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Abstract. Recent progress in sensor technology [10, 24], and the use of state of

the art algorithms to process the input from a variety of sensors, has resulted in

the deployment of mobile robots in several specific applications [2, 17, 22]. A

key requirement for the widespread deployment of mobile robots is the ability to

autonomously tailor the sensory processing to the task at hand. Our work repre-

sents a significant effort towards such general-purpose processing of visual input.

We pose visual processing management as an instance of probabilistic sequential

decision making, and specifically as a Partially Observable Markov Decision Pro-

cess (POMDP). Our prior work introduced a hierarchical POMDP decomposition

that enables a robot to plan a sequence of visual operators that reliably and ef-

ficiently analyze the state of the world represented by salient regions-of-interest

(ROIs) in input images [20]. Here, we significantly enhance the capabilities of

the existing system by: (a) extending our POMDP framework to autonomously

adapt to a change in state space dimensions, thereby enabling the robot to ef-

fectively process partially overlapping objects in the image; and (b) enabling the

robot to autonomously trade-off planning speed and plan quality, by theoretically

and empirically evaluating the estimation errors involved in policy caching. All

algorithms are implemented and tested on a physical robot platform. We show

that the hierarchical planner performs significantly better than a modern planner

that has been applied successfully to human-robot interaction domains [1].

Keywords: Cognitive Vision, Probabilistic Sequential Decision-making, Hu-

man Robot Interaction.
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Fig. 1: An image of the table-top scenario: regions-of-interest (ROIs) bounded by rectangles.

1 Motivation

The ability to deploy robots in the real-world where they can learn from and collaborate

with humans remains an open challenge. Major aspects of this challenge include:

• Autonomous Adaptation: How to enable a robot to autonomously model the environ-

ment based on sensory input, and revise the learned models in response to changes?

• Processing Management: Given multiple sources of information, which bits of infor-

mation should be processed, and what processing should be performed in order to

achieve a desired goal reliably and efficiently?

• Learning from Human Feedback: How to enable a robot to learn from limited human

feedback, and collaborate with humans over a wide range of tasks?

Progress in sensor technology has made it possible to equip mobile robots with high-

quality sensors at moderate costs [10, 24]. In addition, the availability of state of the

art algorithms for segmentation, recognition and scene analysis, has enabled robots to

exploit the rich information encoded in color images, in several applications [2, 17, 22].

However, most current robot systems equipped with visual sensors are designed for

specific domains using a manually chosen set of visual operators or processing routines.

In addition, visual processing on robots is characterized by non-deterministic actions

(the operators are not completely reliable), high computational complexity and partial

observability. The robot cannot observe the true state of the world—it can only update

its belief by executing the processing routines and observing the outcomes. The robot

can analyze the input images using a subset of a large set of processing routines, each

with a different computational complexity and reliability. At the same time it has to

respond to dynamic changes and operate with a high degree of reliability.

A robot equipped with visual sensors, and operating in a dynamic environment,

therefore needs a strategy to autonomously tailor its processing to the task at hand.

We pose visual processing management as a planning problem, where the robot plans a

sequence of information processing (what to look for?) and sensing (where to look?) ac-

tions that would maximize the reliability while using the available resources optimally.

In our experimental domain, the robot is equipped with cameras and a manipulator

arm—Fig. 3(a). The robot and a human jointly converse about and manipulate objects

on a tabletop. Such a scenario, though seemingly simple, represents the state of the art
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in cognitive robotics—modules operating in parallel process visual and speech inputs,

and bind the information to create goals that are achieved by other modules such as

manipulation [6]. Consider the scene in Fig. 1, where the robot obtains images with the

salient regions-of-interest (ROIs) extracted from the background. The robot has to an-

swer queries such as: “is there a blue triangle in the scene?” or execute commands such

as: “put the mug next to the circle?”. In order to do so, the robot may need to find the

color, shape, identity or category of objects in the scene to support dialogues about their

properties; to see where to grasp an object; and to plan and execute an obstacle-free path

to move the object to a new location. However, it is infeasible to apply all the available

operators on a given image, especially in domains that require a dynamic response. The

robot needs to choose a subset that is relevant to the task.

Though planning of visual operators has been extensively researched, prior ap-

proaches typically used single images, required extensive domain knowledge to per-

form plan repair, have only been extended to robot systems in limited ways, or have

posed the problem in deterministic or observable framework [3, 13, 15]. We formu-

late visual processing management as a Partially Observable Markov Decision Process

(POMDP) [12], which elegantly captures the characteristic features of robot domains

(e.g. non-deterministic actions, partially observable states). However, POMDP formu-

lations of practical domains with reasonable-sized state spaces are intractable. Our prior

work addressed this intractability by introducing a hierarchical decomposition that the

robot can model automatically [20]—prior attempts at imposing structure on a POMDP

have required significant manual supervision [8, 17]. Our hierarchical POMDP planner

(HiPPo) provided higher reliability than a modern non-probabilistic planner that has

been used successfully in human-robot collaboration scenarios [1]. There were how-

ever two limitations: (a) the system could not reliably process partially overlapping ob-

jects in the image, a common occurrence in practical domains, and (b) planning times

comparable to that of the non-probabilistic planner could only be obtained by reusing

the POMDP policy for similar ROIs, which introduced an approximation error in plan

quality. Here, we address these limitations through the following contributions:

• We extend our POMDP approach to handle changes in the state space dimensions.

As a result the robot is able to plan with an operator that splits the ROIs containing

overlapping objects into sub-regions with distinct objects.

• We investigate the effects of policy-caching theoretically and empirically, and use it

to autonomously trade-off plan quality against planning speed.

All algorithms are tested on a physical robot in the scenario described above.

2 Hierarchical POMDP Planner

The hierarchical POMDP framework that forms the basis of the work described in

this paper, receives input images that are processed to yield salient regions-of-interest

(ROIs) different from a previously trained background model (rectangular regions in

Fig. 1). The robot is tasked with executing commands (“put the mug next to the red

square”) or answering queries (“which objects in the scene are blue?”). The goal is to

plan a sequence of visual operators that would perform the task reliably and efficiently.

Without loss of generality, assume that the robot has the following operators at its dis-

posal: a color operator (based on color histograms) that classifies the dominant color
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of the ROI it is applied on, a shape operator (based on shape moments) that classifies

the dominant shape within the ROI, and a sift operator (based on the SIFT features

[14]) that detects the presence of one of the previously trained object models. Through-

out this paper, we use the following terms interchangeably: visual processing actions,

visual actions, and visual operators.

Since the true state of the system cannot be observed, the robot maintains a probabil-

ity distribution over the underlying state (belief state), and uses a probabilistic model of

the action outcomes. In our work, each action considers the true underlying state to be

composed of the class labels (e.g. red(R), green(G), blue(B) for color; circle(C), trian-

gle(T), square(S) for shape; picture, mug, box for sift), a label to denote the absence of

any valid object class—empty (φ), and a label to denote the presence of multiple classes

(M ). The model for each action’s outcomes provides a probability distribution over the

set composed of the corresponding class labels, the label empty (φ) which implies that

the match probability corresponding to the class labels is very low, and unknown (U )

which means that multiple class labels are equally likely. U is an observation whereas

M is part of the state: there is a correlation but they are not the same.

Since visual operators only update belief states, we include query-specific “special

actions” that indicate the presence or absence of the target object, or “say” (not to be

confused with language communication) which underlying state is most likely to be the

true state. Such actions cause a transition to a terminal state where no further actions

are applied. Below, for ease of explanation and without loss of generality, we only

consider two operators: color and shape denoted by subscripts c, s respectively. States

and observations are distinguished by superscripts a, o respectively. For a single ROI in

the image, the POMDP is defined by the tuple 〈S,A, T ,Z,O,R〉:
• S : Sc×Ss∪ term, the set of states, is a Cartesian product of the variables describing

different aspects of the underlying state (e.g. color, shape). It also includes a terminal

state (term). Sc : {φa
c , Ra

c , Ga
c , Ba

c ,Mc}, Ss : {φa
s , Ca

s , T a
s , Sa

s ,Ms}.

• A : {color, shape,AS} is the set of actions. The first two entries are the visual

operators. The rest are special actions representing query responses. For a query such

as “is there a circle in the scene?”, AS = {sFound, sNotFound} describes the

presence or absence of the target object, while a query such as “what is the color of

the ROI?” has AS = {sRed, sGreen, sBlue} i.e. actions such as “say blue”. All

special actions lead to term.

• T : S ×A× S → [0, 1] represents the state transition function. For visual operators

that do not change the state, such as color and shape, it is an identity matrix. For

special actions it represents a transition to term.

• Z : {φo
c , R

o
c , G

o
c , B

o
c , Uc, φ

o
s, C

o
s , T o

s , So
s , Us} is the set of observations, a concatena-

tion of the observations for each visual operator.

• O : S ×A×Z → [0, 1] is the observation function. It is learned by the robot for the

visual actions and it is a uniform distribution for the special actions.

• R : S × A → ℜ, specifies the reward, a mapping from state-action space to real

numbers. ∀s ∈ S, R(s, operators) = −β · f(ROI size) (1)

R(s, special actions) = ±100 · α

For visual operators, the cost depends on the size of the ROI (see Eqn 3) and the rel-

ative computational complexity (β for color is twice that for shape). Special actions
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are assigned a large positive (negative) reward for giving the right (wrong) answer

for a query. Variable α is used to trade-off computational costs and reliability. Values

for α, β are computed experimentally based on query complexity.

The visual planning for a single ROI now involves solving this POMDP to find a pol-

icy that maximizes reward over a range of belief states. Plan execution corresponds to

traversing a policy tree, repeatedly choosing the action with the highest value at the

current belief state, and updating the belief state after executing that action and getting

a particular observation. However, for a single ROI with m features (color, shape etc.)

each with n values (e.g. R, G, B for color), the POMDP has an underlying space of

nm + 1; for k ROIs the overall space is: nmk + 1. The problem soon becomes too large

to solve even with state of the art (approximate) POMDP solvers.

We partially ameliorate the exponential state space explosion problem by imposing

an intuitive hierarchical decomposition that encapsulates different cognitive levels of

abstraction. Each ROI is modeled with a lower-level (LL) POMDP as described above,

and a higher-level (HL) POMDP chooses, at each step, the ROI whose policy tree (gen-

erated by solving the corresponding LL-POMDP) is to be executed. The overall prob-

lem is then decomposed into one POMDP with state space 2k +1, and k POMDPs with

state space nm + 1. Without loss of generality, consider an input image with two ROIs,

whose HL-POMDP is given by the tuple 〈SH ,AH , T H ,ZH ,OH ,RH〉:

• SH = {R1 ∧ ¬R2,¬R1 ∧ R2,¬R1 ∧ ¬R2, R1 ∧ R2} ∪ termH is the set of states.

It represents the presence or absence of the object in one or more of the ROIs, and

includes a terminal state (termH ).

• AH = {u1, u2, A
H
S } are the actions, where (ui) denotes the choice of executing LL

ROI Ri’s policy tree. For queries such as “is there a circle in the scene?”, the special

action set AH
S = {sFoundH , sNotFoundH}. However, for queries such as “where

is the blue circle?”, AH
S represents the fact that one of the entries of SH is the answer.

All special actions lead to termH .

• T H is the state transition function that leads to termH for special actions and is an

identity matrix otherwise.

• ZH = {FR1,¬FR1, FR2,¬FR2} is the set of observations, which represents find-

ing or not-finding the desired object when each ROI’s policy is executed.

• OH : SH × AH × ZH → [0, 1], the observation function, is a uniform matrix for

special actions. For other actions, it is learned from the LL-POMDP policy trees.

• RH is the reward specification. For a special action, it is a large positive (negative)

value if it predicts the state correctly (wrongly). For other actions, it is a “cost” com-

puted from the LL policy trees.

The LL observation functions and rewards are learned in a training phase where the

robot automatically collects visual operator performance statistics with known objects

in the scene. During execution, the robot creates a LL-POMDP for each ROI based

on the available visual operators and the query being posed. The model file is in the

format required by the ZMDP package [25] and it is solved using a point-based solver

in the package [19]. The computational complexity is controlled by forcing each LL-

POMDP’s policy tree to terminate after N levels, at which point all branches have to

take a terminal action—the value of N is determined experimentally based on query

complexity. The LL policy trees and the query are used to compute the HL observation
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functions and rewards at run-time, and the appropriate HL-POMDP model is created

and solved autonomously to generate the overall policy that is executed by the robot.

The proposed approach is therefore different from existing work on imposing structure

on a POMDP, where the hierarchy and models are manually encoded [8, 17].

When compared against Continual Planning (CP) [1], a modern planner that has

been used successfully in robot domains, our planner (HiPPo) is significantly more

reliable (Table 2). CP does not model the action outcomes and hence cannot achieve

higher reliability than “no-planning” i.e. the naive approach of applying all operators

on the image. Both planners were significantly faster than no-planning, even for images

with as few as two ROIs processed with two or more operators. However, HiPPo had

two limitations: (a) overlapping objects in the image resulted in operator outcomes of

unknown and hence low reliability for query responses; (b) planning times of HiPPo

were comparable to those of CP iff the policies of LL ROIs were cached and reused

for similar ROIs, but policy-caching leads to approximation errors that affect reliability.

We address these limitations in this paper.

3 Handling Overlapping Objects

Scene objects frequently overlap in practical applications, and are likely to be detected

as a single salient region (ROI). Visual operators applied on such ROIs are likely to

return unknown, decreasing the robot’s ability to respond to queries reliably. The oc-

currence of multiple objects in a single ROI can be tackled by using “region-splitting”

actions that segment the ROI based on the underlying features such as color or shape.

For instance, rSplitcolor segments the input ROI into one or more ROIs based on color.

Incorporating splitting in a POMDP planning framework is challenging because creat-

ing new ROIs changes the size of the state space. We cannot plan to split a ROI because

we cannot reason in advance about the value of the resulting state.

Consider the action rSplitcolor that results in n sub-regions, and consider the goal

of detecting the blue objects in the image. There are two possibilities: one of the new

regions is blue (we assume that all blue areas are segmented together), or there are

no blue regions. In the first case, for planning purposes, we can proceed as if a single

blue region was created. In the second case there is no region relevant to the query,

and we can pick a region at random and continue planning. In either case, the effect of

splitting is to transform the ROI being operated on into a single “interesting” sub-region,

so that the state space is unchanged (for planning purposes). However, the interesting

sub-region still needs to be found. The execution of a split action based on a feature,

is therefore followed by the execution of the corresponding feature detector on each

resulting sub-region. For instance, rSplitcolor is followed by the application of color
on each resultant ROI. We can hence model rSplitcolor as:

• The number of ROIs resulting from a split action is assumed to follow a geometric

distribution. The maximum number of possible ROIs is equal to the number of labels

of the underlying operator (e.g. five for color).

• The cost of the operator is the sum of three values. The first is the cost of perform-

ing the split (i.e. segmenting the ROI based on color). The second is the cost of

re-applying the color operator on the expected number (d) of ROIs created by the

split. Since each of the d ROIs is only 1/d the size of the ROI being split, for linear
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action costs, this is equivalent to applying the action once on the original ROI. The

third is the cost of solving the POMDPs corresponding to the new ROIs.

• The observation function (O) is the same as that of the underlying operator (color).

It is used to perform the belief update on each ROI created by the split.

• For a split action based on a feature with n possible classes, each of the ROIs created

by the split has probability 1
n of having the class label relevant to the query, and the

geometric distribution assigns a probability of 1/2(i−1) for producing i ROIs after

the split. The special case of i = n occurs with probability: 1/2(n−2) so that the

geometric distribution-based probabilities sum to one. The probability that one of the

ROIs has the desired class label is therefore given by:

p =
n−1∑

i=2

1

2i−1

i

n
+

1

2n−2
(2)

This formulation sets up a transition where, iff the underlying state is “multiple”,

with probability p we reach a state where the ROI has the relevant label, and with

probability 1 − p we reach a random state where the ROI has some other label. The

transition matrix for rSplitcolor while looking for blue objects, is given by Table 1.

p(init|fin) φa Ra
c Ga

c Ba
c Mc

φa 1.0 0 0 0 0

Ra
c 0 1.0 0 0 0

Ga
c 0 0 1.0 0 0

Ba
c 0 0 0 1.0 0

Mc
1−p

3

1−p

3

1−p

3
p 0

Table 1: Transition function T for rSplitcolor with just the color states under consideration.

This approach lets us plan with split operators in the LL-POMDP, but relies on the

assumption that applying rSplitcolor followed by color on each new ROI returns the

true color of the ROI. Since this is not always true, it would be better to update the belief

of the new ROIs and include them in subsequent analysis. However, including new

ROIs would require the HL-POMDP to be modified and new policies to be computed

for these ROIs and the HL-POMDP. Therefore, though our approach enables planning

with split operators, executing a split operator would require replanning. Such cases

are handled at run-time by solving a LL-POMDP for each new ROI (since the region-

sizes and hence action costs are different). The observations from the split action are

used to update the beliefs about each region and estimate the costs and observation

probabilities for executing the policies. A new HL-POMDP is then created and solved,

the whole process still being autonomous.

Figs. 2(a)-2(f) show the execution steps for the query: “where are the blue circles?”.

Fig. 2(a) shows three objects, two of which overlap to provide two ROIs. Since both

ROIs are equally likely target locations (no prior information), the HL-POMDP chooses

to execute the policy tree of the second ROI—action u2 in Fig. 2(b)—because it is

smaller and hence cheaper to process. The corresponding LL-POMDP applies the color

operator on the ROI—color is twice as costly as shape but it is more reliable and hence

gets chosen first. The outcome (green) causes the likelihood of finding a blue circle to
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(a) Input image.
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(c) Execution Step 2.

(d) Execution Step 3.
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(e) Execution Step 4.
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Circle
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(new)

sFound

sNotFound

(f) Execution Step 5.

Fig. 2: (a)-(f) Execution steps for query: “Where are the Blue Circles?”—region-splitting opera-

tors lead to reliable query response.

be reduced significantly, and the best action chosen at the next step is a terminal action:

sNotFound. The HL-POMDP receives this input, updates its belief and chooses the

action u1—Fig. 2(c). The policy tree of the LL-POMDP of R1 causes color and shape
to be applied in turn on the ROI. Both operators come up with outcomes of unknown

because two different colors and shapes exist in the ROI. At this point, rSplitshape gets

chosen as the best action (lower cost than rSplitcolor), and R1 is split into R1 and R3

based on the shape contours in the ROI—Fig. 2(d). Similar algorithms can be invoked,

when necessary, to split a ROI based on color [7] or clustering of gradient features

[5]. Here, rSplitshape is followed by the application of shape on each sub-region,

providing observations triangle and circle for R1 and R3 respectively—Fig. 2(c). The

current LL and HL belief states are used to create and solve a new HL-POMDP for three

ROIs. The subsequent HL action selection (u3) executes the LL-policy of R3. Since the

shape operator is less reliable, it is sometimes applied more than once on independently

captured images of the same scene in order to accumulate belief and negate the effects of

illumination changes etc. However, the ROI’s belief state reflects the prior application of

shape during splitting, and hence color and shape are applied once before the terminal

action (sFound) is chosen—Fig. 2(e). The HL belief update then chooses R1 (action

u1) leading to the terminal action: sNotFound in R1 and s(¬R1 ∧¬R2 ∧R3) at the HL

i.e. the desired object is in R3 but not in R1 or R2—Fig. 2(f).

Though the overlap is limited in this example (the objects are touching each other),

the approach also works when the level of overlap is greater, as long as the features (e.g.

shape) of the overlapping objects are not completely indistinguishable. In the absence

of the split operators, the reliability drops to ≈ 60% on images with overlapping ob-

jects. However, our approach provides high reliability (≥ 90%) even in these problem
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cases. The system fails only when it consistently receives noisy images that the oper-

ators are unable to process reliably. The key contribution is the ability to incorporate

actions that change the state space dimensions, which is a general challenge in POMDP

formulations. This capability could, for instance, prove useful when analyzing actions

that learn object properties by interacting with them.

4 Analyzing Policy Caching

In our prior work, we compared the planning and execution times of HiPPo with CP

[20]. The average execution time of HiPPo was slightly larger due to instances where the

same operator had to be applied multiple times to accumulate belief. The planning time

of HiPPo was however substantially larger than that of CP, primarily because policies

had to be generated for each LL-POMDP. Since robot applications require reliability

and efficiency, we had claimed that the planning times would be comparable if the

policy computed for one ROI is cached and reused for similar ROIs—see Fig. 3(b).

While the results in Fig. 3(b) are valid if all ROIs have the same size, the ROIs in

a typical scene will have different sizes and hence different costs associated with each

operator. The operator costs (Equation 1) are a function of the relative time complexity

of the action, and the size of the ROI. The dependency on the ROI size is modeled as:

f(r) = a0 +
N∑

k=1

ak · rk (3)

where r is the ROI size in pixels, and N = 3 i.e. we use a cubic polynomial to ap-

proximate the dependency on the ROI size. The robot estimates the parameters during

the training phase where it learns the LL observation functions. For policy-caching, the

ROI sizes can be discretized and all ROIs within a particular size range can use the same

action costs. However, any such approximation introduces an error in the estimation of

the value of a policy. There is hence a trade-off between the computation involved in

solving the LL-POMDPs, and the value estimation error incurred by caching.

Consider the image shown in Fig. 3(c) with three ROIs extracted from the back-

ground. The individual ROI sizes for R1, R2, R3 are 23400, 11050 and 20800 pixels

respectively. There are three discretization options: (1) different action costs for each

individual ROI, which would require three LL-POMDP solutions; (2) the same action

costs for R1 and R3 and a different set of action costs for R2, requiring two LL-POMDP

solutions; (3) the same set of action costs for all three ROIs, which would imply that

the LL models need to be created and solved just once. In terms of the computational

costs for creating the LL policies:

ModelCostOption2
= 2/3 × ModelCostOption1

(4)

ModelCostOption3
= 1/3 × ModelCostOption1

However, Option2 and Option3 incur approximation errors. We compute a theoretical

upper bound on this error first. The maximum approximation error in the action costs,

over all visual operators under consideration, and for ROIs whose sizes fall within the

discretization range is:

max a∈A
a/∈AS

|f(ri) − f(ravg)| = δ (5)
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(a) Scenario Overview.
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Fig. 3: (a) Overview of the scenario; (b) Planning times of HiPPo vs. CP, policy-caching makes

results comparable; (c) Sample image with three ROIs; (d) Planning and execution times of HiPPo

vs. CP—HiPPo takes slightly more time but provides significantly higher reliability.

For instance, in Option2:

ri = {ROI size(R1), ROI size(R3)}

ravg = (ROI size(R1) + ROI size(R3))/2

whereas in Option3:

ri = {ROI size(R1), ROI size(R2), ROI size(R3)}

ravg = (ROI size(R1) + ROI size(R2) + ROI size(R3))/3

For a discount factor of γ in the POMDP models, the net maximum error due to the

ROI size approximation is:

error = δ + γ · δ + · · · + γN−1 · δ (6)

= δ{
1 − γN

1 − γ
}

where N represents the number of levels in the LL policy tree. For γ = 0.9 and N = 8,

error ≈ 6δ. The upper bounds on the estimation errors in Option2 and Option3,

taking into account the actual ROI sizes in Fig. 3(c), are 0.33 and 2.35 respectively.

In order to empirically estimate the value estimation error in Option2 we estimate two
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policies for R1 using models that include actions costs based on ravg and ROI size(R1)
respectively. The difference in the values of the two policies for the initial state of R1

estimates the actual error. The error value is found to be 0.021 for Option2, and a

similar computation for Option3 with R2 (where the maximum error is expected to

occur) provides an error of 0.24. The actual error is hence significantly smaller than

the theoretical upper bound. Based on the acceptable approximation error, one of the

discretization options may be chosen.

The key consequence is that the robot can autonomously evaluate different ROI size

discretizations and trade-off the expected approximation error against the reduction in

the effort spent computing the policies. Fig. 3(d) compares the total (planning+execution)

times of CP and HiPPo against no-planning, as a function of the number of ROIs in the

images. The results were obtained by performing multiple trials of different queries

(≈ 30), using three or more visual operators. The policy caching trade-off ensures that

the total time of HiPPo is comparable to that of CP, even though HiPPo takes slightly

more time than CP because some operators are executed more than once. However,

HiPPo provides significantly higher reliability than CP, even over images with overlap-

ping objects—Table 2. Though the individual operators are optimized, they are tested

Approach % Reliability

Naive 76.67

CP 76.67

HiPPo 91.67

Table 2: Reliability of visual processing

on-board a cognitive robot that analyzes inputs from multiple modalities in parallel.

There is hence a delay before the operators are triggered, leading to the planning and

execution times reported in Figs. 3(b), 3(d).

5 Related Work

There is a significant body of work in computer vision on using a user-specified high-

level goal to plan a pipeline of visual operators. However, many of these planning al-

gorithms use deterministic models of the action outcomes: the pre-conditions and the

effects of the operators are propositions that are required to be true a priori, or are

made true by the application of the operator. Unsatisfactory results are detected using

hand-crafted rules, and handles by re-planning the operator sequence or modifying the

operator parameters [3, 15, 21]. There has also been some work on autonomous object

avoidance in vehicles [18], and on interpretation of 3D objects’ structure [11] but ex-

tensions to general vision tasks have proven difficult. In practical applications, the true

state of the system is not directly observable and actions have unreliable outcomes.

Recent research in AI planning has focused on relaxing the limitations of classical

planners to make them suitable to practical domains [1, 16]. The PKS planner [16] uses

a first-order language to describe actions in terms of their effect on the agent’s knowl-

edge, rather than their effect on the world. Hence the model is non-deterministic in the

sense that the true state of the world is determined uniquely by the actions performed,
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but the agent’s knowledge of that state is not. PKS captures the initial state uncertainty

and constructs conditional plans based on the agent’s knowledge. The Continual Plan-

ner (CP) [1], on the other hand, interleaves planning, plan execution and monitoring.

An agent in CP postpones reasoning about uncertain states until more information is

available. It allows actions to assert that the preconditions for the action will be met

when that point is reached during plan execution. If those preconditions are not met

during execution (or are met earlier), replanning is triggered. In applications with noisy

observations, it may be necessary to take several images of a scene and run the operators

more than once to reduce uncertainty. This cannot be represented in PKS or CP.

Unlike the approaches based on classical planners, Li et al. [13] modeled image in-

terpretation as a Markov Decision Process (MDP). Human-annotated images are used to

determine the reward structure, explore the state space and compute value functions that

are extrapolated to the entire state space. Online operation involves action choices that

maximize the value of the learned functions. Trevor Darrell [4] used manual feedback,

memory-based reinforcement learning and POMDPs to learn what foveation actions to

execute, and when to execute the terminal recognition action, in order to foveate salient

body parts in an active gesture recognition system. Manual feedback and extensive

training trials are however infeasible in many mobile robot domains.

The POMDP formulation [12] is appropriate for domains where the state is not di-

rectly observable, and the actions are unreliable. However, a POMDP formulation is

intractable for most practical domains. Pineau and Thrun [17] proposed a hierarchical

POMDP approach for behavior control of a robot assistant. In their action hierarchy,

the top level action is a collection of simpler actions that are represented by smaller

POMDPs and solved completely; planning happens in a bottom-up manner, combining

individual policies to provide the total policy. All model parameters are defined over

the same state space, but the relevant space is abstracted for each POMDP using a dy-

namic belief network. Similar approaches have been proposed for robot navigation [8]

but a significant amount of data for the hierarchy and model creation is hand-coded.

Theoretical analysis has resulted in techniques that impose and discover the hierarchy

in POMDPs [9, 23], but the methods are computationally expensive. We have proposed

an intuitive hierarchy, where the reward and observation models can be generated au-

tonomously to answer a range of queries reliably and efficiently.

6 Conclusions

Enabling mobile robots to learn from and collaborate with humans remains an open

challenge despite significant progress in some areas such as sensor technology, visual

information processing and autonomous sensor adaptation. Robots still lack the abil-

ity to autonomously tailor their sensory processing to the task at hand. Our prior work

posed visual processing management as a POMDP and introduced a hierarchical struc-

ture to make planning feasible in practical domains [20]. In this paper we have extended

the existing framework to handle dynamic changes in state dimensions. As a result we

are able to introduce appropriate visual operators and handle the problem of overlap-

ping objects in the scene. In a domain where a robot and a human jointly converse about

and manipulate objects on a tabletop, our approach enables the robot to exploit learned

probabilistic models of action outcomes to answer queries efficiently and with a higher

reliability than a representative modern planner.
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The current experimental scenario, though seemingly simple, does represent the

state of the art in cognitive robotics. The proposed approach is not an attempt to im-

prove visual processing routines. Our aim is to introduce a novel probabilistic planning

scheme based on cognitive levels of abstraction, which for a given task, reliably and

efficiently sequences a subset of the existing visual processing routines. One future re-

search direction is to include other operators that analyze a static scene (e.g. texture),

and those that change the state dimensionality (e.g. a viewpoint change). A change in

viewpoint can be modeled as a higher level of abstraction where the goal is to maximize

information i.e. minimize entropy. The existing framework also provides the tools to ad-

dress challenges such as learning 3D object affordances by interacting with the objects.

However, an increase in the size of action space and state space may require a range of

hierarchies [8, 17], though the hierarchies would be learned through approximations of

theoretical advances [23].

Here, we have presented a theoretical and empirical analysis of the approximation

error introduced by policy-caching. The robot is able to trade-off the effort involved in

solving the LL-POMDPs, against the approximation error introduced by caching and

re-using the computed policies of the ROIs—the appropriate ROI size discretization is

computed autonomously. We aim to enable the autonomous analysis of other factors

involved in the trade-off between reliability and efficiency.

Though we have analyzed the human-robot interactions in a probabilistic frame-

work, some parts of the system may be fully observable, for instance inferring relation-

ships (e.g. “left of”) between objects that are distinctly separated from each other. In-

corporating a hybrid combination of probabilistic and non-probabilistic planners would

make the hierarchical solution more tractable for the uncertain aspects of the system.

Overall, our work has opened up a promising direction of research for efficient

processing management. Ultimately, the aim is to enable robots to use a combination

of learning and planning to respond autonomously and efficiently to a range of queries

and commands in several human-robot interaction domains.
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