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Abstract— A mobile robot operating in an urban environment
has to navigate around obstacles and hazards. Though a sig-
nificant amount of work has been done on detecting obstacles,
not much attention has been given to the detection of drop-
offs, e.g., sidewalk curbs, downward stairs, and other hazards
where an error could lead to disastrous consequences. In this
paper, we propose algorithms for detecting both obstacles and
drop-offs (also called negative obstacles) in an urban setting
using stereo vision and motion cues. We propose a global color
segmentation stereo method and compare its performance at
detecting hazards against prior work using a local correlation
stereo method. Furthermore, we introduce a novel drop-off
detection scheme based on visual motion cues that adds to
the performance of the stereo-vision methods. All algorithms
are implemented and evaluated on data obtained by driving a
mobile robot in urban environments.

I. INTRODUCTION

Imagine a mobile robot driving across a university campus.
In order to go from one building to another it would likely
have to drive through corridors avoiding people and furniture
(obstacles), take ramps or elevators instead of stairs, drive
along sidewalks at a safe distance from the curb (a drop-off),
and possibly cross streets. Thus, for a robot to move about
autonomously in its environment it has to be able to detect
and avoid obstacles and drop-offs (and other hazards), i.e.,
safety is essential. Table I categorizes some common hazards
that a mobile robot can expect to find in an urban setting.

Hazards Examples
Drop offs Sidewalk curbs, downward stairs, steps
Obstacles: Static Walls, furniture
Dynamic People, doors
Invisible Glass doors and glass walls
Overhangs Table tops, railings, tree branches
Inclines Wheelchair ramps, curb cuts
Rough surfaces Gravel paths, grass beds
Narrow regions Doorways, elevators

TABLE I: Common hazards in urban environments for a robot.

A lot of work in the mobile robotics literature has focused
on detecting and avoiding obstacles [1], [2], with a signifi-
cantly lesser amount of work done on detecting drop-offs and
other hazards [3], [4], even though detecting such hazards is
just as crucial. Laser range-finders have predominantly been
the sensor of choice because they provide accurate range
data with very little noise. Cameras are used less frequently,
and as a secondary information source [2], because they are
sensitive to environmental changes and the data they return
is more difficult to interpret.

In this paper we focus on detecting drop-offs (also called
negative obstacles in the literature [4]) and static obstacles

in urban environments using vision-based algorithms. We
introduce a color segmentation based global stereo algorithm
and compare its performance at detecting hazards with a
local correlation stereo algorithm. We also present a novel
algorithm for detecting drop-offs using motion cues, and
evaluate its performance in conjunction with the stereo
methods. Overhanging objects are detected as well but (in
this work) we do not distinguish them from static obstacles.
Since an error can lead to disastrous consequences, it is
essential for the robot to detect hazards with a high degree
of accuracy and hence we experimentally measure the error
rates of the algorithms.

We use cameras as the primary sensors instead of lasers,
because cameras are significantly cheaper and smaller, and
they provide much more information in a single frame of
data. For the price of a single laser it is possible to mount
several cameras on a robot providing a larger field-of-view
that is important for safety. The smaller size of cameras also
provides flexibility when mounting them on smaller mobile
robots. Furthermore, the information from a camera can be
used for purposes other than safety, e.g., object recognition.

The remainder of the paper is organized as follows.
Section II provides an overview of the algorithms and
our contributions while section III discusses related work.
Section IV describes the stereo vision algorithms for obstacle
and drop-off detection and section V introduces the motion
cue based drop-off detection algorithm. Section VI describes
the creation of the local safety map, from the output of stereo
and motion based methods, to enable safe robot motion. The
experimental setup and results are described in Section VII,
followed by discussion and future work in Section VIII.

II. OVERVIEW OF METHODS AND CONTRIBUTIONS

We investigate the performance of three methods for drop-
off and obstacle detection: two based on stereo vision, and
one based on motion. The outputs of the methods are used
to construct an annotated 2D grid map of the robot’s local
environment, called a local safety map [5]. Each cell in the
safety map carries one of five labels indicating whether the
corresponding region is an obstacle or overhang, a drop-off
edge, a part of the ground plane, a region below the ground
plane, or a region about which nothing is known. The safety
map is local in nature and since it identifies safe regions in
the robot’s surroundings, it can be used by the robot for local
path planning to avoid hazards [6]. We evaluate the methods
by comparing local safety maps built by them against ground
truth safety maps. The three methods are:



1. Correlation Stereo: A local stereo algorithm along with
a noise removal process that we develop in earlier work [5]
is used as the baseline. This algorithm is similar to other
stereo-based obstacle detection algorithms.

2. Color Segmentation Stereo: Global stereo methods
that perform a global optimization over the image, have
been shown to give better depth estimates than local stereo
methods [7], especially the set of methods that use color
segmented images [8]. We draw on these approaches to
develop our own global color segmentation stereo method for
hazard detection - this results in maps with higher precision
than the correlation stereo based maps.

3. Motion based Drop-off Detection: We also present
a novel motion-based method that explicitly identifies drop-
offs directly in front of the robot. Such drop-offs have an
occluding edge and this method uses the relative motion
(across several images) between this edge and other image
features for detecting the drop-off.

The motion based method is designed to be used in
conjunction with other obstacle detection methods, such as
the stereo methods. It provides redundancy and robustness
to the system in case the stereo method fails to detect a
drop-off, and helps to locate the drop-off accurately.

In summary, to create a local safety map, we perform the
following on each new frame of stereo images:
1. Compute Depth Map: The disparity (depth) map of the

images is computed and converted from the camera’s coor-
dinate frame to the frame of the local safety map.

2. Construct 3D Model by Removing Noise: The transformed
depth map is filtered to remove noise and obtain an updated
3D model of the robot’s local environment.

3. Compute Motion based Drop-off Edges: Motion cues are
used to find potential drop-off edges in one of the images,
whose locations are mapped to the coordinate frame of the
local safety map.

4. Remove False Positive Drop-off Edges: The motion based
drop-offs are accumulated in a 2D grid to reduce the number
of false positives.

5. Construct Local Safety Map: The stereo based 3D model
stereo is projected on a 2D grid and merged with the 2D
motion drop-off grid to get the current local safety map.

In this work, we assume that: (i) We have an independent
process that is able to localize the robot in its local surround-
ings. We use a laser based 3-DOF local SLAM algorithm [9]
but it can be replaced by a camera based SLAM [10] or
structure from motion algorithm [11]. (ii) The robot travels
only on level (horizontal) surfaces, though the constraint can
be relaxed by using a 6-DOF visual localization module. (iii)
The robot’s environment can be modeled using planes. Since
we focus on urban environments this holds to a good degree
(see Sec. IV-B). (iv) We have good lighting - this is required
for the vision methods to operate properly.

III. RELATED WORK

Here we discuss some representative prior work on haz-
ard detection using vision and other sensors. Laser range-
finders are used extensively for detecting obstacles and other

hazards. In their DARPA Grand Challenge vehicle, Thrun
et al. [2] use multiple lasers mounted on top of the car to
construct a local 3D point cloud of the regions in front of
the car. Heckman et al. [4] find drop-offs using 3D laser
data. They ray trace to find occlusions in the 3D laser grid
and then determine the cause of the occlusions. Wellington,
et al. Wellington et al. [12] use lasers and cameras to find
the true ground height and hence traversability of vegetation-
covered regions. All these methods, however, require the use
of expensive laser sensors.

Stereo vision based methods are quite commonly used for
obstacle detection and navigation. Gutmann et al. [6] propose
a stereo vision-based navigation system for humanoid robots,
using a 2.5D grid to represent the world, each grid cell having
a height and a label (floor/obstacle). To get accurate floor
heights, the raw range data is segmented into planes. Singh
et al. [13] fit planes to stereo data to construct 2D local
grid maps, and to estimate the traversability of cells. These
methods do not use color cues for segmentation or perform a
global optimization which can lead to improved performance.

Two vision-based methods for the detection of drop-offs
are evaluated in [14]. One method looks for gaps in stereo
range data, while another looks at height differences and
gaps in local terrain/height maps of the environment. The
results from both methods are combined to identify drop-offs.
The stereo method is local and does not perform a global
optimization to compute depth. Rankin et al. [3] merge stereo
vision and thermal signatures to detect drop-offs at night,
requiring the use of special infrared cameras.

Related to our motion-based drop-off detection method,
Stein and Hebert [15] propose an optical flow-based occlu-
sion detection method to detect occlusions in videos with
moving objects. Instead of optical flow, we measure the
relative motion of features with respect to a fixed edge (this
works even when objects do not move). Relative motion is
observed to be a more sensitive measure, and in combination
with stereo vision-based methods it results in a robust drop-
off and obstacle detection method.

IV. 3D RECONSTRUCTION USING GLOBAL STEREO

Here we describe the process of 3D scene reconstruction
using our proposed color segmentation based global stereo
algorithm. We compare the results of this method against an
earlier local stereo based reconstruction algorithm (see [5]
for details). The output from both methods is used to
construct local 2D safety maps (section VI) which are then
evaluated against ground truth safety maps to determine the
performance of both methods in section VII. We begin with
the coordinate transformations used in the reconstruction,
which provide the location of points in the coordinate frame
of the local safety map.

A. Coordinate Transformations

We assume that we have a calibrated stereo camera with
known parameters. We can express a point’s 3D coordinates
in the camera’s coordinate frame xc = (xc,yc,zc)T as a known
function f of the point’s image coordinates (column, row, and



(a) Left image of stereo
pair.

(b) Color segmented left
image.

(c) Correlation stereo dis-
parity map of left image.

(d) Disparity map after fit-
ting world planes.

(e) Disparity map after en-
ergy optimization.

Fig. 1: Images from various stages of the global color segmentation stereo algorithm.

disparity) xi = (c,r,d)T : xc = f (xi). The camera coordinates
can be transformed to yield the point’s location in the robot’s
coordinate frame: xr = Rcxc +Tc, where Rc and Tc are known
rotations and translations relating the camera frame to the
robot frame. Since localization gives the robot’s pose in the
coordinate frame of the local safety map (the global frame),
the point’s 3D position in the global frame can be computed:
xg = Rrxr +Tr.

B. 3D Reconstruction

Global stereo methods claim to give significantly better
depth estimates than local stereo methods [7]. We therefore
build on recent work on color segmentation stereo [8] to
develop a stereo algorithm for detecting hazards.

1) Color Segmentation based Stereo: Color segmentation
algorithms work by first segmenting an image into segments
of homogeneous color and then computing the disparity of
each segment. Based on the premise that significant disparity
discontinuities do not occur inside a region of homogeneous
color, most methods fit a disparity plane to each color
segment in one stereo image. Since the assumption of planar
color segments is not always true, most approaches tend
to over-segment the image to better approximate the true
disparity [8]. Over-segmentation allows non-planar surfaces
to be approximated using several small planes. We believe
that for urban environments, which are mostly composed
of planar or smooth surfaces, this approximation should
work fairly well. The final step of global segmentation
methods then involves minimizing a global cost function
that measures the quality of fit over the entire image and
adherence to different constraints (e.g. smoothness). The
main steps in our algorithm are as follows (shown in Fig.1).

(i) Color Segmentation. The left stereo image (Fig. 1(a))
is color-segmented (Fig. 1(b)) using the algorithm in [16].

(ii) Initial Disparity Computation. The left image disparity
map (Fig. 1(c)) for the stereo images is computed using a
stereo algorithm available from [17].

(iii) Fitting World Planes to Segments. Instead of fitting
planes in disparity space to each segment as in other color
segmentation algorithms [8], we fit planes in Euclidean space
to handle errors better. We compute the 3D coordinates,
in the robot’s reference frame, of all pixels in a segment
with a valid disparity using the equations in section IV-A.
Then we fit either a vertical plane (q1x + q2y + q3 = 0) or
a horizontal plane (z+q3 = 0) to the 3D points (Fig. 1(d)),
using a weighted least squares method [8]. The goal of this
step is to get a set of planes representative of the major planes

in the robot’s environment. The following steps describe how
the “correct” plane is chosen for each segment.

(iv) Adding Additional Planes. In order ensure that the
candidate plane set contains all major horizontal planes
in the robot’s environment, several pre-calculated evenly
distributed horizontal planes are added, e.g., all horizontal
planes between -2 and 2 meters that are 0.1 meters apart.
This helps find correct ground and below ground planes.

(v) Refining the Set of Planes. The plane set, which now
contains several similar planes, is refined by forming clusters
of planes based on height, orientation, and distance from
origin, and then picking the best plane from each cluster.
This refinement significantly reduces the number of planes
and provides smoother depth maps. In order to evaluate the
quality of planes in a given cluster we first convert the world
planes to disparity planes of the form:

d = p1c+ p2r + p3 (1)
For each such disparity plane P we compute the difference
in intensities, for the disparity hypothesis given by the plane,
at every pixel (r,c) in the image, i.e., ∆IP(r,c) = |IL(r,c)−
IR(r,c−d)|. IL(r,c) and IR(r,c) are the left and right image
intensities at (r,c) (for color images the RGB intensities at
each pixel are added to compute ∆IP(r,c)). The total number
of pixels for which ∆IP(r,c) is below a threshold, then gives
the support of the plane in the image. The best plane in each
cluster is the plane with maximum support.

(vi) Energy Minimization for Selecting Correct Planes. In
the final step, the set of disparity planes that minimize a
global energy function over the two images are chosen as
the “correct” planes. To define the energy function we first
define a matching cost for a given disparity plane P and
segment S: C(S,P) = ∑(r,c)∈S |IL(r,c)− IR(r,c−d)|, where d
is computed using Eqn. 1.

We also define a labeling f that assigns a plane to every
segment S, i.e., f (S) is the plane corresponding to S for a
given labeling f . The energy function corresponding to a
labeling f of an image is:

E( f ) = ∑
S

C(S, f (S))+ ∑
S,S′

LS,S′δ ( f (S) 6= f (S′)) (2)

where the first sum is over all segments and the second sum
is over all pairs of neighboring segments. LS,S′ is proportional
to the boundary length between segments S and S′ and
δ ( f (S) 6= f (S′)) is 1 when its argument is true otherwise 0.
Minimizing this energy function gives us the optimal labeling
f for the image which in turns gives the “correct” disparity
plane for each segment S. The initial labeling for starting
the optimization is chosen by minimizing only C(S,P) for
each segment independently. We use code available online



and methods described in [18], [19], [20], [21] to find a
strong local minima of the energy function. For more details
the reader is also referred to [8].

Fig. 1(e) shows the final disparity map obtained after
finding the “correct” labeling. Segmentation stereo hence
returns a set of segments, each associated with a vertical
or horizontal plane that gives the depth of all pixels in the
segment.

2) Noise Removal and 3D Reconstruction: Unfortunately,
the depth estimates obtained from the segmentation stereo
algorithm are noisy and contain many false positives, e.g.,
when the wrong plane is found for a segment. Noise re-
duction is achieved by accumulating depth data returned by
segmentation stereo over several frames in two 3D grids, one
each for horizontal and vertical planes. The grid origins are
defined with respect to the global coordinate frame and they
are on the order of 10m× 10m× 4m in size (in x, y, and z
respectively) representing a small local space. We use a cell
size of 0.05m3, with all cells initialized to zero.

The value of each cell through which a plane passes is
incremented by a fixed amount (each plane contributes once
to a cell). Only cells with values above a certain threshold are
considered occupied., thereby reducing noise and removing
false positives. An obvious drawback of this method is that
over a period of time each cell in the grid will eventually
become occupied. This can be handled by having cell values
“decay” over time, or by incorporating negative evidence
which is part of future work.

Information passed on to the Safety Mapper: The safety
mapper, described in section VI, uses both horizontal and
vertical grids at each time-step for computing the safety map.

V. DROP-OFF DETECTION WITH MOTION CUES

Unlike the stereo-based methods which compute a dispar-
ity map to detect hazards, drop-offs in front of the robot
can be explicitly detected using motion cues. Drop-offs on
the ground surface will have an occluding edge. As the
robot moves towards the edge, regions occluded by the
edge will come in view, and when the robot moves away
from the edge, regions that are initially visible will slowly
disappear. Algorithm 1 lists the operations performed on
the video stream to detect drop-offs. Figure 2 shows image
results at various stages of Algorithm 1, when applied on a
pair of images separated by N (=5) frames, in an outdoors
environment. For ease of explanation we assume the robot
is moving towards a drop-off.

The underlying principle is that, for an occluding edge,
new regions come into view as the robot moves towards
the edge. For an occluding edge, features above the edge
will hence appear to move “faster” relative to the edge than
features below the edge, as compared to a non-occluding
edge. A threshold on δab can be used to distinguish between
occluding and non-occluding edges (Fig. 2). To make the
method relatively insensitive to the threshold, we set the
threshold such that the motion algorithm detects potential
drop-offs aggressively and has a high false positive rate.

Algorithm 1 Motion-based drop-off detection.
Require: A pair of images, I1, I2 separated by N = 5 frames.

1: Find all edges in images I1, I2 – we use Peter Kovesi’s
MATLAB functions [22].

2: Only consider edges that are (i) nearly horizontal in the
image (slope ≤ 30o) and (ii) not very far off (distance
≤ 20m).

3: Match edges in I1 with edges in a previous image, I2.
The separation of five frames ensures appreciable motion
thereby increasing the signal-to-noise ratio. Let M =
number of matched edges.

4: for i = 1 to M do
5: Find invariant features [23] above and below edge Ei

in I1 and I2, within a certain region around the edge.
6: Match the features across I1 and I2 – features

above/below the edges are matched separately.
7: Compute the distances in pixels to Ei (da1 , db1 , da2 ,

db2 ), of matching features above and below Ei in the
corresponding images. Histogram the vectors and pick
the bin with maximum count as the corresponding
mean distance: da1m , db1m , da2m , db2m .

8: Measure the movement of features above and below
edge Ei between I1, I2, i.e. δa = |da1m − da2m |, δb =
|db1m −db2m |.

9: if δab = (δa−δb) > Threshold then
10: Ei is an occluding edge.
11: else
12: Ei is a non-occluding edge.
13: end if
14: end for

Algorithm 1 can only detect frontal drop-offs and not
lateral drop-offs. Since the method does not know which
occluding edges are actually on the ground plane, it treats all
occluding edges as potential drop-offs, e.g., in Fig. 2 last row,
the occluding edge of a pipe in the distance is also treated
as a potential drop-off. This method is hence combined with
stereo methods capable of finding the ground plane.

Noise removal and information passed on to the Safety
Mapper: For a given image, algorithm 1 finds a set of
potential drop-off edges. Since drop-offs are assumed to be
on the ground plane (z = 0), the 3D location of edge pixels
can be computed using equations in section IV-A, setting
zr to zero, and solving for disparity d. The ground plane
drop-off locations are then accumulated on a 2D grid – each
cell through which a drop-off edge passes is incremented by
a fixed amount. Only cells with values above a threshold
are marked as being potential drop-offs. The process thus
handles the high number of false positives. This 2D motion
drop-off grid is passed onto the safety mapper at every time-
step for computing the safety map.

VI. CREATING THE LOCAL SAFETY MAP

The safety map is a 2D grid of fixed size with each cell an-
notated with one of five labels: ground, below ground, above
ground, unknown, or drop-off edge, indicating the robot’s



Fig. 2: Algorithm 1 applied to an outdoor environment (better
viewed in color). 1st Row (Step 1 of Algorithm 1) : Edge detection
on the image pair. 2nd Row (Steps 2 to 3): Edges are filtered and
matched across the image pair. 3rd Row (Steps 4 to 8): For a pair of
matched edges, features are found and matched across the image
pair, above and below the edge separately. The distance moved
by the matched features, above and below the edge, is computed
separately. 4th Row (Steps 9-13): Drop-offs found.

current state of knowledge about the region corresponding
to the cell. Regions labeled ground are at ground level
and considered safe; above ground regions correspond to
obstacles or overhangs and are unsafe; regions below ground
indicate that a drop-off may be present at the boundary
between them and ground regions; drop-off edges are unsafe;
unknown regions are also to be avoided. The safety mapper
merges information obtained from the two stereo methods
and the motion based drop-off detector, to construct a safety
map as follows:

1. Information from Stereo: The segmentation stereo
method returns horizontal and vertical 3D grids with occu-
pied cells marked. The 3D grids are projected onto a 2D grid
to get the safety map. A 2D cell in the safety map is marked
as: (i) above ground, if all corresponding occupied 3D cells
are above a height of 0.1 meters; (ii) on ground, if most of
the corresponding occupied 3D cells are between -0.1 m and
0.1 m; (iii) below ground if most corresponding occupied 3D
cells are below -0.1 m; (iv) unknown if no corresponding 3D
cells are occupied. A similar process is followed for the 3D
point cloud returned by correlation stereo.

2. Information from Motion based Drop-offs: The motion
drop-off method returns a 2D grid with potential drop-off
cells marked. This grid is combined with a safety map,
created using one of the stereo methods, to obtain a combined
stereo and motion safety map. In the combined safety map,

cells in the stereo safety map marked on ground are re-
annotated as drop-off edges if the corresponding cells in the
motion grid are marked as drop-off edges.

VII. EXPERIMENTAL EVALUATION AND RESULTS

Fig. 3 shows our research platform, a robot wheelchair
with two laser range-finders, one mounted horizontally and
the other vertically, and a stereo camera mounted on a pan-
tilt unit. All sensors have been calibrated against each other.

The algorithms are evaluated on

Fig. 3: Wheelchair Robot

four stereo video data sets (on
the order of 500 stereo image
pairs each) collected by driv-
ing the robot through two in-
door and two outdoor environ-
ments shown in Fig. 4. The fol-
lowing algorithms are evaluated:
(A) MD: motion based drop-
off detection. (B) CS: correla-
tion stereo. (C) SS: segmentation

stereo. (D) CS+MD: correlation stereo combined with the
motion based drop-off detection. (E) SS+MD: segmentation
stereo combined with the motion based drop-off detection.
We compare the hazard detection accuracy, detection dis-
tance and latency, and running times of the algorithms.

1) Hazard Detection Accuracy: Algorithms (B) through
(E) were evaluated by comparing the safety maps built by
them against ground-truth safety maps that were obtained by
manually annotating and “cleaning” the safety maps created
using the robot’s horizontal and vertical laser range-finders.
We compute the true positive (TP), true negative (TN),
false positive (FP), false negative (FN) rates, and precision
(PR) and recall (RC) of each algorithm. The error rates are
computed on a per cell basis for the safety maps: (i) TP:
% of unsafe cells marked unsafe, (ii) TN: % of safe cells
marked safe (iii) FP: % of safe cells marked unsafe, (iv) FN:
% of unsafe cells marked safe, (iv) PR: % of all map cells
marked unsafe that are actually unsafe, and (v) RC: % of all
actually unsafe map cells that are marked unsafe. Table II
presents the results of algorithms (B) to (E) averaged over
all four environments.

CS SS CS+MD SS+MD
TP 84 71 84 71
TN 73 82 72 82
FP 18 12 20 13
FN 7 5 7 6
PR 81 92 81 91
RC 93 93 93 93

TABLE II: Error rates of algos. averaged across four environments.

Algorithm (A) was evaluated based on the 2D motion grids
it created for all environments. Instead of on a per cell basis
the above metrics were computed on a per drop-off basis. The
results for algorithm (A) are as follows: In all environments,
MD detects all 5 frontal drop-offs present, corresponding
to TP=100. Correspondingly, since it never fails to detect a
frontal drop-off, so FN=0. However, MD also returns 7 false



(a) “Ramp” environment. (b) “Auditorium” environment. (c) “Fence” environment. (d) “Plants” environment.
Fig. 4: Sample images from the four video data sets collected on our University campus for which safety maps are constructed. The
numbers show the location of drop-off edges in each image and are used to cross-reference with Fig. 5.

positives. Unfortunately, it is very difficult to accurately find
the total number of edges that the MD algorithm examined
- we estimate there were between 10-30 such edges in each
environment. Hence we cannot calculate the FP (and TN)
error rate(s) and have presented the FP error itself. Figure 5
shows the safety maps and motion grid maps created using
the methods for different environments. We observe that:
• CS has a higher TP rate than SS, i.e., CS is able to cover

the environment better. However, SS does better in all other
metrics - it has lower FP and FN rates.
• Both stereo based methods have high recall. However, SS

has higher precision and this is seen in the “cleaner and
crisper” maps that SS produces in Fig. 5(b) as compared
to CS in Fig. 5(c).
• The MD algorithm detects all drop-offs even at the cost

of finding some false positives. As seen in Fig. 5(h), MD
detects very small drop-offs (≈ 10− 15cm high in Fig.
4(b)), with one of them at a large distance from the camera.
It also provides the exact locations of drop-offs, unlike
CS/SS, thereby increasing the robustness of the stereo
methods.
• The numbers for CS+MD and SS+MD are very similar to

those for CS and SS respectively, which is to be expected
as the drop-offs occupy a small portion of the overall
environment (see Fig. 5).
Based on the observations we cannot conclusively say that

the segmentation stereo based method does better than the
correlation stereo based method, however, it is clear that the
segmentation stereo method produces much crisper maps. In
effect future work will focus on improving the true positive
(TP) rate of segmentation stereo so as to get the best of both
methods. The motion method does very well at detecting
frontal drop-offs and combined with either of the stereo
methods is very useful for accurately locating drop-offs.

2) Hazard Detection Latency and Distance: All three
methods (CS, SS, MD) produce noisy estimates, and in the
absence of some noise filtering, the robot may very well be
“paralyzed with fear”. But, filtering involves accumulating
evidence over several frames, leading to latencies in hazard
detection. We present representative results of measuring the
latencies and the distances at which hazards are detected,
from which time-to-collision and velocity constraints on the
robot can be computed.

Specifically: (i) Latency is the number of camera frames
between the appearance of a hazard in a video sequence,
and its detection by the robot. (ii) Detection distance is the

distance to a hazard when it is first detected. CS methods
have a minimum algorithmic latency of 7 frames. In the
“Ramp” environment (Fig. 4(a)), CS detects the left wall
and railing after 7 frames at distances of ≈ 2.8m and
3m respectively. SS methods have a minimum algorithmic
latency of 16 frames. In the “Ramp” environment, the left
wall and the region beyond the drop-off edge were detected
in ≤ 20 frames at a distance of 2.5m and 4m respectively.
MD also has an algorithmic latency of 16 frames, and in the
“Ramp” environment the algorithm detected the exact drop-
off location after 25 frames. Improving the filtering schemes
can reduce the latency.

3) Time Analysis: On a machine with a 2.13 GHz
dual core processor, the segmentation stereo based method
(including noise removal and safety map creation) takes
on average 4.5 sec per stereo frame. Most of the time is
spent computing the disparity maps with other times being
negligible. The code is fairly optimized and written in C++
and Matlab. The correlation stereo based method takes 2 sec
on average. Noise removal takes up most of the time with
disparity map computation taking negligible time. The code
is fairly well optimized. The motion based method takes 6.7
sec on average (un-optimized Matlab code).

VIII. DISCUSSION AND FUTURE WORK

Mobile robots navigating autonomously in an urban en-
vironment need a mechanism to detect obstacles and other
hazards. Unlike previous work that has predominantly used
non-visual sensors and focussed on obstacles, we present
vision-based algorithms for detecting drop-offs and static
obstacles.

Two methods for hazard detection are proposed: a new
global color segmentation stereo algorithm (SS), and a novel
motion-based drop-off detector (MD). The segmentation
stereo method is compared to a correlation stereo based
algorithm (CS) based on our prior work [5]. The safety
maps generated by each of the three methods are compared
against ground-truth safety maps obtained by manually anno-
tating laser-based range maps. The stereo methods perform
comparably, with the correlation stereo method having a
higher true positive rate but the segmentation based method
doing better on all other metrics, in particular precision,
resulting in “crisper” local safety maps. These results suggest
that color segmentation based methods have the potential to
perform very well. Though the addition of MD does not
provide significant quantitative difference (drop-offs are a
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Fig. 5: The figures show safety maps and motion based drop-off
grids created for various environments. Figures (a,b,c,d) are for the
“Ramp” environment. Fig. (a) shows the environment’s ground truth
safety map. The arrow shows the direction from which the image in
Fig. 4(a) was taken (similarly for figures (e) & (g)). This safety map
and others are annotated as follows: White: on ground (safe); Black:
above ground (unsafe); Dark gray: below ground (unsafe); Light
gray: unexplored spaces; Intermediate gray: drop-off edges (with a
number next to it). Fig. (b) shows the safety map (SS+MD) created
by combining the segmentation stereo safety map and and motion
based drop-off grid shown in (d). Fig. (c) shows the combined safety
map (CS+MD) created using correlation stereo and motion based
methods. Fig. (d) shows that the motion based method accurately
finds drop-off location #1 and also returns one false positive drop-
off #2. Fig. (e) & (f) show the ground truth and the SS+MD safety
maps for the “Fence” environment respectively. The fence causes
the segmentation stereo method some trouble but is nevertheless
detected. Fig. (g,h) are for the “Auditorium” environment. Fig. (g)
is the ground truth safety map showing two drop-offs. Both drop-
offs are detected by the motion based method in (h) even though
they are only 10-15cm high.

small portion of the environments), it results in accurate
localization of the drop-offs even for small drop-offs. We
thus show that it is possible to reliably detect hazards using
the rich information encoded in visual data.

In the future, we plan to extend this work to non-level en-
vironments by using a 6DOF localization module. Latencies
can be reduced by incorporating a more sophisticated noise
filtering process. We also aim to generalize segmentation
stereo by considering planes at all orientations. Eventually,
we aim to enable a mobile robot to navigate autonomously
(and safely) in urban environments.
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