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I. MOTIVATION AND BACKGROUND

Consider the simple task of holding an umbrella on a rainy
and windy day. Forces arise from the physical interaction
between the umbrella, the human hand, and any perturba-
tion imposed by the wind. To ensure a stable interaction
with the umbrella and the wind, humans increase their
limb impedance (i.e., stiffness, damping, and inertia) by co-
activating antagonist muscles [2]. Other tasks, e.g., placing
a peg in a hole, may require limb compliance to limit the
interaction forces and afford lower manipulation precision.
The importance of enabling such adaptive behaviour on
a robot manipulator physically interacting with the envi-
ronment is well-known in the robotics community [3]. In
physical human-robot interaction (pHRI), modulation of the
robot’s impedance is desirable for robustly and safely in-
teracting with humans. This requirement is pronounced in
motor prostheses control, the long-term motivation for the
work described here, for two reasons: the robot (prosthesis)
physically interacts with the environment; the human motor
intent has to be implemented on the prosthesis.

While there has been considerable progress in designing
upper-limb prostheses that have hardware compliance, none
allow the user to voluntarily modulate the impedance of
a single Degree of Freedom (DoF) of the robot. This is
due to the difficulties in decoding the human motor intent
from surface electromyographic (SEMG) signals. In fact,
despite being the most widely used non-invasive human-
machine interface, surface electromyography provides noisy
low-bandwidth signals. Another major difficulty is the non-
unique association between changes in muscle activations
(i.e., sSEMG signals) and the changes in joint kinematics and
dynamics. Due to the high complexity and redundancy of
the neural musculoskeletal system, the same motion can be
performed at different levels of contraction of the muscles
(i.e., joint impedance).

State-of-the-art methods for the control of commercial
prostheses learn a direct mapping from sEMG signals of
antagonist muscles to desired joint kinematics [4] in an
offline training phase. While effective for up to 2-DoF
control, these methods do not represent or use information
about the human joint impedance in the controllers. As a
result, performance deteriorates in practical settings, when
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Fig. 1: Overview of framework architecture.

physical interactions with the environment require the user
to continuously adapt muscle contractions to control the
prosthesis. In such settings, the features of the EMG signals
change drastically from those observed during training.
Methods developed to provide simultaneous control of
joint kinematics and impedance often employ sEMG-driven
muscle-tendon units (MTUs) to include domain knowledge
about muscle contraction dynamics. The MTUs provide an
estimation of the muscle-tendon forces and impedance from
which the joint kinematics, and impedance can be obtained.
However, existing methods only use partial information from
these models [5], [6]. Typically, only the MTUs forces are
used to compute the joint net torque and derive the joint
kinematics. Joint stiffness from MTUs is ignored and esti-
mated as a polynomial function of sSEMG signals; damping is
omitted or computed as a function of stiffness. Moreover, the
estimated joint impedance is not directly used to implement a
variable impedance controller, but stiffness and damping are
tuned during a calibration stage to ensure the controller’s
stability. This approach requires multiple calibration phases
often separate from the optimization of the MTUs, and it
creates a mismatch between the dynamics of the muscle-
tendon model (i.e., the intended human impedance) and the
dynamics of the robot. This affects the user’s control perfor-
mance and limits the transparency of the control methods.

II. FRAMEWORK OVERVIEW

Toward addressing the aforementioned limitations, we
present AIC-UP, an sEMG-driven framework (Fig. that
provides the user with three Degrees of Control (DoC) for a
DoF. AIC-UP makes the following contributions:

o It decodes the human motor intent about wrist flexion-
extension as joint kinematics, stiffness, and damping,
and implements the motor intent on a simulated 1-
DoF robot (i.e., robot plant). The detection of human



motor intent block includes the MTUs and maps the
sEMG signals ch; and chy to an estimate of the user’s
motor intent as joint position ¢, joint stiffness K,
and damping D. The inertia is assumed to be the
natural inertia of the robot. The prosthesis control block
executes the estimated motor intent through a robot
system based on a variable position-based impedance
controller, allowing online motion control and adapta-
tion of the simulated robot’s impedance. The robot’s
plant joint position gy is the visual feedback given to
the user. The variable impedance controller implicitly
allows the user to counter external perturbations using K
and D predicted from the MTUs. Notice that the MTUs
are virtually attached to the “’simulated robot model”,
which is unaffected by external perturbations. If 7.,
is not null, g5 will start drifting from g,. The subject
may use the visual feedback to modulate the motor
commands and achieve the desired control behaviour.
As the simulated robot model and the (simulated) robot
plant, we choose to use a generic manipulator, the Puma
robot 560 and control its second DoF.

e In a departure from existing work, we ensure that
the human intended dynamics (first block) matches the
robot’s dynamics (second block), by using K and D
estimated from the MTUs to implement the dynamic
behaviour of the robot plant. This design choice en-
hances the transparency of the control methods.

o We tackle the ill-posed problem of estimating the value
of the MTUs’ parameters by making structural as-
sumptions on MTUs, and by designing an optimization
framework that includes the impedance controller. The
join position ¢, which is affected by K and D, is used
as the optimizations signal.

III. EXPERIMENTAL EVALUATION

AIC-UP’s performance is evaluated during online reaching
tasks in static and dynamic environments with eight able-
bodied subjects and a transradial amputee. We investigated
whether the users could exploit stiffness and damping adap-
tation to counter perturbations in the form of force fields that
push the simulated wrist away from a target. We compared
AIC-UP to a baseline method comprising a neural network
that learns and predicts the joint kinematics from sEMG
signals followed by a fixed-gain high stiffness controller to
track the estimated motion on the robot [4]. Our framework
and the baseline are trained on the same dataset, i.e., the
SEMG signals from the wrist flexor and extensor, and the
corresponding reference wrist flexion-extension; this includes
repetitions of the wrist flexion-extension at low and high
levels of coactivation of muscles. Following the online
control testing with able-bodied subjects, we experimentally
demonstrated that:

o AIC-UP supports online adaptation of the simulated
robot kinematics and dynamics in response to external
disturbances.

o AIC-UP performance is comparable to that of the base-
line in the absence of perturbations, and substantially

better in the presence of perturbations.

Moreover, we investigate the users’ perception of con-
trollability provided by the two methods. The users’
feedback, consistent with the quantitative results, in-
dicated that AIC-UP provides improved performance
compared with the baseline. Here ‘“controllability”
refers to robustness and responsiveness to fast-changing
features of the SEMG signals, and to the user’s ability
to stabilise the system after an external perturbation.

Although our framework was only tested with a single
amputee, the corresponding results matched those of the
able-bodied participants. This is a promising result, espe-
cially considering the participant’s difficulties in perceiving
differences in muscle co-contraction due to amputation. This
result indicates that our framework may provide more intu-
itive control and implement features crucial for enhancing
controllability. For more details about the framework and
results, see [1].

IV. CONCLUSIONS AND FUTURE WORK

We have presented a novel framework AIC-UP that sup-
ports the control of joint kinematics, stiffness, and damping,
and we have provided experimental evidence that AIC-
UP allows for superior controllability of the joint in the
presence or absence of unexpected perturbations. Current and
future work will address multi-DoF control. The extension
to multiple DoFs of the wrist is straightforward within the
framework, but experimental validation would be needed to
investigate suitable input activations to additional MTUs and
prove controllability in more challenging conditions. While
upper-limb prostheses control is the motivating application
domain, the framework is relevant to other rehabilitation
devices, to other pHRI scenarios (e.g., teleoperation), and to
robot manipulation applications (e.g., the design of variable
impedance controllers).
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