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Abstract
Accurate estimates of daily crop evapotranspira-
tion (ET) are needed for efficient irrigation man-
agement in regions where crop water demand ex-
ceeds rainfall. Daily grass or alfalfa reference ET
values and crop coefficients are widely used to esti-
mate crop water demand. Inaccurate reference ET
estimates can hence have a tremendous impact on
irrigation costs and the demands on freshwater re-
sources. ET networks calculate reference ET us-
ing precise measurements of meteorological data.
These networks are typically characterized by gaps
in spatial coverage and lack of sufficient funding,
creating an immediate need for alternative sources
that can fill data gaps without high costs. Although
non-agricultural weather stations provide publicly
accessible meteorological data, there are concerns
that the data may be unsuitable for estimating ref-
erence ET due to factors such as weather station
siting, data formats and quality control issues. The
objective of our research is to enable the use of al-
ternative data sources, adapting sophisticated ma-
chine learning algorithms such as Gaussian pro-
cess models and neural networks to discover and
model the nonlinear relationships between non-ET
weather station data and the reference ET computed
by ET networks. Using data from the Texas High
Plains region in the U.S., we demonstrate signifi-
cant improvement in estimation accuracy in com-
parison with baseline regression models typically
used for irrigation management applications.

1 Introduction
Accurate estimates of daily crop evapotranspiration (ET) are
essential for irrigation and water management within arid,
semi-arid and semi-humid regions where crop water demand
exceeds rainfall. A common method for estimating crop wa-
ter demand uses daily grass or alfalfa reference ET (ETo) val-

ues and crop coefficients (Kc). Accurate ET estimates are
essential given the increased demands on U.S. freshwater re-
sources, especially within the central Great Plains underlain
by the vast but declining Ogallala aquifer. ET networks, such
as the Texas High Plains ET Network (TXHPET), are col-
lections of strategically located weather stations that gather
meteorological data on well-watered reference crop (grass or
alfalfa) to calculate reference ET. TXHPET consists of 15
weather stations covering a 39-county area of the Texas High
Plains. Most of the region is semi-arid with temporal and
spatial variability in precipitation. The region has high evap-
orative demand (≈ 2500 mm/year Class A pan evaporation)
due to high solar radiation, high vapor pressure deficit (VPD)
and strong regional advection. Due to limitations in spatial
coverage of the 15 weather stations, it is a challenge to ac-
curately estimate ET in the associated counties. Although
a sufficiently dense network can capture the spatial variabil-
ity of parameters used to compute reference ET, funding and
staffing issues restrict ET networks from expanding coverage
through additional weather stations. There is thus an imme-
diate need for exploring alternative data sources capable of
augmenting data gaps without high maintenance and field-
based support costs. While data from non-agricultural, non-
ET weather stations are publicly accessible, there are con-
cerns that the data may not be appropriate for estimating ref-
erence ET due to factors such as weather station siting, data
formats, fetch requirements and data quality issues.

The research reported in this paper seeks to identify, eval-
uate and use alternative meteorological data sources for aug-
menting ET networks. As a representative example, we con-
sider the TXHPET network and a publicly available non-ET
network maintained by the National Weather Service (NWS),
henceforth referred to as “ET stations” and “NWS stations”
respectively. Sophisticated machine learning algorithms such
as Gaussian process models and neural networks are used to
formulate the challenge of discovering and modeling the non-
linear relationships between meteorological data from NWS
stations and reference ET computed by ET stations; the
learned models are then used to estimate reference ET based
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on data from NWS stations. We compare the estimation accu-
racy of these algorithms with that of linear regression models
typically used for irrigation management applications.

The research described in this paper has broader impli-
cations for water sustainability. The experimental method-
ology can be used for reference ET computation from non-
agricultural and non-ET weather stations in other regions of
the world. Accurate reference ET estimates will help produc-
ers accurately estimate crop water use and manage their soil-
water profiles, preventing over or under-watering of crops to
minimize crop damage and loss of profits. Furthermore, the
use of sophisticated machine learning algorithms, which are
yet to be fully exploited for water management, can impact
conservation of groundwater resources.

2 Related Work
Reference ET can be calculated using either the FAO-
56 [Allen et al., 1998] equation or the ASCE Standardized
Reference ET Equation [Allen et al., 2005]. Areal coverage is
not universal and there are significant gaps in the spatial cov-
erage. It is further complicated by high spatial variations in
air temperature, wind speed, wind direction and other weather
parameters due to regional effects such as atmospheric circu-
lation patterns and local effects such as topography, land use,
elevation and soil properties. It is hence difficult to deter-
mine daily reference ET for irrigation management of large
regions using one (or a small set of) predetermined station(s).
Although remote sensing-based ET estimates are showing
promise of expanding areal coverage and integration capa-
bilities, accuracy depends on accuracy of input weather data.

Most statistical models reported in irrigation management
literature are based on ordinary least square regression. Popu-
lar models used in regression include: (1) linear; Y = a+bX;
(2) exponential; Y = aebX ; (3) power or logarithmic; Y =
aXb; and (4) a quadratic polynomial; Y = aX2 + bX + c.
Variable Y represents the desired output (e.g., reference ET
values from ET stations) and X represents input values such
as rainfall, irrigation amount, weather parameters or reference
ET estimated at NWS stations. Values of coefficients a, b,
and c are tuned on training data such that computed values
of output are as close as possible to the given (i.e., ground
truth) output values. These regression formulations tend to
fix the basis functions before observing training data, and the
number of basis functions grows exponentially with the di-
mensions of input space. Furthermore, the basis functions are
not adaptable to data and the curse of dimensionality makes a
strong case for more sophisticated models.

The machine learning (ML) research community has de-
veloped many sophisticated algorithms for learning, infer-
ence, and estimation. In recent years, there has been a push
towards using ML algorithms to address concrete real-world
problems [Wagstaff, 2012]. Popular ML algorithms such
artificial neural networks (ANNs), support vector machines
(SVMs), and Gaussian Process models (GPs) provide sub-
stantial benefits over linear regression models [Bishop, 2008].
For instance, ANNs can be used to adaptively model complex
functions between input and output parameters, while SVMs
project input features to high dimensions, resulting in sparse
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Figure 1: Locations of 15 ET network stations and five NWS
weather stations in the Texas High Plains.

representations and robust decision boundaries. Similarly,
GPs use a non-parametric kernel-based algorithm to capture
the evolution of normally-distributed random variables repre-
senting the patterns being tracked [Higdon et al., 2003].

Some ML algorithms have been used for estimation tasks
in the realm of water sustainability. For instance, ANNs
have been used to design simulation and forecasting models
for rainfall-runoff [Campolo et al., 1999; Hsu et al., 1995;
Tokar and Johnson, 1999; Zealand et al., 1999], remote sens-
ing applications [Sudheer et al., 2010], and for downscaling
in remote sensing-based irrigation management [Ha et al.,
2011]. Similarly, GPs have been used to model wave charac-
teristics in oceanographic data [Rychlik et al., 1997]. How-
ever, complex irrigation management challenges have not yet
been formulated using sophisticated machine learning algo-
rithms. This paper investigates the use of GPs and ANNs,
which are well-suited to discover and model the nonlinear re-
lationships involved in reference ET estimation.

3 Materials and Methods
In an elaborate initial data preparation phase, publicly acces-
sible weather networks in the Texas High plains were as-
sessed based on real-time availability of data and continu-
ity of historic records of necessary parameters. Five suitable
NWS (non-ET) stations were identified and their locations
were used to create a Thiessen polygon map, which (in turn)
was used to pair these stations with appropriate ET stations of
the TXHPET network for evaluation—Figure 1 shows the ET
stations and NWS stations. The relevant weather parameters
include: minimum and maximum daily air temperature, dew
point temperature, relative humidity, solar radiation, wind
speed, and barometric pressure; missing data were estimated
using the standardized reference ET methodology [Allen et
al., 2005]. Models were then learned, e.g., using GP and re-
gression algorithms, to understand the relationships between
each weather parameter measured at NWS stations and the
corresponding measurements at ET stations. Certain parame-
ters are expected to have lower correlation, due to station sit-
ing and spatial variability (e.g. wind speed) or due to manual
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computation (e.g. solar radiation and barometric pressure).
Models were also learned using different subsets of parame-
ters measured at NWS stations as input and the reference ET
computed at ET stations as output. All models were evalu-
ated using coefficient of determination (R2 ∈ [0, 1]) and root
mean square error (RMSE). R2 describes the proportion of
variability in observed data that is explained by the model; a
higher value indicates a better fit—see Moriasi et al. (2007)
for more information on performance statistics. These mod-
els helped confirm that reference ET computation requires
models of nonlinear relationships and needs to consider all
NWS weather parameters—more details in Section 4.

Reference ET estimation from weather parameters mea-
sured by NWS stations was then posed as a supervised learn-
ing problem. The input is a set of vectors of seven weather
parameters collected by NWS weather stations and used to
compute reference ET. The output (i.e., target) values are
reference ET values from the TXHPET network. Learned
models capture the relationship between inputs and output,
and estimate reference ET given new data from the NWS
stations. Specifically, training data consists of N vectors
of inputs: X = {x1, ...,xN} and corresponding target out-
puts: T = {t1, ..., tN}, while testing data consists of previ-
ously unseen inputs and target outputs: {(x̂i, t̂i), i = 1...N}.
Learned models process input vectors of the testing dataset
to estimate outputs: ŷ(x), which are compared with ground
truth target outputs. Models were also learned using subsets
of input vectors to determine if certain parameters were not
relevant to reference ET computation. This paper investigates
the use of Gaussian Process models (GPs) and Artificial Neu-
ral Networks (ANNs), and compares their estimation accu-
racy with (baseline) linear regression (LR) models using per-
formance statistics (R2 and RMSE).

The experimental evaluation used the daily reference ET
database over a period of ten years (2001-2010), which was
divided into two equal parts. Data corresponding to odd-
numbered days of the year were used for model development
and data from even-numbered days of the year were used for
validation. Such a data division is required because the wet
and dry years are typically inconsistent; estimation models
trained with data corresponding to specific years (or months)
may result in high estimation errors on data corresponding to
other years (or months). Our data division ensures that test
data are drawn from the same population as the training data.
To eliminate any bias, experiments were repeated after swap-
ping the training and test datasets.

3.1 Linear Regression

Linear regression (LR) models constitute one of the simplest
forms of regression algorithms. LR models are widely used
for estimation problems in the irrigation management and wa-
ter sustainability community; we used LR models as the base-
line for comparison. Ordinary least squares regression is the
most common form of LR. Estimating output values for in-
put vectors is posed as the task of evaluating parameters of a
linear equation of the form:

y(x,w) = w0 + w1x1 + ... + wDxD (1)

where y is the dependent (output or target) variable that is a
linear function of the input vector x and weights w; and w0

is the bias parameter. For computing reference ET (described
in Section 3),, x is the vector of (NWS) weather parameter
values and y is the target reference ET value. Each entry xi

of the input vector x has a corresponding wi that needs to be
determined to best fit the training data. Although it is possible
to include nonlinear basis functions (see below) of input vari-
ables in LR, the simple LR models widely used in irrigation
management applications form the baseline. LR models (in
general) have useful computational properties, but they use
fixed basis functions and are limited in their applicability to
large scale problems by the curse of dimensionality.

3.2 Artificial Neural Network
Artificial neural networks (ANNs) were motivated by mod-
els created to represent information processing in biological
systems [Bishop, 2008]; the human brain is known to contain
many billion neurons that are interconnected to form a net-
work. Within the ML community, ANNs are used as models
for statistical pattern recognition; nodes of the network repre-
sent inputs (and hidden variables) and the edges represent the
influence nodes have on each other. ANNs build on the more
advanced linear models of regression that use linear combi-
nations of fixed nonlinear basis functions φj(x):

y(x,w) = f
( M∑

j=1

wjφj(x)
)

(2)

ANNs make this model adaptive by parameterizing the basis
functions. Typically each basis function is a nonlinear func-
tion of a linear combination of inputs; the coefficients of this
linear combination and the wj in Equation 2 are parameters
that are tuned adaptively to best fit training data.

A popular type of ANN is the multilayer feed forward net-
work in which data flow from input to output. A feed for-
ward ANN can have multiple layers; the first (input) layer
connects to input variables, and the final (output) layer con-
nects to target variables. One or more hidden layers can lie
between input and output layers. The processing elements
(i.e., nodes) of each layer connect with neighboring layers;
typically, nodes within the same layer are not connected and
nodes in non-adjacent layers are not connected. Each node
in a layer (other than input layer) typically receives a signal
from all nodes of the previous layer. The effective input sig-
nal at each node is the weighted sum of previous layer nodes’
outputs. This input signal passes through a nonlinear func-
tion to produce the output signal of the node. The ANN thus
represents a set of functional transformations [Bishop, 2008].
For an ANN with one hidden layer, activations are first con-
structed as linear combinations of input variables:

aj =
D∑

i=1

w
(1)
ji xi + w

(1)
j0 (3)

where j = 1, ...,M , and superscript (1) indicates that the pa-
rameters correspond to first layer of the network. These acti-
vations are the inputs of hidden layer nodes, and are trans-
formed using nonlinear activation functions: zj = h(aj),
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providing outputs of the hidden units, i.e., outputs of ba-
sis functions in Equation 2. Typically, the logistic sigmoid
function is used for this nonlinear transformation: h(a) =
1/(1 + exp(−a)). Outputs of these transformations are com-
bined linearly to provide output unit activations:

ak =
M∑

j=1

w
(2)
kj zj + w

(2)
k0 (4)

where k = 1, ...,K, with K being the total number of out-
put nodes, and superscript (2) indicates that the parameters
correspond to second layer of the network. The output acti-
vations are transformed using the appropriate activation func-
tion (identity function for standard regression) to obtain net-
work outputs yk. The overall network function for sigmoidal
output unit activation functions combines Equations 2–4:

yk(x,w) = σ

 M∑
j=1

w
(2)
kj h

(
D∑

i=1

w
(1)
ji xi + w

(1)
j0

)
+ w

(2)
k0


(5)

where vector w includes weights and bias parameters, con-
trolling the ANN that is a nonlinear mapping from inputs
to outputs. For reference ET computation, the network has
seven input nodes and a single output node (K = 1). Dur-
ing the training phase, the backpropagation algorithm repeat-
edly performs a forward pass of data (through the network)
to compute the error between actual output and network out-
put, and performs a backward pass of the gradient of error to
change w to best fit the data.

3.3 Gaussian Process
Gaussian processes are sophisticated learning models used
for regression [Williams and Rasmussen, 1996] and classifi-
cation [Williams and Barber, 1998]. Parametric models such
as ANNs and linear regression require y(x) to have an explic-
itly defined functional form whose parameters are defined in
advance. The Bayesian treatment of regression starts with
a prior distribution over weights w and y(x,w), and uses
training data to obtain a posterior distribution over regression
functions that is used for estimation. In GP models, the pa-
rameters are eliminated and the unknown function y(x) exists
in the infinite-dimensional space of possible functions, and a
prior is defined over this space. GP models are thus consid-
ered to be non-parametric. The difficulty of revising a distri-
bution in the infinite space of functions is overcome by con-
sidering values of the function over the discrete set of training
samples [Bishop, 2008]. Stochastic random variables define
priors for each input vector, and random functions defined
over the space of inputs constitute the GP prior. During the
training phase, the discrete set of inputs are used to modify
these functions to pass as close as possible to the target out-
puts, thus approximating the (unknown) underlying function.
Gaussian processes can be viewed as a natural generalization
of a Gaussian distribution over a finite vector space to an in-
finite space of functions. A GP is given by:

f ∼ GP (µ(x), C(x, x′)) (6)

where the function f is distributed as a Gaussian process with
mean function µ(x) and covariance function C(x, x′). In this

paper,, the mean function is defined as the zero function. The
covariance function expresses the expected covariance of val-
ues at each pair of points x and x′. Given N input vectors in
the training data, the covariance function is a N × N matrix
K : Kij = C(xi,xj). This matrix can be used to estimate
(output) values for new inputs. In general, the estimated dis-
tribution is Gaussian with mean and covariance:

ŷ = kT (x)K−1t (7)

σ2
ŷ(x) = C(x,x)− kT (x)K−1k(x)

where k(x) = (C(x,x1), ..., C(x,xN ))T , K is the covari-
ance matrix for training data, and t = (t1, ..., tN )T . The
default algorithm for training GP models has O(N3) time
complexity due to matrix inversion in Equation 7. GP for-
mulations can therefore become infeasible for data with a
very large number of samples. Although algorithms are being
developed to enable GP formulations of datasets that have a
large number of samples, time complexity is not an issue of
concern for the experiments reported in this paper.

Many different options exist for selecting covariance func-
tions for a GP. The main requirement is that the function
should generate a non-negative definite covariance matrix for
any set of inputs (x1, ...,xN ). Graphically, the goal is to de-
fine covariances such that points that are nearby in the input
space produce similar estimations. The research reported in
this paper uses the popular radial basis function (RBF) ker-
nels [Musavi et al., 1992]:

C(x, x′) = e−γ∗(x−x′)2 (8)

GP models do not require the tuning of specific parameters
or weights. Instead, the covariance function contains hyper-
parameters that can be tuned automatically to maximize the
likelihood of training data. Assigning different values to
hyper-parameters results in different GP models. We ran-
domly initialized a finite set of hyper-parameter values over
the space of possible values. The training error is calculated
using each such GP model learned from training data inputs,
comparing estimated outputs with actual outputs in the train-
ing data. Hyper-parameter values that provide GP models
with the lowest training error are selected.

4 Experimental Results
The GP, ANN, and LR models were evaluated on the ten-year
historical data for the Texas High Plains region; five NWS sta-
tions were paired with an appropriate subset of 15 TXHPET
stations. Models were learned using 50% of the available data
and evaluated on the remaining 50% (previously unseen) of
the data—see Section 3. The algorithms were implemented in
Java by building on the WEKA open-source machine learning
library [Hall et al., 2009].

Models learned to discover the relationships between NWS
station parameters and the corresponding ET station parame-
ters show high correlation in certain parameters (e.g., R2 =
0.99 for air temperature), while parameters with high spatial
variability, e.g. wind speed and solar radiation, have a much
lower correlation. These observations may partly be due to
siting of NWS stations, e.g., micro-climate and proximity to
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(a) LR Estimations
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(b) ANN Estimations
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(c) GP Estimations

Figure 2: Illustrative example of the estimation capabilities of LR, ANN, and GP models on the data obtained from one NWS
station-ET station matched pair.

Table 1: Performance measures for estimations obtained from the LR, ANN, and GP models at each NWS station-ET station
pair considered in this study. GP models provide highest accuracy while ANN models are more accurate than LR models.

Linear Regression Artificial Neural Network Gaussian Process
NWS - TXHPET Station R2 RMSE(mm) R2 RMSE(mm) R2 RMSE(mm)

Amarillo - Bushland-ARS 0.90 0.80 0.94 0.63 0.95 0.60
Amarillo - Dimmit 0.90 0.80 0.92 0.69 0.92 0.68
Amarillo - Bushland-JBF 0.90 0.85 0.94 0.65 0.95 0.62
Amarillo - West Texas A&M Feedlot 0.90 0.80 0.94 0.62 0.95 0.58
Childress - Chillicothe 0.87 0.93 0.90 0.80 0.91 0.76
Childress - Wellington 0.88 0.85 0.92 0.74 0.92 0.70
Dalhart - Dalhart 0.95 0.54 0.98 0.36 0.98 0.33
Dalhart - Etter 0.92 0.74 0.94 0.62 0.95 0.59
Hutchinson - Morse 0.90 0.84 0.94 0.65 0.95 0.61
Hutchinson - Perryton 0.88 0.94 0.93 0.72 0.94 0.69
Hutchinson - White Deer 0.90 0.83 0.94 0.64 0.94 0.62
Lubbock - Farwell 0.87 0.84 0.88 0.79 0.89 0.76
Lubbock - Halfway 0.91 0.71 0.94 0.59 0.94 0.57
Lubbock - Lamesa 0.91 0.73 0.93 0.62 0.94 0.58
Lubbock - Lubbock 0.94 0.58 0.97 0.4 0.98 0.36

fields or roads; much lower correlations were found when
spatial distance between NWS and ET stations were larger.
Accuracy of the models also decreased with increase in the
spatial distance, which may be because the stations fall un-
der different atmospheric circulation patterns [Buishand and
Brandsma, 1997]. Models learned using subsets of weather
parameters measured at NWS and the reference ET computed
at ET stations identified the presence of nonlinear relation-
ships and confirmed that all NWS weather parameters need
to be considered for reference ET computation. All subse-
quent experiments (below) therefore used all NWS weather
parameters as inputs and the reference ET computed at ET
stations as output to learn and evaluate models.

Figure 2 illustrates the estimation capabilities of LR, ANN,
and GP model for a specific NWS station-ET station matched
pair. The estimation capability is evaluated using the R2 mea-
sure; models that provide highly accurate estimations will
result in points that lie on (or very close to) the Y = X
line. These plots show that the estimations provided by ANN
and GP models are significantly more accurate than the LR
models predominantly used for irrigation management appli-
cations. We also observe that GP models perform slightly
better than ANN models—most points are along the diagonal
in Figure 2(c) and the R2 value is larger.

Table 1 summarizes the performance of each of the three
models at each NWS station-ET station pair considered in our
study. The estimation capability was evaluated using the R2

and RMSE performance measures. Similar to the results
observed in Figure 2, the ANN and GP models provide more
accurate estimations as they better capture the relationships
in the data. We also observed that the GP models performed
at least as well as the the ANN models in all NWS-ET sta-
tion pairs considered in the experimental trials; the difference
is more pronounced in certain instances and results are sta-
tistically significant. With the GP models, the R2 values are
closer to 1 with a lower RMSE.

Figure 3 shows the RMSE measures obtained for the 15
NWS station-ET station pairs. GP and ANN models provide
much lower RMSE in comparison with LR models, i.e., refer-
ence ET values estimated by GP and ANN models are much
closer to reference ET values obtained from the correspond-
ing TXHPET stations. Although the improvement in estima-
tion accuracy of the GP and ANN models (compared with LR
models) is different at different stations, the improvement is
statistically significant for all stations, including the improve-
ments provided by GP in comparison with ANN. GP models
thus show significant promise in enabling the use of alterna-
tive data sources for computing reference ET values.
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Figure 3: Comparison of RMSE obtained using the GP, ANN, and LR models for each NWS station-ET station pair considered
in this study. GP and ANN models provide much lower RMSE in comparison with LR models, with the GP models performing
slightly better than the ANN models.

Pairing the NWS stations with the corresponding ET sta-
tions at Lubbock and Dalhart produced highly accurate esti-
mations: R2 = 0.98 and 0.98 respectively. However, match-
ing the NWS station at Lubbock with the Farwell ET station
obtained R2 = 0.89 and RMSE of 0.76 mm for daily ref-
erence ET.; although this represents ≈ 29% error, it is still
significantly better than LR models that provide an RMSE
of 0.84 mm with a relative error of 33%. Future research
will consider additional features for input (e.g., elevation) and
other GIS selection methods for pairing NWS stations with
TXHPET stations. For instance, although our analysis identi-
fies a good correlation between the Farwell TXHPET station
and the Lubbock NWS station, including additional features
may help identify stations that are strongly correlated.

The improvement in estimation accuracy provided by ANN
and GP models has significant practical value. For instance,
the average improvement in RMSE for daily reference ET es-
timations provided by GP and ANN models compared with
the LR models is ≥ 0.2 mm. For a typical crop season
of about 200 days, this amounts to approximately 40 mm
over the season. Although this difference may seem rather
small, one acre-inch of water for all fields of the Texas High
Plains translates to ≈ 93.9 billion liters of water [Marek et
al., 2010], which is comparable to the amount of water used
by the entire city of Houston, Texas (population ≈ 2 million
in 2010 US census) in about two and a half months.

5 Conclusion
Efficient water resource management is a pressing concern
in irrigated agriculture throughout arid and semi-arid regions
in which crop water demands exceed rainfall. Accurate es-

timates of crop evapotranspiration (ET) are essential for irri-
gation management in these regions. Due to spatial variabil-
ity and funding constraints for dense networks, ET stations
struggle to accurately estimate reference ET in their entire
areal coverage. This paper describes the results of a research
study towards the long-term objective of using publicly avail-
able non-agricultural, non-ET stations for filling the data gaps
in ET networks.

We investigated the use of sophisticated machine learn-
ing algorithms such as artificial neural networks (ANNs)
and Gaussian process models (GPs) to discover and model
the nonlinear relationships between meteorological data col-
lected by National Weather Service (NWS) stations and the
reference ET computed by ET stations in the Texas High
Plains. Experimental results show that ANNs and GPs pro-
vide significantly more accurate estimations of daily refer-
ence ET than the linear regression models widely used for
irrigation management applications; the (non-parametric) GP
models result in more accurate estimates of reference ET in
comparison with ANNs. This improvement in estimating the
reference ET values translates to huge reductions in costs as-
sociated with wasteful use of water resources (due to over-
watering), in addition to minimizing crop stress and crop loss
(due to under-watering).

Although this study focused on the Texas High Plains, the
experimental methodology can be adapted to other regions
of the world. Furthermore, the machine learning algorithms
described in this paper in the context of a key irrigation man-
agement challenge possess significant potential for address-
ing open challenges in water resources management and other
subfields of agriculture.
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