna1

1Robotics Research Center, IIIT Hyderabad, India
2TCS Research, Tata Consultancy Services, India

3Intelligent Robotics Lab, University of Birmingham, UK

Abstract— The Multi-Object Navigation (MultiON) task re-
quires a robot to localize an instance (each) of multiple object
classes. It is a fundamental task for an assistive robot in a
home or a factory. Existing methods for MultiON have viewed
this as a direct extension of Object Navigation (ON), the task of
localising an instance of one object class, and are pre-sequenced,
i.e., the sequence in which the object classes are to be explored
is provided in advance. This is a strong limitation in practical
applications characterized by dynamic changes. This paper de-
scribes a deep reinforcement learning framework for sequence-
agnostic MultiON based on an actor-critic architecture and a
suitable reward specification. Our framework leverages past
experiences and seeks to reward progress toward individual as
well as multiple target object classes. We use photo-realistic
scenes from the Gibson benchmark dataset in the AI Habitat
3D simulation environment to experimentally show that our
method performs better than a pre-sequenced approach and a
state of the art ON method extended to MultiON.

Index Terms— Deep reinforcement learning, Multi-object
navigation, Assistive robot, Cognitive Robotics.

I. INTRODUCTION

Consider the home environment in Figure 1 with instances
of object classes such as bed and toilet in different rooms.
A core task for an assistive robot in such an environment
is to locate instances of specific object classes. This Multi-
Object Navigation (MultiON) task [2] is a generalization of
the Object Goal Navigation (ON) task [3], [4] that requires
a robot to find an instance of a single object class. Such ON
and MultiON tasks arise in many practical applications.

Humans perform MultiON tasks with seemingly little
effort. For example, a human going for a walk may need
a pair of socks, their house keys, and an umbrella. To locate
these objects, they build on prior experience in this and other
related (home) environments to explore a series of locations
likely to contain one or more of these objects. Also, they
try to concurrently minimize the distance to all target object
classes and adapt their exploration based on observations,
e.g., if keys are observed unexpectedly on top of the cabinet
while searching for socks, the human will stop and confirm
whether these are the house keys. State of the art methods for
MultiON, on the other hand, focus on ON tasks or perform
Pre-sequenced MultiON (PSM) in which the robot is given
the sequence in which the target object classes are to be
explored [2]. For example, the robot in Figure 1 (left) is

*Denotes equal contribution

given the sequence {chair, toilet, couch}. It first searches
for and finds a chair; although it spots a couch as it moves
near the chair to confirm its location, it then searches for a
toilet (second object class in the sequence) before coming
back to confirm the location of the couch seen earlier.

Inspired by insights from human cognition, we present
a framework for Sequence Agnostic MultiON (SAM); the
robot is neither provided nor forced to compute a global
order in which it locates instances of the target object
classes. Instead, the robot explores likely locations of the
target objects and automatically adapts its exploration based
on observations. In Figure 1(right), for example, the robot
observes a chair and a couch nearby. It first confirms the
location of the couch before confirming the chair’s location,
then explores further to locate a toilet; the distance traveled
and the task completion time are substantially less compared
with PSM in Figure 1(left). Specifically, our framework
makes two key contributions:

1) Instead of computing the globally optimal sequence
of trajectories by evaluating all possible paths through
locations in the domain, the robot builds on past ex-
perience in environments with a similar distribution of
regions and objects, greedily choosing a series of ‘long
-term goals’ in an attempt to concurrently minimize the
distance to an instance of all target object classes.

2) Extends our previous work on ON [5] to develop
a deep reinforcement learning (RL) framework for
SAM, introducing a novel reward specification and
adapting the actor-critic network to reward concurrent
progress to instances of multiple object classes, instead
of rewarding progress towards identifying an instance
of one object class only.

We experimentally evaluated our framework through abla-
tion studies, and quantitative and qualitative comparisons
with relevant baselines using photo-realistic scenes from the
Gibson benchmark dataset in AI Habitat, a 3D simulation
environment [6]. We computed five standard performance
measures over experimental trials involving different num-
ber of object classes. These experiments demonstrated the
significantly better performance provided by our framework
compared with the use of a predetermined sequence of object
classes, and with two other methods for selecting long-
term goals: random, and a state of the art deep RL method



: bed : chair : couch : dining : toilet : sink
Fig. 1: Example trajectories of the same episode when agent traverses in Pre-Sequenced MultiON (PSM) and Sequence
Agnostic MultiON (SAM). In this particular episode, the goal objects are specified as {chair, toilet, couch}. Paths taken by
PSM and SAM are shown in red and blue. Semantic annotations for the Gibson Tiny split [1] has been used here.

for ON [4] extended to MultiON. In particular, our SAM
framework provided ≈ 50% reduction in the number of time
steps and in path length compared with a PSM baseline.

II. RELATED WORK

We review related work in Embodied AI tasks, single
object search tasks, and multi-object search tasks.

Embodied AI tasks. Data sets containing 3D scenes of
indoor environments have become readily available, e.g.,
Matterport3D [7], Gibson [8], and Habitat-Matterport 3D [9].
These datasets get loaded in AI simulators like Habitat [6]
and GibsonEnv [8], and support the exploration of problems
such as: (a) PointGoal [10], [11], which requires a robot
to move to a specified point location in the domain; (b)
ObjectGoal [4], [5], [12], [13], which requires a robot to
find a target object; and (c) Visual Language Navigation [14],
which requires a robot to navigate based on complex instruc-
tions and scene descriptions.

Object search tasks. The aim of object search tasks (e.g.,
Object Navigation, ON) is to navigate to an instance of a spe-
cific target object class in a previously unseen environment
as quickly as possible. End-to-end reinforcement learning
methods are the state of the art for mapping pixels directly
to actions suitable for accomplishing this task [3], [15].
These methods find it difficult to generalize to previously
unseen scenarios since they do not build a representation
of the environment. Methods that seek to promote better
generalization construct an allocentric map that encodes
semantic priors [4], [16]–[18].

Multiple object search tasks. The goal of the MultiON
challenge [2] is for a robot to localize an instance (each) of
more than one object class. The original challenge descrip-
tion introduced colored cylinders in the Habitat environment,
with only one instance of each object class, and provided the
sequence in which instances of the target object classes were
to be localized. This reduced MultiON to a fixed sequence
of ON tasks, which we refer to as pre-sequenced MultiON
(PSM). Methods for PSM have predominantly developed

and evaluated different map representations and memory
architectures. For example, the original paper on MultiON
explored NoMap, Oracle Map, and Learned Map agents
under the assumption of noiseless pose estimation [2]. Also,
their RL policy rewarded the agent’s progress toward, as well
the localization of, an instance of the target object class under
consideration. Another paper sought to decouple mapping
from localization, with the policy being a combination of
exploration and moving towards a particular object class
instance [19]. There has also been work exploring the role
of auxiliary tasks in improving the navigation performance,
specifically by taking into account object instances that had
already been observed while executing the policy [20].

In contrast to existing work, we allow more than one in-
stance of each object class, consider naturally-occurring ob-
ject classes in the Gibson indoor scenes instead of artificially-
induced objects. We also relax the strong limitation imposed
by the PSM formulation, focusing instead on Sequence-
Agnostic MultiON. We do so by adapting our prior deep
network architecture for ON [5] to consider embeddings of
additional inputs and a novel reward specification.

III. PROBLEM FORMULATION AND FRAMEWORK

This section describes the Sequence-Agnostic MultiON
(SAM) task and our framework.

A. Task Description

In each episode of SAM, the robot must locate an instance
(each) of a set G of one or more target object classes in
the environment. The environment consists of at least one
(and often two or more) instance(s) of each object class Gi.
At each timestep t in the episode, the robot receives: (a)
egocentric RGB and depth observations of the scene within
the robot’s view; (b) the robot’s pose in the domain; and (c)
an one-hot encoding for each object class (out of N = 16
classes) whose instance is to be located. We use k-ON to
refer to an episode with k target object classes. The robot
does not have any prior map of the domain or the sequence



Fig. 2: Our framework consists of three main components. The Semantic Mapping module uses odometry pose readings
and RGB-D observations to create an allocentric semantic map of the local environment. The Encoder Network extracts
high-level feature embeddings from the semantic map and encoding of target classes. These features are used to train an
actor-critic network that outputs a long-term goal to search and find an instance of the target object classes. Analytical
planners used by the deterministic Local Policy compute low-level navigation actions to reach a given long-term goal.

in which the target object classes are to be explored; if such
a sequence is provided, it is a PSM task. An object class
is considered to be found when the robot navigates close
(ds ≤ 1m) to an instance of the class; if no such instance is
found within a maximum number of timesteps, the episode is
said to be unsuccessful. The robot can execute one of these
four actions: {move-forward, turn-left, turn-right, stop}. The
move-forward action moves the robot forward by 0.25m,
whereas the turn actions cause the robot to rotate by 30◦

in the appropriate direction (left, right).

B. Proposed Framework

As stated earlier, we pursue a deep RL formulation of
SAM and present a modular approach based on the actor-
critic architecture. Figure 2 provides an overview of this
framework, which extends our prior work on ON [5], and
comprises three modules:

1) Semantic Mapping: builds a map of the domain
(i.e., metric arrangement of space with obstacles and
empty space) from the RGB-D (RGB and depth) data
and pose observations. Robot uses the map to localize
itself, and processes the RGB-D data to identify and
localize specific object instances in this map.

2) Encoder Network: Receives as input the semantic
map (above) and the encodings of target object classes,
and extracts high-level features. These feature are sent
to an Actor-Critic network that repeatedly computes a
‘long-term goal’, i.e., a region the robot should travel
to in search of an instance of a target object class.

3) Deterministic Local Policy: Uses analytical planners
to compute the low-level navigational actions that need
to be taken to reach the current long-term goal region.

The semantic map constructed by the Semantic Mapping
module is a matrix of dimension K×M×M . This contains
K channels of M × M size maps where K = C + 2
and C is total number of semantic categories. The first
two channels contain the obstacles and the explored areas
respectively while the remaining channels contain the C
object categories. We use the mapping procedure from a
state-of-the-art method for ON [4]. A pretrained Mask R-
CNN model [21] is used to estimate the semantic categories

from the observed RGB information. The depth observations
are used to compute point clouds and each point in the point
cloud is associated with the estimated semantic categories.
With the help of differentiable geometric computations over
each point in the point cloud, we build a voxel representation
that is then converted into a semantic map of dimension
(C + 2)×M ×M . We also use random shift augmentation
on the predicted semantic map to promote generalization.

The encoder network takes as input the estimated semantic
map from the previous module, the robot’s current and past
locations, the objects found and localized so far, and the
encoding of the target object classes. The one-hot encoding
of multiple object classes was not considered in our prior
work [5]. High-level feature embeddings are extracted by the
encoder which are then used by the actor network to obtain a
long-term goal, i.e., the next location the robot should move
for the target object search. The encoder network comprises 4
convolutional layers with 3×3 kernels and 32 channels [22].
ReLU activation is applied after each convolutional layer. A
stride length of 1 is used everywhere. The output of these
layers is passed to a fully-connected layer normalized by the
LayerNorm operation [23]. Also, a hyperbolic tangent non-
linear transform is applied to the 50-dim output of the fully-
connected layer. The weight matrix of the fully connected
layer and the convolutional layers is initialized by orthogonal
initialization [24] with bias set as zero.

The output of the encoder network is used by the actor-
critic network. The actor and critic components work with
the same weights in the convolutional layers but have
separate encoders. The weights in the convolutional layers
are allowed to be updated only by the optimizer in the
critic network. We employ the clipped double Q-learning
method [25] for the critic. In this method, each Q-function
is parameterized as a three-layer multi-layer perceptron
(MLP) with ReLU activations after each layer except the
last one. All the transition states are stored using a replay
buffer. The transition states include the semantic map, target
object classes, action, reward, next semantic map, and the
subsequent target object classes. A set of transition states
are obtained from the replay buffer and, along with the
augmented semantic map, given as input to the encoder and



actor-critic networks. Every 25 timesteps, a new long-term
goal is sampled. Note that both the actor and critic networks
are used, and their parameters are revised, during training.
Once trained, only the actor network used for testing; for
ease of understanding only the actor network is labeled in
Figure 2. The specification of the reward function, a key
contribution of this paper, is described in Section III-C.

When a long-term goal is provided by the actor-critic
network, the local policy module uses the Fast Marching
Method [26] to guide the robot to this region. Specifically,
the obstacle channel from the semantic map generated in the
semantic mapping module is used to compute the shortest
path from the current location to the current long term goal.
The robot then computes the low-level navigational actions
to navigate along the computed shortest path.

C. Reward Function

A key contribution of this work is the reward specification
used to train our deep network architecture. Recall that our
objective is to mimic the intuitively appealing sequence-
agnostic behavior of humans engaged in MultiON tasks. In
order to do so, we identified three desired characteristics that
we wanted our reward function to capture:

1) We wanted to encourage the robot to find an instance
of each target object class.

2) We wanted to motivate the robot to concurrently reduce
the distance to an instance of more than one object
class. However, we did not want it compute the glob-
ally optimal exploration sequence by considering all
possible sequences because that could be computation-
ally intractable in practical deployment.

3) We wanted to encode non-procrastination, i.e., mini-
mize the time spent looking for object instances.

Based on these desired characteristics, we formulated the
reward function as follows:

Reward = Rsub-goal + αprocess ∗Rprocess + CNR (1)

where Rsub−goal is the reward for achieving a ‘sub-goal’,
i.e., an instance of one of the target object classes; Rprocess

is the process reward; and CNR is the negative reward, i.e.,
cost (currently −0.01) accumulated at every timestep. The
value of CNR was set such that the penalty accrued over
a typical episode was small relative to the other parts of
the reward function. We used scaling factor αprocess = 0.1
(determined experimentally) to vary the relative influence of
Rprocess on the overall behavior of the robot.

1) Sub-goal reward: Rsub-goal is the standard reward the
robot receives when it localizes an instance of any target
object class. To ensure that this reward is only received at
the corresponding timestep, we modeled it as:

Rsub−goal = 1sub−goal ∗ rsub-goal (2)

where 1sub−goal is an indicator function that is equal to
1 iff the robot reaches an instance of one of the target
object classes, and rsub−goal is the instantaneous real-valued

reward. This can be restated as:

Rsub−goal =

{
rsub−goal if a sub-goal is reached

0 otherwise

}
(3)

We experimentally set rsub−goal = 2 to be relatively higher
than the other two parts of our reward, in order to enable the
robot to reach the sub-goal with higher priority.

2) Process reward: We recognized that this part of the
reward function may require a trade-off with the first part of
the reward (Rsub-goal), e.g., focusing on a shortest path to a
particular region may help the robot obtain rsub-goal as soon as
possible but it may make sense to deviate from this region to
another region nearby if an instance of another target object
class is likely to be found there.

We first used the known (i.e., ground truth) location of
object instances during training to compute the distance
to the closest instance of each target object class at each
timestep. We used this information to compute, at each
timestep t, the total decrease in the geodesic distance to the
nearest instance of each target object class gi:

dt =

N∑
i

(dtgi,t−1 − dtgi,t) (4)

where dtgi,t refers to the shortest distance to an instance of
object class i at timestep t; and N is the number of target
object classes whose instance remains to be localized in this
episode. Once dt is computed, Rprocess is computed as:

Rprocess =

{
n
N + dt if dtg of n classes decreases
dt otherwise

}
(5)

where the additional reward received depends on the fraction
of the target object classes to whose instances the robot was
able to reduce its distance during the training episode. This
part of the reward thus encourages the robot to greedily
attempt to concurrently localize more than one object based
on prior experience in similar environments and on the
observations received in the current episode. Note that the
reward function’s components remain the same irrespective
of the number of target object classes. Experimental results
(below) demonstrate the benefits of this reward specification
and our SAM framework.

IV. EXPERIMENTAL SETUP

We evaluated our SAM framework’s capabilities using
photo-realistic benchmark scenes (3D reconstructions of
home environments) from the Gibson dataset in the AI
Habitat simulator [6]. We used the standard ObjectNav
Challenge’s 25 scenes during training by setting up ≈ 1000
episodes (total) of k-ON task, randomly selecting k ∈ [2, 3]
target object classes in each episode. The robot’s starting
position is randomly sampled from navigable points in the
environment in each episode. For testing, we generated
datasets for 2-ON and 3-ON tasks using five scenes from
the Gibson dataset that were not considered during training.
This testing dataset included 200 episodes for each of the
five scenes, resulting in a total of 1000 episodes. We did
not explore k-ON tasks for k > 3 in this dataset, as the



number of scenes containing one or more instances of the
target object classes were less for higher k.

As stated in Section III-A, the robot’s observations were
in the form of 4×640×480 RGB-D images, and the success
threshold ds = 1m. The maximum episode length was 1000
steps and 600 for the 3-ON and 2-ON episodes respectively.
The target object classes were those considered by the state
of the art approaches for ON [4]: ‘chair’, ‘couch’, ‘potted
plant’, ‘bed’, ‘toilet’ and ‘tv’. We experimentally evaluated
the following hypotheses about our framework:
H1: Our SAM framework traverses shorter paths and takes

fewer timesteps when compared with PSM.
H2: Our SAM framework provides better long-term goals

than the state of the art object navigation baseline
extended to multi-object settings.

We considered three baselines for evaluation:
1) Random: The robot pursued the SAM task (i.e., no

fixed object class sequence) but it chose an action
randomly in each timestep of each episode.

2) PSM: The robot was given an order (i.e., sequence) in
which it had to explore the target object classes; the
underlying framework was the deep RL approach we
used for ON in our prior work [5].

3) Multi-Semantic Exploration (M-SemExp): The
robot pursued the SAM task but the underlying deep
RL method extended a state of the art method devel-
oped for ON [4] to the MultiON setting. In particular,
reward was specified as the total decrease in geodesic
distance to the nearest instance of each object gi.

RSemExp = αSemExp ∗
N∑
i

(dtgi,t−1 − dtgi,t) (6)

where dtgi,t is the shortest distance to an instance of
object class gi at timestep t; N is the number of target
object classes whose instance remains to be localized.

We have considered five standard performance measures:
(i) Success (%): Fraction of episodes in which the robot
successfully localizes an instance of each target object class
within the maximum number of steps allowed.
(ii) Sub-success (%): Ratio of the number of target object
classes whose instance has been localized to the total number
of target object classes in an episode.
(iii) Timesteps: The number of timesteps taken to success-
fully complete a particular episode.
(iv) Global Path Length (m): The length of the path (in
meters) traversed by the robot to successfully identify an
instance of each target object class in an episode.
(v) Global-SPL (G-SPL, %): Ratio of the globally mini-
mum path length (g) and the length of the actual path taken
by our robot in a particular episode; g is computed as the
shortest path that visits one instance of each target object
class.

G-SPL = (success) ∗ g

max(g, p)
(7)

where p is the length of the actual path traversed by the robot
to localize an instance of each target object class. Further-
more, we included some qualitative results (see below).

Scene Name Timesteps ↓ Global Path Length (m) ↓

PSM SAM PSM SAM

Collierville 242 122 29.53 16.16
Corozal 336 179 46.23 27.28
Darden 248 117 31.43 16.08
Markleeville 272 140 35.41 18.87
Wiconisco 389 224 52.81 33.94

TABLE I: Our SAM framework provides significantly better
performance than the PSM framework; with numbers aver-
aged over 200 paired episodes for each of the five scenes.

Method
Success (%) ↑ Sub-success (%) ↑ G-SPL (%) ↑

2-ON 3-ON 2-ON 3-ON 2-ON 3-ON

Random 3.3 4.7 11.5 14.2 0 0
M-SemExp 60.5 61.7 73.1 76.6 30.5 29.8
SAM (ours) 70.7 72.3 82.5 86.9 39.3 39.3

TABLE II: Our SAM framework provides significantly better
performance than the Random and M-SemExp baselines on
three key measures; results averaged over 200 episodes of
each of the five testing scenes.

V. EXPERIMENTAL RESULTS

This section describes the qualitative and quantitative re-
sults of the experimental evaluation of our SAM framework.

Qualitative Results: Figure 3 shows a qualitative compar-
ison of our SAM framework with the PSM baseline in the
form of snapshots for a specific episode. Recall that PSM
is provided the sequence {couch, tv, toilet} in which the
target object classes are to be explored whereas only the
target object classes are known in the SAM formulation.
With our SAM framework, the robot quickly moves toward
and localizes a toilet in timestep 21, a couch by timestep 72,
and a TV by timestep 81. With PSM, on the other hand, the
robot takes more than 200 timesteps to complete this task.
These results partially support H1.

Quantitative Results: We then evaluated H1 quantitatively,
comparing our SAM framework with the PSM baseline, with
the results averaged over the successful episodes in 200
paired episodes of five scenes summarized in Table I. Note
that both frameworks had the same environment and the same
robot starting position in each paired episode. To facilitate
a fair comparison, we first ran each episode with SAM, i.e.,
with no constraint on the order in which an instance of the
target object classes is to be found. The order in which
the robot ended up localizing the target object classes was
then provided as the target sequence for the PSM approach.
As shown in Table I, our SAM framework provided an
≈ 50% reduction in the average number of timesteps and
the average path length compared with the PSM framework.
This improvement in performance with our SAM framework
was strongly influenced by our design of the reward function
for the deep network architecture; see Section III-C. These
results strongly support H1.

To evaluate H2, we compared our SAM framework with
the Random and M-SemExp baselines; recall that the latter



Fig. 3: Qualitative comparison of the performance of our SAM framework (left) with PSM (right) in an episode of the
MultiON task with three target object classes (couch, tv, toilet). Our framework results in a smaller number of steps.

Timesteps M-SemExp SAM (our method)

Success (%) Sub-success (%) Success (%) Sub-success (%)

600 60.5 73.1 70.7 82.5
300 49.6 67.2 60.3 77.1
200 34.7 56.5 48.6 70.2

TABLE III: 2-ON Task: Comparison of our SAM frame-
work with the M-SemExp baseline for different values of the
maximum number of timesteps allowed in each episode.

Timesteps M-SemExp SAM (our method)

Success (%) Sub-success (%) Success (%) Sub-success (%)

1000 61.71 76.6 72.3 86.9
500 41.34 64.6 63.7 84.3
300 32.49 55.0 45.3 76.4

TABLE IV: 3-ON Task: Comparison of our SAM frame-
work with the M-SemExp baseline for different values of the
maximum number of timesteps allowed in each episode.

was obtained by adapting a state of the art deep RL frame-
work for ON [4]. Table II summarizes the corresponding
results for 2-ON and 3-ON tasks. We observed that our
SAM framework provided substantially better performance
in all three measures considered. Also, performance im-
proved when the number of target object classes increased
from 2-ON to 3-ON because of the associated increase in the
maximum number of timesteps and our framework’s attempt
to concurrently reduce the distance to an instance of all target
object classes. These results strongly support H2.

Ablation studies: Next, we performed ablation studies to
further explore the effect of the maximum number of allowed
timesteps on the performance of our framework compared
with the M-SemExp baseline. Specifically, we varied the
maximum permissible number of timesteps from 200-600
for the 2-ON task, and from 300-1000 for the 3-ON task,
with the results summarized in Table-III and Table-IV respec-
tively. We observed that the degradation in performance as
the maximum number of timesteps is reduced was less with
our framework than with M-SemExp. These results further
reinforced the fact that objects are localized in fewer steps
as a result of pursuing a sequence-agnostic approach, and
of encouraging the robot to concurrently reduce the distance

to an instance of multiple target object classes. Due to the
lack of varied objects in the existing data sets (i.e., scenes),
for 4-ON, a subset of the data was used and our framework
still provided better results than the M-SemExp baseline. For
example, the success rate in 800 timesteps for the M-SemExp
baseline and our SAM framework were 61% and 64.6%
(respectively) for four target object classes. These results
provide further support for hypothesis H2.

VI. DISCUSSION AND FUTURE WORK

We described a deep reinforcement learning-based
framework for Sequence-Agnostic Multi-object Navigation
(SAM). Object Navigation (ON) methods search for an
instance of one object class, and state of the art methods
for Multi-Object Navigation (MultiON) are pre-sequenced
(PSM), i.e., they are given the order in which the target object
classes are to be explored. Our SAM framework extends our
prior deep (actor-critic) reinforcement learning framework
for ON [5], and includes a suitable reward specification
that encourages the desired sequence-agnostic operation. It
enables the robot to build on prior experiences in environ-
ments similar to the target environment, and to concurrently
(and greedily) reduce the distance to an instance of each
of the target object classes. Experimental evaluation using
realistic scenes from the Gibson dataset in Habitat 3D simu-
lation environment demonstrated a substantial improvement
in performance compared with PSM, a baseline that selected
actions randomly, and an extension of the SemExp method
for ON [4] to MultiON. Future work will explore more
complex environments and additional target object classes.
Furthermore, we will investigate the use of such a framework
on a physical robot assisting humans in practical applications
such as Telepresence [27].

REFERENCES

[1] I. Armeni, Z.-Y. He, J. Gwak, A. R. Zamir, M. Fischer, J. Malik,
and S. Savarese, “3d scene graph: A structure for unified semantics,
3d space, and camera,” in Proceedings of the IEEE International
Conference on Computer Vision, 2019, pp. 5664–5673.

[2] S. Wani, S. Patel, U. Jain, A. Chang, and M. Savva, “Multion:
Benchmarking semantic map memory using multi-object navigation,”
Advances in Neural Information Processing Systems, vol. 33, pp.
9700–9712, 2020.



[3] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and
A. Farhadi, “Target-driven visual navigation in indoor scenes using
deep reinforcement learning,” in International Conference on Robotics
and Automation, May 2017.

[4] D. S. Chaplot, D. Gandhi, A. Gupta, and R. Salakhutdinov, “Object
goal navigation using goal-oriented semantic exploration,” in Neural
Information Processing Systems, 2020.

[5] N. Gireesh, D. A. S. Kiran, S. Banerjee, M. Sridharan, B. Bhowmick,
and M. Krishna, “Object goal navigation using data regularized q-
learning,” in 2022 IEEE 18th International Conference on Automation
Science and Engineering (CASE), 2022.

[6] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Y. Zhao,
E. Wijmans, B. Jain, J. Straub, J. Liu, V. Koltun, J. Malik, D. Parikh,
and D. Batra, “Habitat: A Platform for Embodied AI Research,” in
International Conference on Computer Vision, 2019.

[7] A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Niessner, M. Savva,
S. Song, A. Zeng, and Y. Zhang, “Matterport3d: Learning from rgb-d
data in indoor environments,” International Conference on 3D Vision
(3DV), 2017.

[8] F. Xia, A. R. Zamir, Z.-Y. He, A. Sax, J. Malik, and S. Savarese,
“Gibson ENV: Real-world Perception for Embodied Agents,” in In-
ternational Conference on Computer Vision and Pattern Recognition,
2018.

[9] S. K. Ramakrishnan, A. Gokaslan, E. Wijmans, O. Maksymets,
A. Clegg, J. M. Turner, E. Undersander, W. Galuba, A. Westbury,
A. X. Chang, M. Savva, Y. Zhao, and D. Batra, “Habitat-Matterport 3D
Dataset (HM3D): 1000 Large-scale 3D Environments for Embodied
AI,” in Thirty-fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2), 2021.

[10] J. Ye, D. Batra, E. Wijmans, and A. Das, “Auxiliary Tasks Speed
Up Learning Point Goal Navigation,” in International Conference
on Robot Learning, ser. Proceedings of Machine Learning Research,
J. Kober, F. Ramos, and C. Tomlin, Eds., vol. 155, 16–18 Nov 2021,
pp. 498–516.

[11] E. Wijmans, A. Kadian, A. Morcos, S. Lee, I. Essa, D. Parikh,
M. Savva, and D. Batra, “Dd-ppo: Learning near-perfect pointgoal
navigators from 2.5 billion frames,” in International Conference on
Learning Representations, 2019.

[12] D. Batra, A. Gokaslan, A. Kembhavi, O. Maksymets, R. Mottaghi,
M. Savva, A. Toshev, and E. Wijmans, “Objectnav revisited: On
evaluation of embodied agents navigating to objects,” arXiv, vol.
2006.13171, 2020.

[13] S. Banerjee, B. Bhowmick, and R. D. Roychoudhury, “Object goal
navigation based on semantics and rgb ego view,” arXiv preprint
arXiv:2210.11543, 2022.

[14] S.-M. Park and Y.-G. Kim, “Visual language navigation: A survey
and open challenges,” Artificial Intelligence Review, vol. 56, no. 1,
pp. 365–427, 2023.

[15] A. Mousavian, A. Toshev, M. Fiser, J. Kosecka, A. Wahid, and
J. Davidson, “Visual representations for semantic target driven nav-
igation,” arXiv, vol. 1805.06066, 2019.

[16] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik, “Cog-
nitive mapping and planning for visual navigation,” in International
Conference on Computer Vision and Pattern Recognition, 2017.

[17] D. S. Chaplot, D. Gandhi, S. Gupta, A. Gupta, and R. Salakhutdinov,
“Learning to explore using active neural slam,” in International
Conference on Learning Representations, Apr 26-May 1, 2020.

[18] S. K. Ramakrishnan, D. S. Chaplot, Z. Al-Halah, J. Malik, and
K. Grauman, “Poni: Potential functions for objectgoal navigation with
interaction-free learning,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2022, pp. 18 890–18 900.

[19] J. Kim, E. S. Lee, M. Lee, D. Zhang, and Y. M. Kim, “Sgolam:
Simultaneous goal localization and mapping for multi-object goal
navigation,” arXiv preprint arXiv:2110.07171, 2021.

[20] P. Marza, L. Matignon, O. Simonin, and C. Wolf, “Teaching agents
how to map: Spatial reasoning for multi-object navigation,” arXiv
preprint arXiv:2107.06011, 2021.

[21] K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN,” in
IEEE International Conference on Computer Vision, Oct 2017.

[22] D. Yarats, I. Kostrikov, and R. Fergus, “Image augmentation is all
you need: Regularizing deep reinforcement learning from pixels,” in
International Conference on Learning Representations, 2021.

[23] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv,
vol. 1607.06450, 2016.

[24] A. M. Saxe, J. L. McClelland, and S. Ganguli, “Exact solutions to
the nonlinear dynamics of learning in deep linear neural networks,” in
International Conference on Learning Representations, 2014.

[25] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” in Proceedings of the AAAI conference on
artificial intelligence, vol. 30, no. 1, 2016.

[26] J. A. Sethian, “A fast marching level set method for monotonically
advancing fronts.” National Academy of Sciences, vol. 93, no. 4, pp.
1591–1595, 1996.

[27] A. Bhattacharyya, A. Sau, R. D. Roychoudhury, S. Banerjee, C. Sarkar,
P. Pramanick, M. Ganguly, B. Bhowmick, and B. Purushothaman,
“Teledrive: An intelligent telepresence solution for “collaborative
multi-presence” through a telerobot,” in 2022 14th International
Conference on COMmunication Systems & NETworkS (COMSNETS).
IEEE, 2022, pp. 433–435.


	Introduction
	Related Work
	Problem Formulation and Framework
	Task Description
	Proposed Framework
	Reward Function
	Sub-goal reward
	Process reward


	Experimental Setup
	Experimental Results
	Discussion and Future Work
	References

