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Abstract— We describe a framework for changing-contact
robot manipulation tasks, which require the robot to make and
break contacts with objects and surfaces. The discontinuous
interaction dynamics of such tasks make it difficult to construct
and use a single dynamics model or control strategy for
such tasks. For any target motion trajectory, our framework
incrementally improves its prediction of when contacts will
occur. This prediction and a model relating approach velocity
to impact force modify the velocity profile of the motion
sequence such that it is C∞ smooth, and help achieve a desired
force on impact. We implement this framework by building
on our hybrid force-motion variable impedance controller
for continuous-contact tasks. We evaluate our framework in
the illustrative context of a robot manipulator performing
sliding tasks involving multiple contact changes with surfaces
of different properties.

I. INTRODUCTION

Consider a robot manipulator moving its end-effector
along a desired pattern that involves making and breaking
contacts, e.g., contact with the table’s surface at “1” and
with another object at “3” in Figure 1. The task’s dynamics
vary markedly before and after contact is made and broken,
and based on the type of contact (e.g., surface, edge contact),
surface friction, applied force, and other factors. We consider
tasks involving changes in dynamics due to changes in the
nature of contact as “changing-contact” tasks. Many core
industrial assembly tasks, e.g., peg insertion and stacking,
and human manipulation tasks, are changing-contact tasks
whose discontinuous dynamics can result in poor transition-
phase behavior or instability [1]. It is difficult to use a single
dynamics model or control strategy for these tasks because
the interaction dynamics are discontinuous when a contact
is made or broken and continuous elsewhere [2].

Smooth motion along a desired trajectory can be achieved
in a changing-contact manipulation task using an accurate
analytical model of the transitions or a learned model that
predicts the transition dynamics. Analytical models of the
impact dynamics of a system of objects require compre-
hensive knowledge of the objects’ physical and geometric
attributes, and often impose assumptions not satisfied in
practical domains [3], [4]. Methods that learn the attributes
of the objects, build object classifiers based on these at-
tributes, and/or learn sequences of parameters (e.g., joint
angles) to achieve the desired trajectory, find it challenging
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Fig. 1: A sliding task that involves making contact with the
table’s surface at “1” and with another object at “3”.

to acquire sufficient examples of different objects, contacts,
and attributes to learn generalizable models [5], [6].

Another approach is to use a transition-phase controller
that lowers velocity and stiffness to reduce impact forces,
vibration, and jerk on impact. Existing transition control
strategies switch to a different controller once a contact is
detected. This switch can cause substantial discontinuities
in the interaction dynamics, damaging the robot or the
objects [7], [8]. Instead, we seek to predict contacts and adapt
the velocity and stiffness during the transition phase to min-
imize discontinuities, with the robot switching to a different
controller after contact. To do so, we need to answer some
key questions: (Q1) how best to predict contacts accurately?
(Q2) when to activate the transition-phase controller? (Q3)
how best to adapt the transition-phase controller’s parameters
to the task? and (Q4) what representation and strategy to
use for reliable and efficient control with limited examples
before, during, and after contact? Our framework builds on
our prior work on a task-space, hybrid force-motion, variable
impedance controller for continuous contact tasks [8], which
partially addresses Q4 and simplifies the problem to enable
the following contributions:
• A simple and efficient contact prediction method that

incrementally improves its estimates.
• An adaptive strategy that uses predicted contacts to

minimize time spent in the transition-phase; and
• A method that revises the transition phase velocity to

achieve a C∞ smooth velocity profile and a desired
force on impact.

We evaluate our framework on a physical robot and in
simulation, using the motivating example of sliding tasks
that involve making and breaking contacts with objects and
surfaces of different attributes. To thoroughly explore the
control problems, we only consider sensor input from a
force-torque sensor in the wrist. We review related work
(Section II), and describe the framework (Sections III- V),
results (Section VI), and conclusions (Section VII).



II. RELATED WORK

Control for changing-contact manipulation tasks can be
achieved using analytical methods, learning methods, or
transition-phase controllers.

Analytical methods that explore the relation between
relative motion of two colliding objects and their impact
dynamics typically formulate it as a linear complementarity
problem (LCP) that considers the velocities and impulses [9],
or the accelerations and forces [10], at contact points [3], [4],
[11], [12]. Such a formulation and the associated methods
can guarantee physical consistency between motion and
impulses, but it is computationally expensive to solve the
LCP at each time step, and difficult to provide the required
prior knowledge of object attributes and/or accurate 3D
object models in complex domains.

Methods developed to learn the physical attributes of
objects, or to categorize objects based on these attributes,
require the robot to perform the related task multiple times
to obtain the training examples needed for building rele-
vant models or for optimizing the models’ parameters [6],
[5]. Also, the learned models need to be retrained if the
objects, tasks, or interaction dynamics change over time.
Since changing-contact tasks are piece-wise continuous,
some methods build probabilistic functions offline from
collected data for predicting mode/contact changes [13], [14].
These methods assume the environment remains unchanged
between training and testing, and require many training
examples (including synthetic data) [14].

Methods that use a transition-phase controller for changing
contact manipulation tasks focus on minimizing the discon-
tinuities in the dynamics, i.e., on reducing the forces, vi-
bration, and jerk on impact [7], [8]. However, many of these
methods switch to a different controller only after a contact is
detected, which can result in significant discontinuities when
the switch is made, along with loss of energy and damage
to the robot or the domain objects.

Since our approach includes a transition-phase controller,
for smooth motion that that does not transition abruptly
after contact detection, the transition velocity profile has
to be continuous and the motion has to be at least C4

smooth. Methods have been developed for kinematic time-
optimal motion using trapezoidal velocity profiles [15], C4-
smooth trajectories using segments [16], and for minimum-
jerk motion profiles [17], [18], [19]. These methods can
be computationally expensive, particularly for paths with
many points in each trajectory segment. Our approach instead
focuses on smooth motion over any given trajectory by accu-
rately predicting contact, and modifying the velocity using a
C∞ smooth profile to transition to (from) a transition-phase
controller before (after) contact. Our main contribution is a
framework that encodes representational choice to learn, in
a few trials, to: (a) predict contact changes in a changing-
contact manipulation task; and (b) adapt its control strategy
such that the impact forces are reduced while deviating
minimally from the target trajectory.

Fig. 2: Overview of framework for smooth control of
changing-contact manipulation tasks.

III. FRAMEWORK OVERVIEW

Figure 2 presents an overview of our framework. The
inputs are the desired motion trajectory, the force-torque
sensor measurements, and the end-effector position. The de-
fault controller is the hybrid force-motion variable impedance
controller that we developed for continuous-contact tasks [8].
This includes an incrementally learned forward (predictive)
model of end-effector measurements; the error between
the predicted and actual measurements automatically revise
stiffness values in control laws to determine the control
signal. We showed that operating in task (i.e., Cartesian)
space allows this controller to use suitable abstractions to
learn accurate forward models from very few examples,
provide compliance along specific directions, and accurately
track the desired trajectory, thus partially addressing Q4 in
Section I. The framework in this paper builds on this default
controller’s representation, enabling a task-space contact
anticipation model that incrementally updates its contact
prediction using a Kalman filter (Q1). These predictions are
used to minimize the time spent in the transition phase (Q2),
and the velocity to be used in the transition phase is set
adaptively to achieve a C∞ smooth velocity profile and a
desired impact force (Q3). Once the transition is completed at
a suitable velocity and stiffness to minimize discontinuities,
the robot moves to using another version of default controller
and revises the parameter values suitably. We begin with a
description of the contact prediction method.

IV. CONTACT PREDICTION

Anticipating contacts by predicting impact forces or time
to collision is challenging because these parameters are in-



fluenced by robot dynamics and the controller’s parameters,
e.g., reducing the robot’s velocity or the controller’s stiffness
reduces the impact force and increases time to contact. It is
more reliable to predict static contact parameters such as
end-effector position during impact and direction of contact
force, which do not change significantly for repetitions of
the task as long as we can make the reasonable assumption
that the trajectory and the environmental attributes do not
change significantly between repetitions.

The robot’s belief about the position of each expected
contact point in the assigned motion trajectory is modeled
as a multivariate Gaussian, with the covariance ellipsoid
denoting the uncertainty and the ”region of anticipated
contact” C. Since the controller is in the task space, each
contact location’s representation is compact and is updated
over very few trials of the task using a Kalman filter with the
state update equation: ẋ = Axk + Buk +w, where x is the
contact position, A is defines the dynamics of motion of the
contact point without the robot acting on it (I for positively
activated objects, which is the case in this paper), B is the
control matrix capturing the effect of the robot’s action u
on contact position, and w is the Gaussian model of the
uncertainty in contact location. The sensor model uses the
end-effector pose (given by forward kinematics from joint
positions) as measurement when a contact is detected; noise
in the sensor model depends on the joint encoder noise and
forward kinematics. The corrected estimate of the contact
point results in a reduced covariance ellipsoid for subsequent
trials. The update equations are as follows:

µ̂k|k−1 = Ak−1µ̂k−1|k−1 + Bk−1uk−1 (1a)

Σk|k−1 = Ak−1Σk−1|k−1A
T
k−1 + Qk−1 (1b)

vk = yk −Hkµ̂k|k−1 (1c)

Sk = HkΣk|k−1H
T
k + Rk (1d)

Kk = Σk|k−1H
T
k S−1k (1e)

µ̂k|k = µ̂k|k−1 + Kkvk (1f)

Σk|k = Σk|k−1 −KkSkK
T
k (1g)

where µ̂i|i−1 and Σi|i−1 are the predicted mean and co-
variance at step i, µ̂i|i and Σi|i are the corrected mean and
covariance based on measurement yi (of position on contact)
at step i, K is the Kalman gain, and Q and R are noise
matrices. Our representational choices enable us to develop
such a linear anticipation model to estimate contact locations
accurately from very few (noisy) repetitions of the task.
Although this representation supports contact with movable
objects, we assume in this paper that the end-effector only
makes contact with stationary objects (A = I, B = 0). Also,
H = I since state and measurements are in the same space.
These simplifications result in Gaussian updates using the
noisy measurements based on the robot’s kinematics model
(since sensor input is from an FT sensor) each time the robot
experiences a contact change.

V. CONTROLLER FORMULATION

For any given task, the desired motion trajectory P is
provided as a sequence of mappings from time to the

corresponding end-effector pose and force (for force con-
trol); it is obtained through a single demonstration of the
task by a human moving the robot manipulator. Defining
the controller in the Cartesian-space provides an intuitive
trajectory description. P is made up of segments, each of
which is assumed to be smooth, continuous, and jerk-free;
transition between segments is accompanied by a change
in the direction of (force, motion) control, and P does not
account for the collisions (i.e., contact points).

Our framework’s default controller builds on the standard
variable impedance control equation [20]:

hc = Λ(q)ẍd + Γ(q, q̇)ẋd + η(q) + Kp∆x+ Kd∆ẋ (2)

where hc is the task-space control command, Λ(q) =
(JM(q)−1JT )−1 is the 6 × 6 inertia matrix, Γ(q, q̇) =
J−TC(q, q̇)J−1 − Λ(q)J̇J−1 denotes the compensa-
tion wrenches including centrifugal and Coriolis effect,
and η(q) = J−Tg(q) is the gravitational wrench.
M(q),C(q, q̇), and g(q) are the equivalent values defined
in the joint space of the robot; ∆x is the error in end-effector
pose with respect to a desired pose xd; and Kp and Kd

are 6 × 6 symmetric positive-definite matrices of desired
impedance stiffness and damping. The joint-space control
torque is computed as u = JThc.

In the absence of the external wrench he, the control law
provides asymptotic stability with equilibrium state ẋe =
0,∆x = 0 for a closed-loop system. With a non-zero he, a
non-null ∆x will be present at equilibrium. For a fixed or
non-stationary target xd, if the external force he is due to
non-fixed resistance (e.g., friction when sliding on a surface),
forces against the direction of motion can be canceled with
a feed-forward term hff in the control law:

hc = Λ(q)ẍd+Γ(q, q̇)ẋd+η(q)+Kp∆x+Kd∆ẋ+hff
(3)

When no contact change is expected, hff , Kp, and Kd are
revised based on the difference between the predicted and
observed values of forces and torques at the end-effector. The
predictions are based on a task-specific (feed)forward model
that is revised incrementally during task execution [8]. We
build on this default controller to answer questions Q2-Q4.

A. Transition Controller Parameters

We first describe the transition controller and its parame-
ters. Since the permitted impact force may differ based on
the task, e.g., large forces can damage delicate objects, we
imposed a limit on the maximum allowed impact force. Also,
experimental analysis indicated that reducing the controller
stiffness helps reduce the jerk in motion after impact by
providing compliance, but has no significant effect on impact
forces because the error and stiffness term in the feedback
control loop come into effect only after contact is made. A
safe controller should thus have lower stiffness for reducing
vibrations. In addition, the approach velocity was observed to
be directly proportional to the impact force, especially when
the robot registers a contact while moving in free space.
The design of our controller and the representational choices



allow the use of a simple method (linear regression) to model
the relationship between impact force and approach velocity
between a pair of objects. This model is then used to compute
the approach velocity for a desired impact force.

Since the robot may not initially have a model of the
relationships discussed above, it starts with a safe low
velocity during the first trial of any given task and target force
on impact. It then uses the difference between the target and
measured force on impact to revise the approach velocity for
the next iteration of the task:

∆va = β(Fd − Fm) (4)

where ∆va is the change in approach velocity, Fd is the
desired impact force along motion direction, Fm is the
measured impact force, and β is a learning rate that is ideally
less than or equal to the slope of the plot relating impact force
to approach velocity. Over time, this method enables the
robot to learn a task-specific approach velocity for a desired
impact force; the learned linear model can also be reused for
other target impact forces. Next, we consider when to start
using the transition-phase controller.

B. Switching to Transition-Phase Controller

Recall that a lower stiffness in the transition phase can
reduce vibrations on contact, and a lower velocity reduces
the impact forces. Since any such strategy will cause the
robot to deviate from the desired trajectory, the robot should
ideally switch to this control phase just before the contact is
made, and switch out of it immediately after stable contact is
established. Since this is not possible in practice, it is safer
to switch to this control mode when it enters a region in the
task space where the contact is highly likely to occur, and
switch out of it once stable contact is achieved.

As stated earlier, we use the covariance of the multivariate
Gaussian estimating the contact location to define the region
of anticipated contact (C) in the task-space. Activating the
transition-phase controller just before or after it enters C
ensures that the transition-phase is only active when a contact
is anticipated. The part of the target motion trajectory P
within C can be found by checking if the points in P (t)
satisfy the relation:

(P(t)− µ)TΣ−1(P(t)− µ) ≤ λ (5)

where µ is the mean of the Gaussian predicting contact posi-
tion, Σ is the covariance, λ is a scaling factor modeled as the
chi-squared percent point function of the desired confidence
value. The first point in P to satisfy this condition is the
boundary pc of C. When the robot does a task for the first
time, the position uncertainty and volume of C are large, and
the robot switches to the transition phase controller earlier
than actual impact. Over time, as the covariance ellipsoid
shrinks, the robot switches to the transition controller when
it is about to make impact.

C. Smooth Transition between Controllers

Since the desired impact force is primarily achieved by
revising the approach velocity, the transition-phase controller

is set (by the designer) to use lower fixed controller gains
(Kp

∗,Kd
∗) as the robot moves at a lower velocity, for

reducing the negative effects of collision. To avoid disconti-
nuities, the robot needs to smoothly transition from a normal
(pre-contact) controller with output u1 to the transition-phase
controller with output u2. We use linear interpolation of u1

and u2 over a time window [0, T ] such that the transition is
completed by the time the robot reaches pc:

u =(1− α)u1 + αu2; α = t/T t ∈ [0, T ] (6)

where T is the desired duration of the transition between the
controllers. As long as the outputs from the two controllers
(u1 and u2) are individually smooth, the combined output
will also be smooth. In this work, controllers use the task-
space representation described earlier, with u2 being the
output of the fixed, low-gain, transition-phase controller as
the arm approaches the contact point. A similar approach
is used to smoothly transition from the transition-phase
controller to a normal controller after contact is made.

D. Modifying Velocity Profile over Target Trajectory

Recall that transition-phase controllers use a lower velocity
than that used in the original kinematic sequence P to reduce
the force on impact. Also, the switch to this controller will
take place at different points in the trajectory as the region
C is revised over time. The trajectory’s timeline thus has to
be modified to account for the modified velocity profile. To
achieve this objective, we enable the robot to create a new
velocity profile and time-mapping by building on the existing
work on trapezoidal velocity profiles; it can be viewed as
the lift-off or set-down phase of a trapezoidal profile. Our
formulation results in motion that is smooth and continuous
at all orders, i.e., is C∞ smooth.

Without loss of generality, assume that P is along one
dimension with velocity v1. Assuming that transition starts
at time t1 with v1 and has to be completed at t2 with velocity
v2 as the robot crosses boundary point pc of C, the velocity
profile is defined as:

v(τ) =


v1 + (v2−v1)e−1/τ

e−1/τ+e−1/(1−τ) if 0 < τ < 1,

v1 if τ ≤ 0

v2 if τ ≥ 1

(7)

where τ = t/T = t/(t2 − t1). For τ ∈ (0, 1), e−1/τ has
continuous derivatives at all orders at every point τ on the
real line. Since v(τ) has a strictly positive denominator for
all points in its domain and velocity limits are enforced
∀τ /∈ [0, 1], this profile provides a smooth transition from v1
to v2 over [t1, t2] and v(τ) is continuous despite its piece-
wise definition. Acceleration and jerk are computed as first-
and second-order derivatives of v(τ) with respect to τ , and
position trajectory is obtained by integrating the profile; all
motion derivatives are continuous—see Figure 3.

The timeline of the new velocity profile v(τ) for any given
contact can be used to modify the corresponding P such
that the velocity transition is completed as the robot reaches
pc. As the duration for velocity transition (Equation 7) and



Fig. 3: Velocity plots with matched position, acceleration,
and jerk plots. Velocity varies from 1.2 to 0.5 in unit time.

controller transition (Equation 6) is the same, the robot will
become compliant and slow down just before it enters C.

Note that only position is adapted using the C∞-smooth
profile; orientation is modified using SLERP, a linear in-
terpolation of points in the spherical space of quaternions.
This approach may cause position-orientation mismatch in
manipulation tasks involving significant orientation changes
in the transition regions.

VI. EXPERIMENTAL ANALYSIS

We experimentally evaluated the following hypotheses:
H1: Our contact prediction approach incrementally improves

the estimate of each contact’s position over time, reduc-
ing task-completion delay and trajectory tracking error;

H2: The learned linear relationship between approach ve-
locity and impact force provides an accurate estimate
of the approach velocity for a desired impact force; and

H3: The overall framework produces smooth motion dy-
namics (i.e., velocity, acceleration etc) for manipulation
tasks with multiple contact changes.

For experiments, we used a seven degrees of freedom (DoF)
Franka Emika Panda robot operating on a tabletop (Fig-
ure 1) and its simulated version in PyBullet. Due to space
constraints, we report results on the physical robot below;
a video of the physical robot and simulation results are
in the supplementary material. The performance measures
include accuracy (e.g., position tracking, impact force), task
completion time, and the time spent in the transition-phase.

A. Contact Anticipation

To evaluate the ability to incrementally improve the esti-
mate of contact position (H1), we used a task-space trajec-
tory that required the robot to approach a (static) table from
above, move back up without making contact with the table,
and move down and make contact with the table, resulting
in a zig-zag trajectory along the z-axis. As described earlier,
the robot was expected to move with a lower velocity when
approaching a contact point, but spend as little time as
possible in this low-velocity, low-stiffness transition phase
to reduce tracking error and delay in task completion.

An initial estimate of each contact position (based on
target trajectory) was provided manually to simulate input
from an external planner or vision system. Each initial
estimate had a large covariance (0.175 along each dimension,

Fig. 4: Position of the end-effector (EE) during trial-1
and trial-3 of the contact prediction experiment. The red
horizontal line is the edge of the covariance ellipsoid in
trial 1; the violet line is the ellipsoid boundary in trial 3.
Updated covariance in trial 3 enables the robot to avoid going
to the transition-phase in the first dip of zig-zag trajectory
and reduce the tracking error.

with distance measured in meters) to simulate the uncer-
tainty associated with a visual sensor or planner. Due to
the large covariance, the region of anticipated contact (C)
overlapped with points in the first ‘valley’ of the target (zig-
zag) trajectory although there was no actual contact with the
table’s surface. We expected the robot to obtain an improved
estimate of C over time and not switch to the transition-
phase controller in the first valley; the switch was only
expected when the robot approached the table the second
time. Given the focus on contact prediction, we empirically
chose safe values for the transition-phase control parameters
(i.e., approach velocity and stiffness).

We observed a significant reduction in covariance, e.g.,
from 0.175 to 0.07 in just three successive trials in an
experiment, as summarized in Figure 4, which enabled the
robot to avoid going to the transition-phase in the first dip in
the trajectory. Also, the average Euclidean tracking error (per
time step) in the position of the end-effector (EE) reduced
from 1.3 cm in the first trial to 0.16 cm in the third trial,
and the task completion time reduced from 7.9 s in the first
trial to 7.2 s in the third trial; the expected (ground truth)
motion duration is 7 s. Similar results were obtained with
other target trajectories, indicating support for H1, i.e., that
the uncertainty in the contact position is reduced quickly,
which reduced delays in task completion as well as errors in
trajectory tracking. These results also indicate that using the
transition-phase controller only when it is required reduces
the deviation from the desired motion trajectory.

B. Approach Velocity and Impact Force

To test the relation between approach velocity and impact
force on contact, the robot was given a target motion trajec-
tory that required it to move in free space and make contact
with the table; this is also shown in the supplementary video.
The task was repeated with different velocities ranging from
0.02m/s to 0.16m/s in steps of 0.02, each repeated four
times, and we measured the corresponding force on contact.
We observed that a line whose parameters were estimated



Fig. 5: Approach velocity vs force on impact. Orange line
denotes the estimated linear relationship.

Target
Force (N)

Estimated reqd
velocity (m/s)

Measured
force (N)

Error
force (N)

10 0.047 7.4 2.6
12 0.063 15.1 3.1
15 0.086 15.3 0.3
18 0.11 16.7 1.3

TABLE I: Errors in contact force with the learned function
specifying approach velocity as a linear function of the
impact force; errors were higher at lower values of target
force due to sensor noise.

by linear regression provided a reasonably good fit for the
relationship between end-effector approach velocity and the
end-effector force along the direction of motion, as shown
in Figure 5. The variance in the fit can be attributed largely
to the noise in the force-torque sensor, which can be large
during discontinuities such as collisions.

Given such a learned relationship, the robot was asked to
perform the same target trajectory (as above), but it had to
now choose its approach velocity so as to achieve a desired
impact force on contact. The measured contact force was
compared with the desired impact force. Table I summarizes
results for four trials for four of the 11 target force values
we tested (10−20N at 1N increments). We observed that the
robot was able to compute an approach velocity that resulted
in an impact force similar to the desired value, with an error
of ∼ 3 N. These errors were more pronounced at lower values
of the target impact force, which can be attributed to sensor
noise, i.e., the learned model was limited by the accuracy,
sensitivity, and resolution of the force-torque sensor, joint
encoders, and the robot’s forward kinematics model.

Equation 4 was then used to incrementally update the
approach velocity of the robot without providing the learned
linear model. The initial value of the approach velocity
was set to 0.1m/s, the target impact force (Fd) was 10 N,
and β = 0.003. Figure 6 shows the evolution of approach
velocity over 10 successive trials. We observed that the
approach velocity was ≈ 0.045m/s in the fifth trial, after
which the noise in the force torque sensor measurements
at impact made it difficult to converge to a single value of
approach velocity. The error between the measured force and
desired force reduced from 8.5N to 0.2N at the end of 10

Fig. 6: Approach velocity over a sequence of trials to achieve
a target impact force of 10 N.

trials. Similar results were obtained for other values of initial
approach velocity and target impact force, indicating that in
the absence of the learned linear model, it takes a greater
number of trials to converge to a suitable approach velocity
for a target impact force. These results thus support H2.

C. Smoothness of Motion

The motion profiles (e.g., velocity, acceleration profiles) of
a changing-contact manipulation task are expected to have
large spikes in the absence of our framework that predicts the
contact locations and adapts the velocity and stiffness during
the approach to a contact position. This hypothesis (H3)
was tested in a simulated environment. The corresponding
results indicated that our framework significantly reduced
the spikes in the overall motion profile of the robot in a
changing-contact manipulation task, while also ensuring safe
interaction during contact changes. The results from these
simulation experiments are available in the supplementary
material and are not described here due to space limitations.

To evaluate the overall framework and the resulting dy-
namics on a physical robot, the robot (with a wooden
block attached to end-effector) was asked to move vertically
down to the table (contact 1), slide along y-axis (the table’s
surface) to a wall (contact 2), and slide along the wall
(while in contact with the table’s surface) to another obstacle
(contact 3), as shown in Figure 1. The robot was provided
significantly incorrect initial guesses of the contact positions
with substantial noise (see Table II). The robot had to repeat
the task while reducing the deviation from the given motion
pattern by improving its estimate of the contact positions.
The robot also had to modify its approach velocity from
the initial value of 0.05m/s to produce a desired impact
force of 8 N. Since each contact in the task is in the
presence of different environment dynamics (e.g., motion
in free space, motion against surface friction), the velocity
required to attain the desired impact force was expected to
be different. The robot also had to incrementally update its
approach velocity for each contact using gradient descent
till the desired velocity for that environment was achieved.
Furthermore, the robot had to perform all the trials with
smooth overall motion dynamics with minimum spikes in
the velocity or acceleration profiles.



(a) Experiment trial 1.

(b) Experiment trial 5.
Fig. 7: Velocity, acceleration, force, and controller activation levels in: (a) experimental trial 1; (b) experimental trial 5. Use
of our framework reduces uncertainty in estimates of contact positions, reduces the time spent using the transition-phase
controller, and reduces discontinuities.

Figure 7a shows the velocity, acceleration, and EE force
in the first trial, and Figure 7b shows these values after
five trials. The results in these figures and in Table II
show that the uncertainty in the estimate of the contact
positions is reduced, as indicated by a significant reduction
in the size of the covariance ellipsoids, and the robot spends
significantly less time using the transition-phase controller
and the associated lower velocity. The last plot in Figure 7a
and Figure 7b show the activation of the default controller
and the transition-phase controller. The overall task was
completed in 9.2 s in the fifth trial as opposed to 14.4 s

in the first trial. The covariance ellipsoids converged in the
first three trials of the task, but the task was repeated to
evaluate the ability to compute and set the approach velocity
for different transition-phase controllers.

With our framework, the robot converged to a suitable
approach velocity for the first contact (from motion in free
space) in five iterations. It was, however, difficult for the
robot to adjust its approach velocities for contacts 2 and
3, which required the robot to use force control along one
and two directions (respectively). Contact 3 was particularly
challenging because it involved sliding along two different



Prediction Error (m) Initial Final (trial 5)

Contact 1 (Z-axis) 0.12 ± 0.3 0.016 ± 0.039
Contact 2 (Y-axis) 0.09 ± 0.2 0.011 ± 0.04
Contact 3 (X-axis) 0.1 ± 0.2 0.018 ± 0.036

TABLE II: Error in the estimated contact location along the
most significant axis for the contact (in parenthesis) in the
first and fifth trials of the task in Figure 1. The value along
the diagonal of the corresponding covariance matrix is shown
as the standard deviation (± term).

surfaces, resulting in very noisy readings from the force-
torque sensor due to the different values of frictional resis-
tance offered by the two surfaces. Since the impact force was
along the same direction as friction, it was more difficult to
isolate the impact force from the force due to surface friction.

VII. DISCUSSION AND FUTURE WORK

This paper described a framework for addressing the
discontinuities in changing-contact manipulation tasks. The
framework introduces a transition-phase controller in a
hybrid force-motion variable impedance controller for
continuous-contact tasks. Our representational choices enable
us to simplify and address the associated challenges reliably
and efficiently. Specifically, a Kalman filter formulation
is adapted to incrementally improve the estimates of the
contact positions. These estimates are used to minimize the
time spent in the transition phase (with lower velocity and
stiffness), and the velocity profile is modified automatically
to achieve smooth motion and a desired impact force.

The framework opens up many directions of further re-
search. First, we only focused on collisions due to trans-
lational motion, and did not address collisions due to ro-
tations of the end-effector. This could be addressed by
defining a region of anticipated collision in SO(3). Second,
we observed that updating approach velocity for collisions
when the robot is already in contact with another surface
is more complicated. This is because of the difficulty in
differentiating the sensor readings obtained due to reactive
forces from the existing contact and the sensor readings
obtained due to the impact force generated by the collision
with another object. One possible way to address this issue
is to learn a better forward model for the contact mode
such that it can accurately predict the forces due to the
first contact. Third, we only modified the velocity profile
to achieve the desired smooth motion, and future work
will explore the relationship between stiffness values and
the impact forces. Initial experiments indicate that this is a
challenging problem, as summarized in the supplementary
material. Moreover, reducing the stiffness during approach
(to a contact position) makes the motion more sensitive to
inertia, e.g., the velocity drops almost to zero before settling
on the target approach velocity at time 1.5s in Figure 7a.
This behavior is due to the lag in tracking the target trajectory
and the uncompensated end-effector mass, which are due to
the lower value of the stiffness used as the robot approaches
a contact position. The long-term objective of this research is

to achieve smooth and reliable motion in different changing-
contact manipulation tasks.
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