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Abstract
Recognizing, reasoning about, and providing un-
derstandable descriptions of spatial relations be-
tween objects is an important task for robots in-
teracting with humans. This paper describes an
architecture for incrementally learning and revis-
ing the grounding of spatial relations between ob-
jects. Answer Set Prolog, a declarative language,
is used to represent and reason with incomplete
knowledge that includes prepositional spatial rela-
tions between scene objects. A generic grounding
of prepositions for spatial relations, human input
(when available), and non-monotonic logical infer-
ence, are used to infer spatial relations between 3D
point clouds in given scenes, incrementally acquir-
ing a specialized metric grounding of the prepo-
sitions and the relative confidence associated with
each grounding. The architecture is evaluated on a
benchmark dataset of tabletop images and on com-
plex simulated scenes of furniture.

1 Introduction
Robots1 deployed to assist humans in complex domains have
to reason with incomplete knowledge of domain objects and
relations between them. Also, both sensing and actuation are
unreliable on robots. These problems are partially offset by
the robot’s ability to sense and interact with the domain and
humans, using the corresponding observations to revise the
existing knowledge. Since humans may not have the time
or expertise to provide comprehensive feedback, the robot
can learn more effectively by referring to objects or events
in terms of other known objects. For instance, in Figure 1a,
asking “what is behind the cereal box?” directs the human’s
attention to the box of crisps. This paper focuses on reason-
ing with such spatial relations between objects, and on incre-
mentally acquiring the grounding (i.e., meaning in the physi-
cal world) of words that describe these relations. The ability
to accurately infer spatial relations improves performance in
other tasks, e.g., scene understanding [Thippur et al., 2015].

Spatial relations are often described using prepositions,
i.e., words such as above, below, behind, and in. To rea-
son with these prepositions, the robot needs a vocabulary and
a grounding of these words, e.g., a mapping of these words to
3D regions or distances from reference points or objects. This
grounding has to be revised over time in dynamic domains

1Terms “robot” and “agent” are used interchangeably.

(a) (b)

Figure 1: (a) Illustrative image of scene with objects; and (b) seg-
mented version with 3D point clouds of objects in different colors.

to account for factors such as sensing errors and changes in
viewpoint. A robot with an incorrect grounding of spatial
relations is likely to make decisions that are incorrect or sub-
optimal. The architecture described in this paper seeks to ad-
dress these challenges and has the following characteristics:
• A declarative language is used to represent incomplete

domain knowledge, which includes spatial relations be-
tween objects based on a generic (initial) grounding of
prepositions in the 3D regions around objects.
• Non-monotonic logical inference with the existing

knowledge, and human input (when available), are used
to infer spatial relations between point clouds in new
scenes, incrementally learning a specialized, histogram-
based grounding of prepositions.
• Human input (when available) is also used to incremen-

tally compute the relative accuracy of spatial relations
inferred by the generic and specialized groundings, us-
ing the more reliable grounding for subsequent scenes.

In this paper, we consider (as input) 3D point clouds of ob-
jects in a scene, e.g., Figure 1b, and a generic grounding
of prepositions for seven position-based and three distance-
based relations. Learning corresponds to the incremental ac-
quisition and revision of histograms as specialized ground-
ing of these relations. We do not explicitly represent the un-
certainty in processing visual input; any conclusion drawn
with high probability is elevated to a logic statement with
complete certainty. Thus, our architecture enables robots to
(a) infer spatial relations using a generic, manually-encoded
grounding; (b) incrementally acquire a specialized grounding
of spatial relations from a small number of examples; and (c)
determine the relative confidence in each grounding and use
the more reliable grounding for subsequent inference. We
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evaluate these capabilities on a benchmark dataset of tabletop
objects and complex, simulated scenes of furniture.

2 Related Work
Existing approaches for grounding and interpreting the spa-
tial relations between objects are broadly based on the use
of manually encoded rules, or on training or learning algo-
rithms. With manually-encoded rules, the vocabulary of spa-
tial relations is grounded using Qualitative Spatial Represen-
tations (QSR) [Ye and Hua, 2013; Zampogiannis et al., 2015;
Elliott and Vries, 2015]. These approaches often approxi-
mate objects as points or establish rigid boundaries between
spatial relations, and may not estimate spatial relations ac-
curately. Moreover, the spatial relations are encoded in ad-
vance, but the grounding of these relations is likely to change
over time in dynamic domains. Approaches that seek to learn
the spatial relations or their grounding do so based on Met-
ric Spatial Representations (MSR), i.e., measures such as an-
gles and distances between objects. MSR have been used
in approaches for different applications, e.g., for predicting
the success of a robot’s action in a previously unseen sce-
nario [Fichtl et al., 2015], and to learn relations between ob-
jects and generalize them to new objects [Mees et al., 2017].
Other work has focused on choosing appropriate prepositions
to describe the content of an image [Belz et al., 2015]. In
the context of human-robot interaction, existing systems have
executed actions on objects and answered queries about spa-
tial positions [Guadarrama et al., 2013], compared QSR and
MSR for scene understanding [Thippur et al., 2015], and used
MSR and a kd-tree to dynamically infer spatial relations [Zi-
aeetabar et al., 2017]. However, these systems learn the
grounding of spatial relations offline or in a separate training
phase. In contrast, our approach starts with a hand-designed
generic grounding, and incrementally and interactively learns
a specialized grounding from experience and feedback.

In recent years, there has been considerable work on rec-
ognizing objects and inferring their spatial relationships from
images and natural language expressions, e.g., for navigation
and manipulation [Paul et al., 2016; Pronobis and Rao, 2017;
Shridhar and Hsu, 2017]. Since these system use neural (or
deep) network architectures, they require a large number of
training examples, learn the grounding offline, and are com-
putationally expensive. Our architecture, on the other hand,
combines the complementary strengths of non-monotonic
logical inference, QSR, MSR, and interactive learning, to
ground spatial relations from a small number of images and
some human feedback.

3 Proposed Architecture
Figure 2 shows an overview of the key components of the
architecture. We consider seven position-based preposi-
tions (in, above, below, front, behind, right, left) and three
distance-based prepositions (touching, not-touching, far),
These prepositions are used to encode spatial relations be-
tween specific scene objects as logic statements in Answer
Set Prolog (ASP), a declarative programming paradigm. The
QSR module provides an initial, manually-encoded, generic
grounding of spatial relations, which is used to extract spatial
relations between pairs of 3D point clouds of each input scene
(the “new observation”). Human feedback, when available, is
also used to label the spatial relations between any pair of
point clouds in a scene. Both the QSR-based output and hu-
man feedback are transmitted by the control node to the MSR

QSR Control Node MSR

New Observation

ASP program

Update

Feedback

Prepositions

Figure 2: Proposed architecture.

module, which incrementally acquires and revises the MSR-
based grounding of prepositions in the form of histograms.
Assuming human feedback to be accurate, the control node
also computes the relative trust in the QSR and MSR ground-
ings. The more reliable grounding is used to extract logic
statements representing spatial relations between scene ob-
jects in subsequent images; these are added to ASP program.
Individual components are described below.

Our architecture includes other modules, e.g., the 3D point
cloud of a scene is sub-sampled and the Euclidean cluster ex-
traction segmentation algorithm [Rusu, 2010]2 is used to seg-
ment the point cloud into objects. This algorithm is accurate
for well-separated objects, and our system can recover from
segmentation errors for occluded objects. These modules are
not the focus of this work and are not discussed below.

3.1 Domain Representation in ASP
To represent and reason with incomplete knowledge, we use
Answer Set Prolog (ASP), a declarative language that can
represent recursive definitions, defaults, causal relations, spe-
cial forms of self-reference, and language constructs that oc-
cur frequently in non-mathematical domains, and are difficult
to express in classical logic formalisms. ASP is based on the
stable model semantics [Gelfond and Kahl, 2014].

An ASP program (Π) has a sorted signature Σ and axioms.
Σ includes sorts such as object, location, color, shape, and
step (for temporal reasoning); statics, i.e., domain attributes
that do not change over time; and fluents, i.e., domain at-
tributes whose values can be changed. In our case, the spatial
relations are fluents such as:

in(object, object), above(object, object), (1)
touching(object, object), left(object, object).

which are described in terms of their arguments’ sorts. We
choose the second argument of each such relation as the ref-
erence object. In addition, predicate holds(fluent, step) im-
plies that a particular fluent holds true at a particular timestep.

The axioms of Π encode some rules to infer relations based
on the spatial relations whose grounding is acquired:

holds(above(A,B), I)←holds(below(B,A), I).

holds(under(A,B), I)←holds(touch(A,B), I),

holds(below(A,B), I). (2)

2Available at www.pointclouds.org for download.
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Figure 3: (a) Bounding box for point cloud of a particular object;
and (b) Pyramids delimiting space around the bounding box.

where the second axiom says that any object A that is below
object B and touching it is considered to be under it. When
action effects are to be modeled, the signature and axioms
include actions with their preconditions and effects; a his-
tory of observations and executed actions is also considered.
Since we do not currently need these capabilities, we do not
describe them below. The ground literals in an answer set
obtained by solving Π represent beliefs of an agent associ-
ated with Π. All reasoning (e.g., planning and inference) can
be reduced to computing answer sets of Π [Gelfond and Kahl,
2014]. We use the SPARC system [Balai et al., 2013] to com-
pute answer set(s) of ASP programs.

The ASP-based representation of knowledge has some ad-
vantages. It supports concepts such as default negation (nega-
tion by failure) and epistemic disjunction. Unlike “¬a”,
which implies that “a is believed to be false”, “not a” only
implies that “a is not believed to be true”; unlike “p ∨ ¬p”
in propositional logic, “p or ¬p” is not tautological. Each
literal can be true, false or unknown, i.e., the agent does
not have to believe anything that it is not forced to believe.
Also, unlike classical first-order logic, ASP supports non-
monotonic logical reasoning, i.e., adding a statement can re-
duce the set of inferred consequences, aiding in the recovery
from errors due to the incomplete knowledge. Modern ASP
solvers support efficient reasoning in large knowledge bases,
and are used by an international research community.

3.2 Qualitative Spatial Representation
Our QSR model is similar to that proposed by [Zampogian-
nis et al., 2015]. For any given 3D point cloud, a bound-
ing box containing it (i.e., convex cuboid around the object)
is created—see Figure 3a. If this point cloud is considered
the reference object, the space around this object is divided
into non-overlapping pyramids representing the relations left,
right, front, behind, above and below—see Figure 3b. In our
implementation, the spatial relation of an object with respect
to a reference object is determined by the non-overlapping
pyramid around the reference that has most of the point cloud
of the object. Also, any object with most of its point cloud lo-
cated inside the bounding box of the reference object is said
to be in the reference object. This definition of in can lead to
errors, especially in domains with non-convex objects, e.g.,
a book that is actually under a large table may be classified
(incorrectly) as being in the table because the bounding box
of the table envelopes most of the point cloud of the book.

For ease of representation, our approach differs
from [Zampogiannis et al., 2015] in the definition of
the distance-related prepositions: touching, not-touching
and far. For a pair of point cloud clusters, the 10% closest
distances between pairs of points drawn from the point
clouds are computed, and the following criteria determine

Figure 4: Example of 1D histogram grounding “not-touching”.

if the two objects are touching, not touching, or distinctly
separated (i.e., far) from each other:

touching ⇒ distance(10%) ≤ 0.01 (3)
not-touching ⇒ 0.01 < distance(10%) < 1.0

far ⇒ distance(10%) ≥ 1.0

where distances are measured in meters, i.e., two objects are
touching if the 10% closest distances are less than or equal
to 1cm. Although the generic, manually-encoded ground-
ing based on the QSR model does not change over time, it is
used by the robot to identify spatial relations between objects.
This is based on the reasonable assumption that the robot has
an initial idea of its camera’s pose with respect to the scene.
Next, we describe a specialized grounding of spatial relations
that can be acquired over time.

3.3 Metric Spatial Representation
MSR-based grounding of the spatial relations is also used to
identify spatial relations between objects. Unlike the QSR-
based grounding, the MSR model supports incremental up-
dates from observations and human feedback.

Assume temporarily that the MSR module receives a pair
of point cloud clusters corresponding to two objects, and the
prepositions of the spatial relations between the objects, e.g.,
from QSR or humans. Our MSR module grounds each prepo-
sition using histograms, also referred to as “visual words”,
which are created by considering the point cloud data in a
spherical coordinate system—each point is represented by its
distance to a reference point and two angles (i) θ ∈ [0◦, 180◦];
and (ii) ϕ ∈ [−180◦, 180◦]. On a robot, the coordinate frame
for grounding is defined with respect to the robot’s coordinate
frame, its camera, and/or reference objects—information in
one coordinate frame can be transformed to other coordinate
frames. Also, sensor input processing introduces noise, but
the non-monotonic logical reasoning and incremental learn-
ing modules of our architecture enable elegant recovery from
errors due to noise.

We ground each of the seven position-based prepositions
(in, left, right, front, behind, above, below) as 2D histograms
of angles θ and ϕ, whereas each of the three distance-based
prepositions (touching, not-touching, far) are ground using
1D histograms of the 10% closest distances between points
in pairs of objects. Figures 4 and 5 show a distance and po-
sition histogram respectively. All histograms are normalized
to ensure that large objects with many points do not have any
undue influence on the grounding of relations.
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Figure 5: Example of 2D position histogram grounding “left”.

Any learned MSR-based grounding(s) are used on new
scenes. For any given pair of point cloud clusters in a new
scene, the corresponding 2D and 1D histograms (i.e., visual
words) are constructed. The learned visual words that are
most similar to the extracted visual words are used to as-
sign the distance-based and position-based spatial relations
between the corresponding scene objects, e.g., “object1 is
below object2 and not touching it”. These inferred spatial
relations are automatically translated to statements added to
the ASP program, e.g., below(obj1, obj2). Since axioms in
the ASP program are applied recursively, each point cloud
cluster only needs to be considered once.

The similarity between visual words is computed using the
intersection measure for 1D (distance) histograms. For the
2D (position) histograms, we use the χ2 measure, e.g., for
any two histograms H and G:

Dχ2(H,G) =
∑
i

|hi − gi|2

2(hi + gi)
(4)

where hi and gi are bins in H and G respectively; larger
values denote greater similarity. We use this measure for
2D histograms because the boundaries between the position-
based relations are more difficult to define than those between
distance-based relations. Once the spatial relations between
a pair of point cloud clusters have been determined in a new
scene, this information updates the learned visual words us-
ing a standard normalized histogram merging approach, i.e.,
the MSR-based grounding is updated continuously.

3.4 Combined Model and Other Relations
Recall that in addition to ASP-based inference using QSR
and MSR groundings, spatial relations between point cloud
clusters can also be determined by human feedback. While
the QSR-based grounding remains unchanged and the MSR-
based grounding changes as new scenes are processed, human
input is assumed to be accurate, i.e., each human participant
providing feedback is expected to be able to interpret spa-
tial relations correctly. Since the QSR-based and MSR-based
groundings may disagree on the relation between some pairs
of objects, the control node initially assigns high (low) con-
fidence to the QSR-based (MSR-based) grounding. The rel-
ative confidence in each grounding is then updated based on
the number of times the output from the grounding matches
human input—the more reliable grounding is used for subse-
quent scenes. Incorrect human annotation can thus affect the
confidence in a grounding only if the number of such annota-
tions is comparable to the number of correct annotations.

Object shapes and sizes may also influence spatial relations
depending on the viewpoint. However, since the MSR-based
grounding is based on histograms of relative distances and
angles, it can be used to infer spatial relations over a range
of viewpoints. Also, the architecture has two mechanisms to
limit and recover from errors. If the QSR-based grounding is
applicable, e.g., viewpoint has not changed substantially, the
system can use it to obtain an initial estimate of spatial rela-
tions and incrementally acquire the MSR-based grounding. If
the QSR-based grounding is not applicable, it is still possible
to acquire an MSR-based grounding from human input and
use it for subsequent inference. Furthermore, the MSR-based
grounding is obtained from a small number of images and is
transferable, as described in Section 4.

There are some important caveats related to the proposed
approach. First, the QSR-based grounding is assumed to be
reasonably accurate initially; if this assumption does not hold
and no human input is available, an inaccurate MSR-based
grounding may be acquired, resulting in incorrect estimates
of spatial relations. Second, human feedback improves the
specialized grounding (MSR) and overall accuracy, but it is
not essential for estimating spatial relations. Third, the en-
coded prepositions (with learned groundings) are translated
to logic statements (i.e., observation literals) in an ASP pro-
gram. These observations and the commonsense knowledge
encoded in the ASP program limit possible relations between
scene objects and help infer composite relations (e.g., on,
close to, next to etc). For instance, the spatial relation on
may be defined by the axiom:

on(O1, O2) ← above(O1, O2), (5)
touching(O1, O2).

which states that if object O1 is above O2 and touching it,
then O1 is on O2. It is also possible to learn such axioms in-
teractively, as demonstrated by some recent work [Sridharan
and Meadows, 2017]. Finally, we currently assume that each
pair of objects is related through one position-based and one
distance-based spatial relation, but not all the prepositions are
(or need to be) mutually exclusive.

4 Experimental Setup and Results
In this section, we describe the experimental setup and the
results of experimental evaluation.

4.1 Experimental Setup
For experimental evaluation, we used the Table Object
Scene Database (TOSD)3 and simulated scenes. The TOSD
database contains 111 scenes for training and 131 scenes
for testing—many scenes include complex object configura-
tions, e.g., Figure 1a, while some scenes have only two ob-
jects, e.g., Figure 6a. Since TOSD includes segmentation la-
bels but not spatial relation labels, we manually labeled 200
scenes for experiments. In addition to TOSD scenes, simu-
lated scenes were generated with a real-time physics engine
(Bullet physics library) by manually encoding the ground
truth grounding of spatial relations. Different subsets of
21 household objects from the Yale-CMU-Berkeley (YCB)
dataset [Calli et al., 2015], along with a table and a shelf, were
used to create 1400 simulated scenes (200 for each preposi-
tion). An additional 25 labeled scenes for each preposition
(175 total) were used for training. Experiments were de-
signed to test two hypotheses:

3https://repo.acin.tuwien.ac.at/tmp/permanent/TOSD.zip
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H1 the proposed approach enables more effective use of hu-

man feedback;
H2 the combination of the manually-encoded QSR ground-

ing and the automatically-learned MSR grounding per-
forms better than each grounding used individually.

The performance measure was the accuracy of the labels as-
signed to spatial relations between pairs of objects. We also
qualitatively evaluated the ability to identify and correct er-
rors. In the description below, all claims are statistically sig-
nificant at the 95% significance level.

4.2 Experimental Results
The first set of experiments was designed as follows, with the
results summarized in Table 1:

1. Pairs of objects extracted from the training set of the
TOSD were randomly divided into 10 subsets.

2. Seven pairs of objects from each subset were used to
train the MSR-based grounding with human feedback.
Each pair represents one of the position-based spatial re-
lations (in, left, right, front, behind, above, below).

3. Seven pairs of objects from each subset labeled with hu-
man feedback, and 200 pairs with relations labeled using
the QSR-based grounding, were used to train the MSR-
based grounding.

4. The control node chose between QSR-based grounding
and the MSR-based grounding trained using the QSR-
based grounding and human feedback.

The three schemes (#2,#3,#4 above) were evaluated on
200 object pairs in test scenes of varying complexity. Ta-
ble 1 indicates that the MSR-based grounding acquired using
the QSR-based grounding makes better use of human feed-
back than that acquired using just human feedback, which
supports H1. Note that the same amount of human feedback
is provided with scheme #2 and scheme #3. The difference
is that the latter scheme bootstraps off the generic knowledge
encoded in the QSR-based grounding. These results indicate
that using prior knowledge, an appropriate representation for
knowledge, experience, and human feedback improves per-
formance. Also, the control node-based combination of the
two groundings provides better accuracy than just using the
MSR-based grounding.

The second set of experiments was designed as follows,
with the results summarized in Table 2:

1. Pairs of objects extracted from the training set of the
TOSD were randomly divided into five subsets.

2. A MSR-based grounding was acquired using QSR-
based labels for four out of the five subsets (≈ 2000
pairs) in each run.

3. The use of the control node to chose between the MSR-
based grounding (trained as above) and the QSR-based
grounding, was also considered.

The two different schemes (#2,#3 above) were evaluated
on a set of 200 object pairs in scenes of varying complex-
ity (ground truth, once again, was obtained manually). The
results in Table 2 indicate that the control-node based combi-
nation of the groundings estimates spatial relations more ac-
curately than using either grounding individually, which sup-
ports hypothesis H2.

Next, we obtained MSR-based groundings from different
amounts of human feedback (with no QSR) on simulated

Accuracy of labels over test set of 200
object pairs

Training
sets

MSR (feed-
back)

MSR (QSR +
feedback)

Combined
model

Sets 1 65% 77% 84%
Sets 2 82% 80% 94%
Sets 3 68% 80% 85%
Sets 4 66% 83% 87%
Sets 5 65% 74% 82%
Sets 6 68% 77% 86%
Sets 7 64% 87% 90%
Sets 8 64% 84% 91%
Sets 9 62% 82% 87%
Sets 10 52% 72% 81%

Mean 65% 79% 87%
Std Dev 7.2% 4.6% 8.3%

Table 1: Comparison of (a) MSR grounding trained with just human
feedback; (b) MSR grounding trained with 200 pairs labeled by the
QSR grounding and seven pairs labeled with human feedback; and
(c) the combination of MSR grounding, trained as in (b), and QSR-
based grounding with the choice made by the control node.

scenes—we used one, 15, and 25 training sets, each with
seven object pairs. The corresponding groundings were tested
on 1400 object pairs from simulated (test) scenes of varying
complexity. Table 3 shows that spatial relations are estimated
accurately even when a small number of labeled samples are
used to acquire the MSR-based grounding.

Next, we conducted experiments similar to those for Ta-
ble 1, but with a larger number of simulated scenes. The
MSR-based grounding acquired using just human input had
an accuracy of 95.9%, whereas the grounding obtained using
human input and the QSR-based grounding had an accuracy
of 97.2%. These results are similar to those with the TOSD.

Further analysis indicates that most errors from the con-
trol node-based combination of the groundings correspond to
truly ambiguous spatial relations, e.g., a scene in which object

Accuracy of labels over test set of
200 object pairs

Training sets QSR only
MSR
trained by
QSR

Combined
model

Sets 1+2+3+4 70% 62% 96%

Sets 1+2+3+5 70% 62% 96%

Sets 1+2+4+5 70% 60% 95%

Sets 1+3+4+5 70% 60% 96%

Sets 2+3+4+5 70% 60% 96%

Mean 70% 61% 96%

Std Dev 0 1.1% 0.5%

Table 2: Comparison of (a) QSR-based grounding; (b) MSR-based
grounding from ≈ 2000 pairs labeled with QSR-based grounding
(no human feedback); and (c) using the control node to combine
MSR-based grounding, as trained in (b), and QSR-based grounding.
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Model
Accuracy of labels over test
set of 1400 object pairs

QSR 61.9%
MSR after 1
training set

96.1%

MSR after 15
training sets

98.5%

MSR after 25
training sets

98.6%

Table 3: QSR-based grounding compared with MSR-based ground-
ings obtained using different amounts of human feedback.

A can be considered to be to the “left” or “behind” object B.
Multiple labels are acceptable in such cases, and we just need
to let the inference system allow multiple answers. In other
cases, e.g., when each grounding is used individually, errors
are due to the grounding being (or becoming) inaccurate—
even in these cases, results do not depend on the order in
which the training and test data are provided.

(a)

(b)

Figure 6: (a) Image from TOSD dataset; (b) Histogram generated
from the image using the smaller box as the reference object.

We also evaluated the ability to identify and correct errors.
Figure 6a shows a TOSD image for which the MSR-based
grounding stated that the larger box was above the smaller
one. We compared the learned visual words for this incor-
rect label and the correct label (“behind”) with the histogram
extracted from the object pair in the image. The χ2 measure
between the learned and observed visual words was 0.325 for
above and 0.319 for behind. Even the QSR-based ground-
ing detected 349 points in the above region and 23 in the be-
hind region. These results indicated that the error was due to
the incorrect input provided by the QSR-based grounding to
the MSR-based grounding. We then visually compared the

(a)

(b)

Figure 7: Histograms representing learned MSR groundings for: (a)
above; and (b) behind.

2D histograms between the two objects—Figure 6b—with
the MSR-based grounding for above and behind—Figure 7.
The extracted histogram was more similar to that for above—
under standard viewpoints and orientations, θ > 90◦ for
above, but many points corresponded to θ ≈ 60◦ in this case.
To correct this error, we processed an image with an instance
of the above relation—Figure 8a. The θ values in the revised
histogram for above were mostly ∈ [90◦, 120◦]—Figure 8b.
The MSR-based grounding then provided the correct spatial
relation between objects in Figure 6a—the χ2 scores were
0.319 for behind and 0.088 for above.

5 Conclusions
To truly assist humans in complex domains, robots need the
ability to recognize, reason about, and provide understand-
able descriptions of spatial relations between objects. Our
architecture uses Answer Set Prolog to represent and reason
with incomplete domain knowledge, which includes spatial
relations computed using a generic qualitative grounding of
these relations (QSR). These inferred relations and human in-
put (when available) are used to incrementally acquire a more
specialized quantitative grounding of spatial relations (MSR).
Also, a relative measure of confidence in the two groundings
is computed to enable the use of the more reliable ground-
ing for inferring spatial relations in the subsequent scenes.
Experimental evaluation demonstrates the ability to reliably
estimate spatial relations in a benchmark dataset of complex
tabletop images and simulated scenes of furniture, even with
a small number of labeled training samples. Future work will
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(a)

(b)

Figure 8: (a) Image with one object above another; and (b) revised
2D histogram for above.

consider more drastic changes in factors such as viewpoint
and scale, and explore the acquisition of action models that
include the learned spatial relations. Furthermore, we will
include modules for scene understanding and explore the in-
terplay between reasoning and learning on a mobile robot col-
laborating with humans in complex indoor domains.

Acknowledgements
This work was supported in part by the Asian Office of
Aerospace Research and Development award FA2386-16-1-
4071, and the US Office of Naval Research Science of Auton-
omy award N00014-17-1-2434. All opinions and conclusions
described in this paper are those of the authors.

References
[Balai et al., 2013] Evgenii Balai, Michael Gelfond, and

Yuanlin Zhang. Towards Answer Set Programming with
Sorts. In International Conference on Logic Programming
and Nonmonotonic Reasoning, September 2013.

[Belz et al., 2015] Anja Belz, Adrian Muscat, Maxime Aber-
ton, and Sami Benjelloun. Describing Spatial Relation-
ships between Objects in Images in English and French. In
Workshop on Vision and Language, pages 104–113, 2015.

[Calli et al., 2015] Berk Calli, Aaron Wallsman, Arjun
Singfh, and Siddhartha S. Srinivasa. Benchmarking in
Manipulation Research. IEEE Robotics and Automation
Magazine, (September):36–52, 2015.

[Elliott and Vries, 2015] Desmond Elliott and Arjen P De
Vries. Describing Images using Inferred Visual Depen-
dency Representations. In Annual Meeting of the Associa-
tion for Computational Linguistics, pages 42–52, 2015.

[Fichtl et al., 2015] Severin Fichtl, Dirk Kraft, Norbert
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