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Abstract— Embodied agents assisting humans are often
asked to complete a new task in a new scenario. An agent
preparing a particular dish in the kitchen based on a known
recipe may be asked to prepare a new dish or to perform
cleaning tasks in the storeroom. There may not be sufficient
resources, e.g., time or labeled examples, to train the agent
for these new situations. Large Language Models (LLMs)
trained on considerable knowledge across many domains are
able to predict a sequence of abstract actions for such new
tasks and scenarios, although it may not be possible for the
agent to execute this action sequence due to task-, agent-, or
domain-specific constraints. Our framework addresses these
challenges by leveraging the generic predictions provided by
LLM and the prior domain-specific knowledge encoded in a
Knowledge Graph (KG), enabling an agent to quickly adapt
to new tasks and scenarios. The robot also solicits and uses
human input as needed to refine its existing knowledge. Based
on experimental evaluation over cooking and cleaning tasks in
simulation domains, we demonstrate that the interplay between
LLM, KG, and human input leads to substantial performance
gains compared with just using the LLM output.
Project website§: https://sssshivvvv.github.io/adaptbot/

Index Terms— Large Language Models, Knowledge Graph,
Human-in-the-loop Learning

1 INTRODUCTION

Embodied agents are being used in assistive roles in many
applications, aided in part by the availability of realistic
simulators [1]–[3]. Although such agents possess some prior
knowledge of domain objects and their attributes, they are
often asked to perform new tasks and operate in new scenar-
ios. For example, an agent preparing dishes in the kitchen
based on prior knowledge of some recipes and ingredients,
may be asked to prepare a new dish or clean the pantry.

Large Language Models (LLMs) trained on a large corpus
of data have demonstrated the ability to decompose a range
of tasks into a sequence of high-level (abstract) actions (i.e.,
sub-tasks) that implement the task [4]–[6]. For example, an
LLM can provide a sequence of sub-tasks for completing the
previously unseen task of preparing hot chocolate. However,
this sequence may involve incorrect steps, or reference
objects and actions that the agent does not have access to
in the kitchen under consideration.

The challenges mentioned above are partially offset by
the fact that an assistive agent usually has some prior
domain-specific knowledge in the form of objects, object
attributes, and action capabilities. State-of-the-art methods
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Fig. 1: For any given task, an LLM provides a generic sequence of abstract actions
that is refined using the domain-specific knowledge in a KG. If the sequence refers
to objects, attributes, or actions that cannot be resolved using the KG, or leads to
unexpected outcomes, human input helps refine or expand the KG.

build large datasets of such information for a given appli-
cation domain [7], or attempt to embed this knowledge by
repeatedly tuning deep networks [8]. However, such knowl-
edge is not readily available for many practical domains, and
modern data-driven methods make it difficult to reliably and
transparently revise the encoded knowledge over time. In a
departure from such methods, the framework described in
this paper seeks to leverage the complementary strengths of
LLMs, Knowledge Graphs (KGs), and human feedback—see
Figure 1. Our framework enables the assistive agent to:

1) Query an LLM to obtain a generic sequence of actions
(sub-tasks) to be executed to accomplish any given task.

2) Encode any prior domain-specific knowledge of object
types and attributes in a KG, using it to revise the LLM’s
output action sequence.

3) Use discrepancies between LLM output, KG, and ob-
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Fig. 2: Framework overview for cooking tasks: (a) Input Chain-of-Thought (COT) prompt contains target dish, available ingredients, and an example of input and output action
sequence (for task of making coffee), to obtain an output action sequence; (b) Any mismatch (e.g., in object classes, actions) between LLM output and KG are identified and
action sequence is revised if possible; (c) Agent attempts to resolve any remaining errors or unexpected outcomes by re-prompting LLM, with errors that persist being addressed
by soliciting human input and updating KG; (iv) Revised/corrected action sequence is executed.

servations of action outcomes to support human-in-the-
loop (HITL) refinement of the knowledge in the KG.

We illustrate and evaluate these capabilities in two differ-
ent classes of tasks: cooking and cleaning, demonstrating:
(a) substantial improvement in performance compared with
baselines that use just the LLM or even a combination of
LLM and KG for completing an assigned task; and (b) the
ability to adapt to new classes of tasks through incremental
knowledge refinement instead of elaborate tuning (e.g., of
LLMs) or encoding comprehensive knowledge.

The remainder of the paper is organized as follows. We
begin with a discussion of related work (Section 2), followed
by a description of our proposed framework (Section 3). We
then discuss the experimental set up and results (Section 4),
followed by the conclusions (Section 5).

2 RELATED WORK

We motivate our framework by discussing related work
in the use of LLMs, KGs, and HITL task decomposition.

LLMs and KGs for task decomposition: LLMs such
as GPT-4 [9], Gemma2 [10], and LLaMA3 [11] have ex-
perimentally demonstrated the ability to decompose abstract
tasks into sub-tasks [4]–[6], [12]–[14]. Frameworks such as
TaskBench [15] have compared fully automated processes
with those with human interventions, particularly for un-
familiar or "open-set" tasks [6], [16], [17]. Additionally,
methods such as ADaPT [18] have supported iterative ad-
justment of task complexity continuously based on real-
time feedback. In parallel, KGs have have been used to
model prior knowledge of objects and their attributes for
sequential task planning, e.g., for sequential task prediction
with graph CNN [19], action planning for robots in Industry
4.0 environments [20], and for generalizing to new (related)
environments [21]. Our framework builds on these ideas
by combining the (generic) prediction capabilities of LLMs
with the domain-specific knowledge encoded in a KG [22],
[23] for task adaptation in new environments [24].

Related task planning examples: The Functional
Object-Oriented Network (FOON) [25] encodes substantial

knowledge about cooking (e.g., ingredients and outcomes of
actions) in the form of task trees and using them for task
planning for cooking related dishes [7], [26]–[28]. In more
recent work, a fine-tuned GPT has been used to transform
generic recipe instructions into task trees, which are merged
and revised by comparing information stored in FOONs to
obtain the task tree used for execution [8]. These methods
use examples from the Recipe1M+ dataset [29] for tuning
and evaluation. Instead of tuning an LLM across classes of
tasks or training a knowledge base extensively for a particular
class of tasks, our framework supports incremental revision,
faster adaptation, and reliability. Our framework provides
the assistive agent limited (prior) knowledge of any specific
domain as a KG, enabling it to incrementally refine the KG
with new objects and actions as they are encountered, and to
correct errors by soliciting and using human feedback when
it is necessary and available.

Human-in-the-loop task decomposition: Human feed-
back has been used to enhance hierarchical task allocation
and robot task planning in complex environments [30],
[31]. Frameworks like TaskBench [15] and Reflexion [32]
leverage human feedback to iteratively decompose tasks,
making LLMs more effective in handling abstract tasks.
Hierarchical task structuring is crucial for handling complex,
multi-step task decomposition, especially in abstract problem
domains [33]. Instead of iteratively tuning LLMs (e.g.,
through prompts), which does not necessarily lead to correct
results, we combine the generic prediction capabilities of
LLM, real-time domain-specific KG updates [34], [35], and
human-in-the-loop feedback [36]–[40], allowing the system
to operate based on the available knowledge to perform new
classes of tasks while incrementally refining the knowledge.

3 PROBLEM FORMULATION AND FRAMEWORK
Figure 2 is an outline of our framework. In the motivating

example, an agent assisting in cooking tasks in a kitchen has
access to relevant objects and ingredients for many dishes
but it does not have the recipes. When asked to prepare any
particular dish, τi, the agent queries an LLM to obtain a
sequence of abstract actions (sub-tasks), i.e., ⟨a1, . . . , ami

⟩.
For example, the sequence for make an omelette includes



picking up the egg and breaking the egg over a skillet. This
sequence of abstract actions is checked against a KG with
some domain-specific information in the form of existing
objects and attributes that include the actions that can be
performed on some objects. The agent tries to resolve any
discrepancy between the LLM output and KG, e.g., KG
states there is no skillet or that an egg can only be cracked,
by finding replacements, e.g., crack the egg over a pan. If
the discrepancy is not resolved, or if executing the action
sequence does not provide the desired outcome, the agent
identifies relevant actions and solicits human input to refine
the KG, e.g., add knowledge of objects or their attributes,
and provides an action sequence to complete the task. The
agent is assumed to be able to execute these actions. We
describe out framework’s components below.

3.1 Generic Task Decomposition with LLM

In our framework, we use an LLM to decompose any
given task into a sequence of sub-tasks because LLMs have
demonstrated the ability to provide such a sequence of
abstract actions for many different tasks. Specifically, in the
motivating example, the LLM is prompted with information
about some domain objects, an example cooking task (make
coffee), and the corresponding action sequence (recipe) to
be executed—see Figure 2a. We experimentally evaluate the
use of different LLMs, as described in Section 4.1.

Since the sequence of sub-tasks predicted by the LLM is
based on many information sources, it may not be possible
to execute one or more of these actions. For example, in the
context of cooking tasks, the suggested ingredient may not be
available or the action may involve an incorrect choice of tool
(e.g., using a fork to cut vegetables). These situations can be
addressed in part by using prior domain-specific information,
which is encoded as described below.

3.2 Representing Domain-specific Knowledge with KG

Our framework uses a Knowledge Graph (KG) to encode
any prior information available to the agent. In the context
of cooking tasks, this includes knowledge of some classes of
ingredients (e.g., herbs, fruits, vegetables), receptacles (e.g.,
plates, bowls, countertop), and tools (e.g. knives, spoons),
which can be arranged hierarchically. It also encodes the
existence of some specific instances of these object classes
and their properties such as likely location(s) and the actions
they can be involved in (e.g., cutting, scooping, grinding).
We use the Resource Description Framework (RDF) format
to encode this information in two graph structures in Turtle
format (.ttl file)—see Figure 3:

1) State graph: models current state as Gs = (Is,Es),
where nodes Is are instances of object classes such as
ingredients and receptacles; and Es ⊆ Is × Ps × Vs

are edges such that (ij , p, vk) ∈ Es is a triple denoting
an attribute of ij ∈ Is in terms of value vk ∈ Vs of
predicate p ∈ Ps. For example, (apple1, obj_location,
fridge) and (apple1, is_sliced, true) express apple1’s
location and that it is sliced.

ex:onion rdf:type ex:object ;
ex:obj_name ’onion’ ;
ex:IsSliceable true ;
ex:Fryable true ;
ex:NeedsToBeCleaned true .

ex:onion rdf:type ex:object ;
ex:obj_name ’onion’ ;
ex:obj_location ex:fridge .
ex:sliced false ;
ex:IsFried false ;
ex:IsCleaned false .

Fig. 3: Example of a node onion in Gk (top) and Gs (bottom).

2) Attribute graph: encodes the known properties and
action capabilities of some object classes as Gk =
(Ik,Ek), where nodes Ik represent the classes and
edges Ek ⊆ Ik × Pk ×Vk represent class properties,
e.g., (apple, sliceable, true) implies apples can be sliced.

The available actions include moving, picking up, and
putting down objects; using tools; cleaning, toggling, slic-
ing, stirring, and mopping*. Such a KG can be learned
automatically based on information extracted from datasets
or sensor streams. The feasibility of any action/sub-task
in the sequence predicted by LLM is then checked using
Gk and Gs by generating suitable SPARQL queries. If the
predicted sequence of actions passes the KG-based check, it
is executed, changing Gs suitably.

3.3 Refining LLM output

If a mismatch is detected between the LLM output and
the KG, the agent attempts to use the KG to revise the action
sequence—see Figure 2(b). Specifically, the agent attempts
to replace the text corresponding to the identified mismatch,
which can refer to actions, object instances, or object at-
tributes, with other text from the KG. While performing
such text replacement, it is important to consider syntactic
similarity, which measures similarity in the structure (e.g., of
words or sentences), and semantic similarity, which considers
similarity in meaning. In our framework, the agent can
compute the similarity of the identified words (or their
embedding) with words from a similar category (or their
embedding) in the KG. The use of word embeddings requires
additional contextual information and makes it difficult to
understand the revision of the LLM output. We thus chose
to use the direct matching of words while considering hyper-
nyms (broader terms) or hyponyms (more specific terms) for
simplicity, ease of use, and transparency. If the agent is able
to replace all identified mismatches, it executes the actions.

3.4 Knowledge refinement with human input

Since the KG is not comprehensive, the agent may not be
able to resolve all identified mismatches, e.g., reference to
unknown object or action. Also, there may be unexpected
action outcomes when the agent executes the action se-
quence. These situations are handled through re-prompting
and human feedback—see Figure 2(c). Specifically, the agent
responds to an unresolved mismatch or erroneous outcome

*Supplementary material includes list of all the actions.



by re-prompting the LLM with additional information (of
mismatch or error). If the mismatch or error persists, human
input is solicited and used.
Existence check: if an action or object in the LLM output
does not exist in the KG, there are three possibilities: (1) The
agent is mistaking an existing item (action) for another item
(action); (2) the entity does not exist in the domain; or (3)
the entity exists but is not in the KG. In the first case, human
informs the agent about the correct object (or action); in the
second case, human denies existence of entity; and in the
third case, human confirms the entity’s existence and agent
interactively obtains entity’s attributes†.
Learn attributes: If human confirms existence of an instance
of a new entity, the agent interactively obtains additional de-
tails. For example, when informed about an instance of a new
object class onion, agent incrementally requests information
about the object type (e.g., edible_object) and other relevant
attributes (e.g., boilable, fryable, location of instance). This
knowledge revision can be viewed as correcting (expanding)
the knowledge in the KG by revising class attributes in Gk

and instance-specific details in Gs.

fKE(Inew, Pnew, Scurrent)⇒ G
′

k,G
′

s

where Inew is the new entity; Pnew = (p1, v1), ..., (pn, vn)
refers to attributes (pi) of entity and their values (vi);
Scurrent = (s1, v1), ..., (sn, sn) refers to states si and their
values vi; and G

′

k and G
′

s are the updated components of
the KG. For example, new edge is added in Gs to encode
an onion’s position and new edge is added in Gk to encode
that an onion can be fried. Note that this update to existing
knowledge is fully transparent by design.

Algorithm 1 describes the flow of information and control
in our framework. The framework takes as input the state
graph Gs and attribute graph Gk, along with an input
prompt (ip_prompt) that contains information about the class
of tasks, an in-context example, and a query specifying the
task the agent must perform. The LLM generates an action
sequence T (Line 3), which is refined to Trefined using the
knowledge in the KG (Line 4). If there are no unresolved
mismatches between KG and LLM output (εunkn), the action
sequence is executed, with the outcomes and errors collected
for further analysis (Lines 5-7). Any unresolved mismatches
or errors in outcome result in a feedback prompt to the
LLM, leading to a new predicted sequence of actions T

′

(Lines 9-13, 19-23). If these mismatches and/or errors persist
(beyond threshold Fmax), the agent queries a human, which
potentially leads to knowledge refinement, updating Gk and
Gs. After the expansion, the knowledge base is updated, and
the refined action sequence is executed and evaluated (Lines
14-18, 24-26). This entire process is repeated until the tasks
is completed or some threshold (e.g., time limit) is exceeded.

4 EXPERIMENTAL SECTIONS AND RESULTS

This section describes the experimental setup and the
results of experimentally evaluating three hypotheses:

†Supplementary material includes details of questions asked.

Algorithm 1 LLM + KG + Human Input

1: Procedure LLM_KG_Human(Gs, Gk, ip_prompt)
2: F ← 0 ▷ F is feedback counter
3: T ← call_LLM(ip_prompt) ▷ T is action sequence
4: Trefined, εunkn ← refine_sequence(T , Gk, Gs)
5: if NOT εunkn then ▷ εunkn is unknown_item error
6: O, εexec ← execute(Trefined) ▷ O is execution output

▷ εexec is execution error
7: end if
8: while (εexec OR εunkn) AND F < Fmax do
9: while εunkn AND F < Fmax do

10: T
′ ← call_LLM(fb_prompt) ▷ T

′
is updated sequence

11: T
′

refined, εunkn ← refine_sequence(T
′
, Gk, Gs)

12: F ← F + 1
13: end while
14: if εunkn AND F == Fmax then
15: T

′

refined ← ask_human(εunkn) ▷ Gk,Gs ⇒ G
′

k,G
′

s

16: O, εexec ← execute(T
′

refined)
17: break
18: end if
19: if εexec AND F < Fmax then
20: T

′ ← call_LLM(fb_prompt)
21: T

′

refined, εunkn ← refine_sequence(T
′
, Gk, Gs)

22: F ← F + 1
23: end if
24: if NOT εunkn then
25: O, εexec ← execute(T

′

refined)
26: end if
27: end while
28: End Procedure

1. Oil

3. Tomato

2. Egg

4. Salt

robot picks up egg from fridge -----------> robot puts down egg to pan ------------> contents of pan are 
('egg', 'oil', 'salt', 'tomato') ------------>  Egg fried! ------------->  robot puts down egg to plate

robot picks up oil from countertop ----------> robot puts down oil to pan ----------> contents of pan are 
('egg', 'oil', 'salt', 'tomato')

robot picks up tomato from fridge ------------> robot puts down tomato to countertop ---------> Tomato 
sliced! ----------> robot picks up sliced tomato from countertop --------> robot puts down sliced tomato 
to pan --------> contents of pan are ('egg', 'oil', 'salt', 'tomato')

robot picks up salt from countertop -----------> robot puts down salt to pan -----------> contents of pan 
are ('egg', 'oil', 'salt', 'tomato')

Fig. 4: Progress line [8] showing use of each ingredient when preparing an omelette.

H1: Combining generic prediction of action sequences from
LLMs with KG-based specific prior knowledge im-
proves performance compared with just LLMs.

H2: Soliciting and using human feedback as needed supports
incremental knowledge revision and results in improved
performance compared with not using human feedback.

H3: Our framework adapts to new classes of tasks through
incremental and transparent knowledge refinement.

4.1 Experimental Setup

We begin by describing the experimental set up, which
includes the prompting of LLMs, and the choice of baselines,
classes of tasks, and evaluation measures.



’clean the bedroom_floor’,
’dust the TV’,
’wash the clothes’,
’wash the dishes’,
’water the plants’,
’take out trash’,
’clean the window’,
’mop the countertop’,
’clean the table’,
’pick up and put all the toys in the toy box’,
’charge the phone’,
’play the music’

Fig. 5: 12 variants of tasks that involve the agent assisting with cleaning different
objects and surfaces, or clearing objects to achieve the desired object configuration.

4.1.1 LLM Prompting: We used GPT-3.5 and GPT-4o
to generate action sequences for specific tasks in a given
environment. We used Chain of Thought (CoT) prompting
to encourage the LLM to decompose any given task into a
series of logical steps. The main prompt included domain-
specific information (e.g., object classes from Gs), set A of
agent’s actions, and output for a single in-context example.
For example, for the agent assisting in cooking tasks, the
LLM was encouraged to generate an action sequence that
fetches ingredients and tools, completes the cooking process,
and serves the dish, based on the example of preparing
coffee. The LLM’s output was filtered to retain only the
predicted action sequence. As described in Section 3.4, any
unresolved mismatch between LLM and KG, or an error in
outcome, also led to the agent sending a feedback prompt to
the LLM in an attempt to fix the error.

4.1.2 Baselines: We evaluated three different config-
urations of components in our framework: (a) LLM; (b)
LLM with a KG; and (c) LLM with KG and human input
(LLM + KG + Human). We conducted linked trials, i.e.,
in each trial, the same LLM output was provided to each
configuration. As stated in Section 3, with just LLM, the
predicted action sequence is sent directly for execution, and
errors results in a feedback prompt to the LLM for a fixed
number of times. With LLM + KG, the KG is used to identify
and fix mismatches between LLM output and KG; however,
consistent mismatches and incorrect execution outcomes
are not addressed. The LLM+ KG + human configuration
represents our framework, in which unresolved mismatches
are addressed using human input, which is assumed to be
accurate; the other two configurations serve as baselines.

4.1.3 Classes of tasks: In order to evaluate the ability
of our framework to adapt to different classes of tasks,
we considered cooking and cleaning tasks. Specifically, we
considered 30 different cooking tasks in a kitchen; this is
the motivating scenario described in Section 3. These tasks
were created by sampling from the Recipe1M+ dataset [29].
In addition, we considered 12 variants of cleaning/clearing
tasks that involved the agent cleaning specific objects or
surfaces (e.g., "do the laundry"), or arranging objects in
desired configurations in particular rooms (e.g., "clear the
toys from the playroom")—see Figure 5 for some examples.
The results of evaluating the adaptability of our framework
is summarized later in Table II.

4.1.4 Evaluation Strategy: For the evaluation of our
framework, we used human participants to provide ground

truth. Specifically, we recruited 18 human evaluators to mark
the execution outputs for each task assigned to the framework
and the two baselines. The tasks were distributed such that
the output for each task was evaluated by at least three human
participants. The scores provided by the human (on a linear
scale between 0-20) were averaged to obtain the success rate
of our framework and the two baselines. These results are
discussed further in Section 4.2.

To better understand the LLM’s performance, we also
considered progress lines [8], which depicted the use of key
individual objects during individual steps of the action se-
quence, e.g., Figure 4 shows the movement of each ingredient
when cooking an omelette. These were presented along with
the execution outputs to be evaluated by the humans.

4.1.5 Evaluation Measures: The key performance mea-
sures considered in this work include:

• Success rate: As stated above, this measure was com-
puted based on the scores assigned by the human
participants. Higher values are better as they indicate
a higher degree of satisfaction in task completion. This
measure was used for evaluating H1-H3.

• Average tokens used: The number of tokens used when
prompting the LLM (including the input prompt and all
subsequent feedback prompts) was averaged across all
tasks. This is a measure of resource consumption and
lower values are usually better, except when the use of
prompts improves the values of other measures.

• Number of nodes and edges in KG: We use this
measure to evaluate H2 and H3. An increase in its value
implies an expansion of knowledge in the KG.

• Mean ingredient overlap: A measure specific to the
first class of tasks (cooking); it is the average overlap
between the ingredients in the ground truth recipe and
the ingredients in the executed action sequence. If mi

denotes the ingredients required to make a particular
dish and li denotes the ingredients in the action se-
quence, this measure is computed as:

Mean ingredient overlap =
1

N

N∑
i=1

|mi ∩ li|
|mi|

(1)

where | · | is the cardinality of a set, and N is the
total number of recipes sampled from the dataset. This
measure was used to evaluate H1-H2.

4.2 Experimental Results

Next, we describe and discuss the experimental results.

Evaluating H1. We first explored whether the combination
of LLM and KG leads to improved performance in com-
parison with just using LLM output for any given task.
The corresponding results for the cooking-related tasks are
summarized in Table I; in particular, see columns labeled
"LLM" and "LLM + KG". For the two LLMs considered
(GPT3.5, GPT4o), we observe a substantial increase in
success rate, reduction in token use, and an increase in the
mean ingredient overlap for LLM+KG compared with LLM.
These results provide strong support for H1.



LLM Models ↓ Frameworks → LLM LLM + KG LLM + KG + Human

GPT 4o

Success Rate (in %) ↑ 45.2 56.95 91.14
Avg. Tokens Used ↓ 8316 7591 6459

Mean Ingd. Overlap (in %) 56.7 65.27 92.07
(#nodes, #edges) in Gs and Gk (79, 772) (79, 772) (87, 845)

GPT 3.5

Success Rate (in %) ↑ 25.41 33.95 92.08
Avg. Tokens Used ↓ 8402 8415 4354

Mean Ingd. Overlap (in %) ↑ 38.13 44.29 98.97
(#nodes, #edges) in Gs and Gk (79, 772) (79, 772) (89, 869)

TABLE I: Evaluating H1 & H2 for 30 recipes of six categories from Recipe1M+ dataset. The combination of LLM and KG ("LLM+KG") results in an increase in success
rate, reduction in token use, and an increase in the mean ingredient overlap compared with just using the LLM ("LLM"). Also, soliciting and using human input when needed
("LLM+KG+Human") results in a substantial improvement on all measures, including an increase in the number of nodes and edges due to expansion of knowledge in KG.

LLM Models ↓ Frameworks → LLM LLM + KG LLM + KG + Human

GPT 4o
Success Rate (in %) ↑ 42.33 44.00 75.66

Avg. Tokens Used 3820 3571 1979
(#nodes, #edges) in Gs and Gk (39, 313) (39, 313) (40, 331)

GPT 3.5
Success Rate (in %) ↑ 32.63 42.5 98.75

Avg. Tokens Used ↓ 4963 4440 3510
(#nodes, #edges) in Gs and Gk (39, 313) (39, 313) (44, 397)

TABLE II: Evaluating H3 by adapting our framework to the cleaning and clearing tasks without requiring extensive tuning (e.g., of LLM) or comprehensive encoding of
knowledge (in KG). We observed a substantial improvement on all performance measures with our framework compared with just using LLM outputs or even LLM+KG. Also,
the agent is able to solicit human input as needed to incrementally and transparently revise knowledge in the KG.

Evaluating H2. Next, we explored the impact of soliciting
and using human input as needed. The last column of Table I
("LLM+KG+Human") shows that our framework’s judicious
use of human input with LLM and KG markedly improved
performance on all measures compared with LLM and
LLM+KG. With GPT-4o, we observed a 45.94% increase
in success rate over LLM and 34.19% over LLM+KG. For
GPT-3.5, the success rate increased by 66.67% over LLM
and 58.13% over LLM+KG. Also, the average number of
tokens used by our framework dropped by 48.26% com-
pared with baseline(s). This performance improvement was
strongly influenced by the refinement of knowledge in the
KG; the number of nodes and edges in the KG expanded
from (79, 772) to (87, 845) with GPT-4o and to (89, 869)
with GPT3.5. These results strongly support H2.

Evaluating H3. Finally, we evaluated the ability to adapt
our framework to a different class of tasks (cleaning and
clearing), with the results summarized in Table II. Unlike
prior work [8], we seek to achieve this adaptation without ex-
tensive tuning (e.g., of LLM) or the need for comprehensive
domain-specific knowledge (in the KG). We instead leverage
the interplay between LLM, KG, and human input to support
incremental adaptation to the new class of tasks. Results indi-
cate (once again) a substantial improvement on all measures
for our framework compared with the baselines. We noted
that the impact of adding different bits of knowledge to the
KG can differ. For example, with GPT-4o, the addition of
just one item (mopping_cloth) to the KG based on human
input led to a 31% increase in success rate; with GPT3.5, this
improvement was more pronounced (56%). We also observed
a substantial reduction in the number of tokens used. In
addition, this adaptation of knowledge is fully transparent
by design. These results strongly support hypothesis H3.

Our project web site‡ hosts our supplementary material,
including examples of tasks being performed in simulation,

‡https://sssshivvvv.github.io/adaptbot/

and supporting results with other LLM models.

5 CONCLUSIONS AND FUTURE WORK

Embodied agents assisting humans frequently have to
complete previously unseen tasks or operate in new scenario.
This paper describes a framework that leverages the com-
plementary strengths of Large Language Models (LLMs),
Knowledge Graphs (KGs), and Human-in-the-Loop (HITL)
feedback to satisfy this requirement. Specifically, the generic
task decomposition ability of LLMs is used to predict a
sequence of abstract actions to complete any given task.
This sequence is adapted to the specific scenario(s) and the
task-, agent-, or domain-specific constraints using a KG that
encodes prior knowledge of some objects, object attributes,
and action capabilities. Any unresolved mismatch between
the KG and the LLM output, and any unexpected action
outcomes, are addressed by soliciting and using human input.
This HITL feedback corrects errors and refines the existing
knowledge (in the KG) for subsequent operation. Experimen-
tal evaluation in two simulated domains demonstrates sub-
stantial performance improvement compared with baselines,
and illustrates incremental acquisition of knowledge to adapt
to new classes of tasks.

This research opens up multiple avenues for further
research. First, we will explore the use of this framework in
many more classes of tasks, building on (and reinforcing) the
promising results obtained so far. Second, we will investigate
the trade-off between automating the generation of an action
sequence for any given task, and soliciting and incorporating
human feedback as needed. Furthermore, we will explore the
use of this framework on a physical robot platform assisting
humans. The long-term objective is to create assistive agents
and robots that can interact and collaborate with humans in
different application domains.
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