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Abstract—Mutation testing is a fault-based testing technique
for measuring the adequacy of a test suite. Test suites are
assigned scores based on their ability to expose synthetic faults
(i.e., mutants) generated by a range of well-defined mathemat-
ical operators. The test suites can then be augmented to expose
the mutants that remain undetected and are not semantically
equivalent to the original code. However, the mutation score can
be increased superfluously by mutants that are easy to expose.
In addition, it is infeasible to examine all the mutants generated
by a large set of mutation operators. Existing approaches have
therefore focused on determining the sufficient set of mutation
operators and the set of equivalent mutants. Instead, this paper
proposes a novel Bayesian approach that prioritizes operators
whose mutants are likely to remain unexposed by the existing
test suites. Probabilistic sampling methods are adapted to
iteratively examine a subset of the available mutants and direct
focus towards the more informative operators. Experimental
results show that the proposed approach identifies more than
90% of the important operators by examining ≤ 20% of the
available mutants, and causes a 6% increase in the importance
measure of the selected mutants.

Keywords-Mutation Testing; Testing Effectiveness; Impor-
tance Sampling; Bayesian Reasoning.

I. INTRODUCTION

The adequacy of test suites used for program analysis

is typically measured using specific criteria. For instance,

code coverage measures the ability of a test suite to cover

certain elements of the program. Black box testing, on the

other hand, defines a specification-based coverage adequacy

measure for a test suite. In these cases, the test suite is

adequate for covering specific elements of the code or for

the given specification. However, test engineers are typically

interested in measuring the adequacy of a test suite in terms

of its ability to find possible faults in the program.

Mutation testing is a fault-based testing technique that

automatically generates synthetic faulty variants (i.e., mu-

tants) of the original code using a set of mathematically

well-defined mutation operators. The existing test suite is

run on all mutants to compute the number of mutants that

are exposed (i.e., killed) or left undetected (i.e., alive). The

test suite is then incrementally augmented with test cases

to detect the unexposed mutants, until the remaining alive

mutants are judged to be semantically equivalent to the

original code. The test suite’s effectiveness is defined as the

ratio of the number of mutants detected to the total number

of non-equivalent mutants, and this is denoted by mutation

score (MS) or mutation adequacy ratio (AM ). This paper

defines a test suite’s mutation importance measure (IM )

as the ratio of the number of undetected mutants to the

number of non-equivalent mutants (i.e., IM = 1 − AM ).

A key challenge to mutation testing is the infeasibility of

examining all mutants generated by applying a large number

of mutation operators on the target program. Researchers

have therefore focused on computing the sufficient set of

mutation operators or the set of equivalent mutants.

Each mutation operator represents a type of fault. De-

pending on the program and test suite, some faults may be

exposed while others may require augmentation of the test

suite. This paper hypothesizes that a test suite that exposes

certain faults is likely to detect similar faults. Similarly, a

mutation operator, most of whose mutants have been caught

by a test suite, is likely to produce mutants that can be

exposed using the test suite. Based on this hypothesis, this

paper describes an approach that directs attention towards

the mutation operators whose application on a given program

is likely to produce mutants that would not be exposed

by a given test suite. These operators are considered “high

priority” or “important” because they need to be identified

quickly to augment the test suite appropriately. The major

contributions of this work are hence as follows:

• An importance sampling-based probabilistic approach to

iteratively direct focus towards operators whose mutants

tend not to be killed by the existing test suites.

• Information-theoretic and adaptive sampling-based con-

straints to achieve automatic and efficient mutation testing

on different programs and test suites.

This paper begins with a review of the technical background

in Section II. Section III presents the proposed approach.

Sections IV-V use case studies on subject programs to

show that this approach identifies ≥ 90% of the important

operators by examining ≤ 20% of the mutants, and increases

the IM by 6% over the approach of examining all non-

equivalent mutants. Section VI discusses the threats to

validity and Section VII presents the conclusions.



II. RELATED WORK

This section reviews some representative approaches for

mutation testing, operator sufficiency and equivalent mu-

tants, followed by a brief overview of stochastic sampling.

A. Mutation Testing

Mutation testing is the process of assessing test suites

by measuring their ability to detect synthetic faults that

are automatically generated by applying well-defined math-

ematical transformations (i.e., mutation operators) on the

target program [1], [2]. A test suite is augmented to expose

the undetected mutants, and it is said to be adequate if it

kills all non-equivalent mutants i.e., its AM = 1. Proteum

[3] and MuJava [4] are tools for mutating C and Java

programs. Mutation testing has been reported to be more

powerful than statement, branch and all-use coverage criteria

[5]. Research has shown that mutants can act like real

faults [6], and mutants have been used for assessing the

effectiveness of different software testing schemes. However,

performance depends on the type of operators designed

for specific classes of faults. A large number of mutation

operators have been proposed to represent different classes

of faults [7]. Despite years of research, computation and

analysis of all the mutants remains a major challenge to the

feasibility of mutation testing. Approaches such as meta-

mutants [8], selective mutation [9] and sufficient mutation

operator identification [10], [11] aim to reduce the cost of

mutation. For instance, Siami Namin et al. [10] proposed

a cost-based regression procedure that modeled the number

of mutants generated by each operator as the cost for that

operator, thereby generating 92% fewer mutants. Identifying

equivalent mutants is also a challenge. It is undecidable to

predict whether an alive mutant can be killed by adding a

test case. Proposed solutions include heuristic methods [12]

and methods based on constraint satisfaction [13]. Research

has also been done on localizing the effect of equivalent

mutants [14], and measuring the impact of mutants [15]—

mutants with higher impact are unlikely to be equivalent.

B. Stochastic Sampling

In many practical domains, computing the true distribution

of the variables characterizing the domain is intractable.

Several prediction tasks therefore use approximate inference

methods that numerically sample from the true (unknown)

underlying distribution to estimate it [16]. Such Monte Carlo

methods have been used extensively in fields such as com-

puter vision and robotics [17], [18]. Sampling is applicable

to domains where it is necessary to track the likelihood

of multiple hypotheses about the state of the system being

analyzed. Each “sample” is an instance of a hypothesis (e.g.,

the occurrence of a type of fault) and it is associated with a

probability that represents the likelihood that the hypothesis

is true. Each iteration of sampling consists of three steps: (1)

each hypothesis is modified to account for dynamic changes

in the system; (2) the probability of each hypothesis is

updated by examining some samples of that hypothesis; and

(3) a larger number of samples are drawn from hypotheses

with a larger (relative) probability, to be analyzed in the

next iteration. Over a few iterations, sampling converges to

the true probability distribution over the set of hypotheses,

thereby identifying hypotheses that are more likely to be

true. Sampling methods [16] are hence well-suited to model

the inherent stochasticity of software testing—each program

displays certain unique characteristics during testing.

III. PROBABILISTIC FORMULATION

This section describes the proposed stochastic approach

for mutation testing that automatically adapts to the charac-

teristics of any given program and test suite. It iteratively

examines a small set of mutants of the program to prior-

itize operators whose mutants are more likely to remain

unexposed by the test suite. As a result, the test suite is

augmented efficiently and the program is analyzed reliably.

A. Probabilistic Formulation

Consider a set of mutation operators OP =
{µ0, . . . , µN−1}, a program P and a test suite S containing

one or more test cases. S kills a mutant if at least one test

case in S exposes the faulty behavior of the mutant. The

following terms are used in this paper:

• Nmi(P): number of mutants generated by µi on P .

• NM(P) is the total number of mutants of all µi ∈ OP .

• Imi(P,S) is the mutation importance measure of S for

program P and operator µi. It is the fraction of mutants

of P generated by µi that are left alive by S. Imt
i(P,S)

is the mutation importance measure for S in iteration t.
• IM(P,S) is the mutation importance measure for S on

P . It is the fraction of all mutants of P (generated by OP)

that are left alive by S. IM t(P,S) is the corresponding

mutation importance measure for iteration t.

In order to prioritize the operators whose mutants (of P) are

hard to expose with S, a probability measure is associated

with each operator:

< µi, pi > : pi ∝ importance of operator µi (1)

where probability pi of µi is low if S kills a large proportion

of the mutants generated by µi on P . Since mutants are

generated by applying the operators on a specific P and

evaluated using specific S, references to P , S are frequently

dropped—for e.g., Nmi is used instead of Nmi(P).

B. Initial Distributions

The iterative procedure selects an initial (small) set of

mutants from the set of all mutants. This set can be chosen

by sampling uniformly, i.e., the same number of mutants can

be chosen for each operator with a non-zero set of available

mutants. Another option is to make the number of chosen



mutants of each operator proportional to the relative number

of available mutants of that operator:

numMutantSamps0
i ≃

{

c uniform

∝ Nmi

NM
proportional

(2)

where numMutantSamps0
i is the number of mutants of

operator µi to be examined in the first iteration and c is an

arbitrary integer. The corresponding initial operator proba-

bilities are also set to be uniform (i.e., 1

N
if ∀iNmi(P) > 0)

or proportional to the relative number of mutants generated

by each operator (i.e., ∝ Nmi

NM
). With either scheme, the

number of mutants selected in the initial set is much smaller

than the total number of available mutants. This initial set

is used to initiate the iterative process described below.

C. Probability Update

Since the target program does not change while it is

being analyzed, step-1 of the iterative procedure described in

Section II-B is not required. Step-2 of the iterative procedure

updates the likelihood that each operator’s mutants will

remain unexposed. This probability update is based on the

proportion of mutants selected that are left alive by the test

suite in each iteration:

pt
i = pt−1

i + δpt
i

1

totalMutantSampst
(3)

δpt
i = −1.0 + 2.0

numAlivet
i

numMutantSampst
i

: ∈ [−1.0, 1.0]

totalMutantSampst =

N−1
∑

i=0

numMutantSampst
i

where numMutantSampst
i is the number of mutants of µi

examined in iteration t, of which numAlivet
i mutants are

left alive, while totalMutantSampst is the total number of

mutants analyzed in this iteration. The probability of opera-

tor µi in iteration t (i.e., pt
i) is the sum of the probability in

the previous iteration (pt−1

i ) and an incremental factor. This

factor is based on the fraction of chosen mutants of µi that

are left alive in the current iteration (
numAlivet

i

numMutantSampst

i

),

and it is inversely proportional to the total number of

mutants considered in iteration t. The term δpt
i ∈ [−1, 1]

constrains the change in probability (in each iteration) and

provides robustness to noisy observations. After the update,

the operator probabilities are normalized to sum to one, a

necessary condition for probability measures:

pt
i =

pt
i

∑

j pt
j

(4)

The updated probabilities represent the current estimate of

the relative priority of the operators.

D. Importance Sampling

Step-3 of the iterative process uses the updated operator

probabilities to compute the number of mutants of each oper-

ator to be examined in the next iteration. The goal is to select

a proportionately larger number of mutants of operators with

larger probabilities, i.e., to focus more on operators whose

mutants are more likely to remain unexposed. This goal

is achieved using Algorithm 1, a modified version of the

importance sampling scheme [16], [19].

Algorithm 1 Importance Sampling for Mutation Testing.

Require: Set of <operator, probability> vectors (in itera-

tion t) of the form: {< µds,k, pt
ds,k >: k ∈ [0, N − 1]}

sorted based on probability such that pt
ds,k ≥ pt

ds,k+1
.

{Initialize mutant counts and cumulative probability.}
1: ∀k ∈ [0, N − 1], Countt+1

k = 0; b0 = pt
ds,0

{Compute the cumulative probability distribution.}
2: for k = 1 to N − 1 do

3: bk = bk−1 + pt
ds,k.

4: end for

5: Compute Y , the number of mutants to be examined in

iteration (t + 1) – see Equation 6.

6: r0 ∼ U ]0, 1

Y
], iterator k = 0

{Compute the mutant counts for each operator.}
7: for j = 0 to Y − 1 do

8: while rj > bk do

9: k = k + 1
10: end while

11: Countt+1

k = Countt+1

k + 1
12: rj+1 = rj + 1

Y

13: end for

14: Return re-ordered {Countt+1

k } : k ∈ [0, N − 1].

The algorithm takes as input the operators sorted in

decreasing order of their updated probabilities in iteration

t: {< µds,k, pt
ds,k >: k ∈ [0, N − 1]}—for e.g., µs,0 is the

operator with the highest probability. The first step initializes

the number of mutants of each operator that will be analyzed

in the next iteration (line 1 of Algorithm 1). Next, the

cumulative probability distribution is computed (lines 2–4),

which sums up the probability contribution of all operators.

Similar to the default importance sampling algorithm, a

random number is chosen from a uniform distribution (r0 ∼
U ]0, 1/Y ]) based on the total number of mutant samples

that will be analyzed in the next iteration (Y). The value of Y
is computed dynamically as described in Equation 6. Based

on this selection of r0 and the arrangement of operators

in decreasing order of probability, the count of samples

for the operator with the highest probability is incremented

(line 11) until this operator’s relative contribution to the

cumulative probability distribution is taken into account (i.e.,

until rj > bk is true). Then the focus shifts to the operator

that made the second largest contribution to the cumulative

probability (line 9). The algorithm terminates when the

desired count of samples is reached, and the indices of the

computed counts are adjusted to account for the sorting of

the operators at the beginning of Algorithm 1.



E. Effect of Sampling Parameters

The proposed approach prioritizes mutation operators

such that more attention is devoted to operators whose mu-

tants are more likely to remain unexposed with the existing

test suite. The test suite can then be appropriately augmented

and the program can be tested thoroughly. However, the

following questions need to be answered:

(a) Should mutants be sampled with or without replace-

ment? Mutation testing is a stationary domain. Since no

additional information is gained by examining a mutant of

a specific program more than once with a specific test suite,

mutants are examined without replacement.

(b) How many iterations must be performed? The objec-

tive of sampling is to gather information that prioritizes the

mutation operators. Entropy1 can be used as a measure of

the information encoded by the current probabilities of the

mutation operators [20]:

Et = −

N−1
∑

j=0

pt
j · ln(pt

j) (5)

where Et and pt
j are the entropy and jth operator’s proba-

bility respectively (in iteration t). The entropy is maximum

when the probability distribution is uniform, i.e., nothing is

known about the relative importance of the operators. The

entropy is small when the probabilities of a small number

of mutation operators are significantly larger than the others.

The entropy decreases as more information becomes avail-

able, and sampling is hence terminated when the entropy

does not decrease substantially between two iterations.

(c) How many mutants should be examined in each iter-

ation? The probability distribution over the set of mutation

operators is used to estimate the true (unknown) distribu-

tion of relative operator importance. Existing research in

sampling-based inference can be used to compute a bound

on the number of samples that need to be examined in

order to ensure that the estimated distribution of operator

probabilities matches the true distribution with a high degree

of certainty [17]. As more information becomes available

(over successive iterations), the sampling-based distribution

becomes more accurate and causes a progressive decrease in

the number of samples that need to be examined. The value

of parameter Y in Algorithm 1 can hence be computed as:

Yt+1 =
1

2ǫ
χ2

qt−1,1−δ (6)

≃
qt − 1

2ǫ

{

1 −
2

9(qt − 1)
+

√

2

9(qt − 1)
z1−δ

}3

where Yt+1 is computed based on approximated quan-

tiles of the chi-square distribution (χ2
qt−1,1−δ). Equation 6

guarantees that with probability 1 − δ, the sampling-based

estimate approximates the true distribution with an error

1Entropy is a measure of the uncertainty associated with a random
variable (RV). A large value of entropy indicates a higher uncertainty, while
a small value implies a greater confidence in the estimated value of the RV.

Program NLOC NTC NMG NMS NM

printtokens 343 4130 11741 2000 1551

printtokens2 355 4115 10266 2000 1942

replace 513 5542 23847 2000 1969

schedule 296 2650 4130 2000 1760

schedule2 263 2710 6552 2000 1497

tcas 137 1608 4935 4935 4935

totinfo 281 1052 8767 2000 1740

Table I
DESCRIPTION OF SUBJECT PROGRAMS. NLOC: NET LINES OF CODE.

NTC: NUMBER OF TEST CASES. NMG: NUMBER OF MUTANTS

GENERATED BY ALL MUTATION OPERATORS. NMS: NUMBER OF

RANDOMLY SELECTED MUTANTS. NM: NUMBER OF SELECTED

MUTANTS THAT WERE NON-EQUIVALENT.

≤ ǫ. Here, q represents the number of operators that had

a non-zero number of mutants examined in iteration t. For a

given δ, ǫ (e.g., δ = 0.1, ǫ = 0.2), the value of z1−δ can

be obtained from standard normal tables to estimate the

number of samples that need to be examined in iteration

t + 1 in order to accurately estimate the true distribution of

relative operator importance. Equations 5,6 can be used to

automatically trade-off computation against accuracy.

IV. CASE STUDIES

This section describes the case studies performed on a

range of subject programs.

A. Subject Program

The first set of experiments were performed on the seven

Siemens programs [21] and the associated test cases2. As

summarized in Table I, this is a collection of C programs

ranging in size from 137 to 513 lines of code (excluding

comments and blank lines).

B. Data Collection

For each program, mutants from an earlier study [10]

based on the Proteum mutant generator [3] were used.

Proteum implements 108 mutation operators based on the

specification designed by Agrawal et al. [7]. In order to

make it feasible to run the experiments3, 2000 mutants

were selected randomly for each program, with the number

of selected mutants of each operator being proportional to

the relative number of mutants generated by the operator.

The only exception was the program tcas, where an

earlier study provided results corresponding to all generated

mutants [22]. Mutants that were not killed by any test case in

the test pool were considered equivalent. In the experiments

described below, the terms “all” or “existing” refer to the

set of non-equivalent mutants shown in Table I.

For each subject program, test cases were chosen ran-

domly from the test pool to create one test suite each of

size 1 − 50 test cases. Two different schemes were used to

generate the initial set of mutants for each combination of

2The subject programs used in this paper were obtained from the Subject
Infrastructure Repository (SIR).

3Earlier exploratory work with tcas indicated that using all generated
mutants was infeasible [22].



Prior Distribution δIM(%) Improvement (%)

Uniform 5.80 ± 2.29 91.4
Proportional 4.95 ± 2.32 98.0

Table II
IMPROVEMENT IN IM WITH DIFFERENT INITIAL OPERATOR

PROBABILITY DISTRIBUTIONS.

of program and test suite (Equation 2). In the first scheme,

the initial set was composed of a fixed number of mutants of

each operator (c = 2) that resulted in a non-zero number of

mutants. In the second scheme, the number of chosen mu-

tants of an operator was proportional to the relative number

of mutants generated by the operator. The subsequent steps

were identical for both schemes. For the P and S under

consideration, the set of mutants chosen in iteration t were

analyzed to compute the fraction of mutants left alive by S
(i.e., Imt

i, IM t), thereby updating the operator probabilities

and computing the number of mutants of each operator to

be examined in the next iteration. In order to evaluate the

performance of the proposed approach, Imi, IM were also

computed for each P and S using the default approach of

analyzing all (non-equivalent) mutants of each operator.

C. Evaluation

The subject programs were used to evaluate the ability of

the proposed approach to prioritize the mutation operators.

1) Sampling Effectiveness: Figures 1(a)–1(e) show the

evolution of operator probabilities over a few iterations, for

a specific program and test suite. All operators with a non-

zero number of mutants are sampled uniformly in the first

step. The sampling process terminates after a small set of

iterations, i.e., t = 5, at which point the focus of attention

converges to a small set of operators. In addition, Figure 1(f)

shows that the number of mutants examined decreases as the

iterations proceed. The total number of mutants analyzed

is ≤ 20% of the existing mutants. When each operator’s

initial probability is proportional to the relative number of its

mutants, the convergence is faster but the number of mutants

examined in each iteration decreases slowly, as shown in

Figures 2(a)–2(f).

Next, Table II compares the performance of the two initial

distribution schemes against the default approach, over all

programs and test suite sizes described in Section IV-B. The

column “δIM(%)” reports the increase in IM achieved by

the sampling-based approaches, in comparison to the default

approach. With adaptive sampling, a larger fraction of the

examined mutants are alive (i.e., more attention is devoted

to the alive mutants) even though only a small subset of

the mutants are examined. The “Improvement” is seen in a

larger number of trials when the initial operator probabilities

are proportional to the size of the corresponding mutant sets.

2) Operators Selection: The ability to prioritize the op-

erators whose mutants are hard to expose, was evaluated

next. The Imi of the operators, computed by analyzing each

operator’s mutants for each P and S, were sorted in de-

Programs Operator Overlap
Max Min Average Dynamic

Uniform

printtokens 0.93 0.56 0.76 ± 0.07 0.9
printtokens2 0.92 0.48 0.69 ± 0.11 0.94
replace 1.0 0.80 0.87 ± 0.06 0.9
schedule 0.90 0.48 0.68 ± 0.1 0.9
schedule2 0.91 0.68 0.77 ± 0.04 0.89
tcas 1.0 0.74 0.85 ± 0.06 0.89
totinfo 1.0 0.51 0.69 ± 0.10 0.95

Proportional

printtokens 0.94 0.60 0.77 ± 0.09 0.92
printtokens2 0.97 0.47 0.66 ± 0.13 0.9
replace 1.0 0.65 0.86 ± 0.07 0.94
schedule 0.90 0.48 0.67 ± 0.11 0.98
schedule2 0.92 0.66 0.78 ± 0.05 0.91
tcas 0.98 0.85 0.91 ± 0.04 0.92
totinfo 0.96 0.51 0.74 ± 0.09 0.96

Table III
OPERATOR OVERLAP WITH THE TWO SCHEMES FOR INITIAL OPERATOR

PROBABILITY ASSIGNMENT. DYNAMIC SELECTION OF “T” PROVIDES

BETTER RESULTS.

scending order to obtain a ground-truth list of the operators

in decreasing order of priority. The operator probabilities

computed during the sampling iterations were also sorted to

create the observed list of important operators. The operator

overlap measure was then defined as:

OpOverlap(P,S, T ) = Overlap(Gt(P,S), Obs(P,S))

which computes the fraction of top T% operators in the

ground-truth list (Gt) that also exist among the top T% of

the observed list (Obs), for a specific P and S. Table III

summarizes the results for the two initial operator probability

assignment schemes (Equation 2).

The “Max”, “Min” and “Average” columns of Table III

report the maximum, minimum and average OpOverlap

(operator overlap) obtained with the proposed approach over

all test suite sizes. For these results, the top 25% of the oper-

ators in the ground-truth and observed lists were compared

(i.e. T = 25). However, in many cases, the top operators in

the ground-truth list have low IM values, i.e., they do not

represent the important operators whose mutants are hard

to expose. Therefore, experiments were also run with the

value of T being set dynamically based on the Imi values

in the ground-truth list—only operators with Imi above

a reasonable threshold (0.4) were considered important.

The corresponding (average) results are summarized in the

columns labeled “Dynamic”: ≈ 90% (average ≈ 95%) of the

truly important operators are detected using the sampling-

based approach. Even the top operators in the ground-truth

list that are not found by the sampling approach, exist just

beyond the top T% in the observed list. The following

observations can be made:

• The proposed method increases IM by ≈ 6% in compar-

ison to the default approach. Though the differences are

more pronounced for smaller test suites, further analysis

is required before stronger claims can be made.
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(a) Iteration 1.
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(b) Iteration 2.
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Iteration 3

(c) Iteration 3.
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Iteration 4

(d) Iteration 4.
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(e) Iteration 5.
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Figure 1. (a)-(e) Evolution of operator probabilities for program printtokens with test suite size = 20, starting with a uniform initial distribution; (f)
Number of samples used in each iteration.

• The proposed approach is able to identify ≥ 90% of

the important operators identified by examining all the

mutants, while examining ≤ 20% of the mutants over

3 − 4 sampling iterations.

D. Analysis of High-Priority Operators

Table IV summarizes the top ten mutation operators,

whose mutants were identified as being the most difficult

to expose with the existing test suites, for the two differ-

ent initial operator probability assignment schemes. These

results document the contributions of all operators over all

subject programs. However, for any given program and test

suite, either scheme of initial probability assignment results

in a similar list of important operators. The results also

make sense from a software testing perspective. For instance,

inserting negations on arguments and deleting return

statements produce hard-to-detect mutants.

V. STUDIES ON OTHER PROGRAMS

In order to evaluate the performance of the proposed ap-

proach on larger programs, it was applied on the gzip and

space programs from SIR. For space, mutants generated

by all mutation operators were considered. However, for

gzip, the relationship between adaptive sampling and a

sufficient set of mutation operators [10] was investigated.

A. Subject Programs

Version 5 of program gzip was used in the experiments

which contains 5680 net lines of code and 214 test cases.

The experiments used 212 test cases because two of them

did not work properly on the experimental platform. The

second program space contains 5905 net lines of code and

13585 test cases.

B. Data Collection

Mutants were generated for both gzip and space us-

ing Proteum [3]. For space, Proteum generated 301356
mutants using 108 mutation operators. In order to make the

study feasible, 30136 mutants (i.e., 10%) were selected, with

the number of mutants of each operator being proportional

to the total number of mutants generated by that operator.

When the mutants were evaluated with all test cases, 6428
were not killed by any test case—the remaining 23708 non-

equivalent mutants were used in the experiments.

Siami Namin et al. [10] had previously identified a suffi-

cient set of 28 Proteum mutation operators, i.e., the behavior

of subject programs on these operators is equivalent to the

behavior when the mutants of all operators are considered.

In addition, 15 operators identified using coverage-based test

suites were also included to result in a set of 43 mutation

operators. For these 43 operators, Proteum generated 38621
mutants of gzip, which were considered for this case study.

Since each run of gzip took a long time, ≈ 1% of the

mutants from each operator were randomly selected and the

non-equivalent mutants (317) were used in the experiments.

As before, test suites of sizes 1−50 test cases were generated

by randomly choosing test cases from the test pool.
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(a) Iteration 1.
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(b) Iteration 2.
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(c) Iteration 3.
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(d) Iteration 4.
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(e) Iteration 5.
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Figure 2. (a)-(e) Evolution of operator probabilities for program printtokens with test suite size = 20, starting with an initial distribution proportional

to the number of existing mutants; (f) Number of samples used in each iteration.

C. Data Analysis

Table V summarizes the operator overlap results for

gzip and space. In comparison to the default approach

of evaluating all non-equivalent mutants, adaptive sampling

identifies at least 97% and 81% of the important operators

for gzip and space respectively. Even when some of the

high-priority operators (on the ground truth list) are not

within the top “T” on the observed list, they are just a few

positions further down on the observed list.

Table VI compares the proposed approach against the

default approach in terms of the increase in the mutation

importance (IM ). There is a substantial increase in IM
for both initial operator probability assignment schemes:

uniform and proportional. However, the gain is observed in

a larger number of cases (column labeled “Improvement”)

when the initial operator probabilities are proportional to the

corresponding number of existing mutants.

Figure 3(a) shows the operator probabilities at the be-

ginning and end of the sampling process for gzip for a

test suite of size 25. Figure 3(b) shows the corresponding

plot of operator probabilities of space for a test suite

of size 25. Both figures correspond to the case where

the initial operator probabilities are distributed uniformly

over operators with a non-zero number of mutants. Next,

Figure 3(c) shows the number of mutants examined in each

iteration for the program gzip, for both schemes for initial

operator probability assignment and a test suite of size 25.

Figure 3(d) shows the corresponding plot for space. The

following observations can be made:

• The proposed method adapts to different programs:

≥ 80% of the important operators (average ≈ 90%) are

identified by examining a subset of the mutants.

• The approach performs better for gzip—it is able to

find important operators even among the sufficient set of

mutation operators, by examining a subset of the mutants.

• The operator probabilities do not increase substantially

for space and prioritizing the operators is more diffi-

cult. This accounts for the lower OpOverlap values in

comparison to those for gzip, especially with a uniform

prior. One reason for this performance could be the large

pool of test cases developed for space.

• Since the number of mutants of space is large, the

uniform scheme for initial probability assignment results

in a smaller number of iterations (and examined mutants)

than the proportional scheme. However, the performance

is better with the proportional scheme.

D. Discussion

Table VII summarizes some high-priority operators for

gzip, for the two different schemes for initial operator

probability assignment. Table VIII summarizes the corre-

sponding results for space. There is a significant overlap

between the important operators identified for gzip with the

uniform and proportional schemes. However, for space, the

high-priority operators identified with the two initial operator



0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

Operators

P
ro

b
a
b

il
it

y

Probability Evolution

 

 

Iteration 1

Iteration 5

(a) Probability evolution for gzip.
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(b) Probability evolution for space.
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(c) Sample size evolution for gzip.
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(d) Sample size evolution for space.

Figure 3. (a)-(b) First and last iteration of probability evolution for gzip and space for uniform initial probabilities and |S| = 25; (c)-(d) The number
of samples used in each iteration for gzip and space for both schemes for initial probability assignment, for |S| = 25.

probability assignment schemes are different because: (a) the

proportional scheme is significantly better than the uniform

scheme; and (b) the increase in operator probabilities is not

very large during the sampling process.

VI. THREATS TO VALIDITY

Threats to external validity include the use of relatively

small to medium-sized C programs. The results reported

in this paper, based on these programs, support the initial

hypothesis, i.e., that a test suite that detects a certain type

of fault is likely to detect other similar faults. Larger

programs may have more complex structure, which may

lead to different results. Object-oriented programs also need

to be investigated, since they contain additional features

that may lead to different results. In addition, a mutant

generator for object-oriented programs (such as MuJava

[4]) that implements class mutation operators, may behave

differently. These are directions for future research.

Threats to construct validity include the randomly selec-

tion of mutants from each program other than tcas. This

was necessary to make the study feasible. Performing all the

computation for mutants, such as generation, compilation

and execution is computationally expensive. However, bias

for a specific operator was avoided by randomly selecting

the same proportion of mutants for each operator.

Finally, threats to internal validity include the correctness

of the mutation tool, scripts, and data collection processes.

Each author monitored the results of the intermediate pro-

cesses separately to assure their correctness.

VII. CONCLUSION AND FUTURE WORK

This paper describes a novel probabilistic approach for ef-

fective mutation testing. The approach incorporates innova-

tions of well-established information-theoretic and sampling

methods to iteratively direct the attention towards operators

whose mutants are hard to expose using the existing test

suites. As a result, there is an average improvement of

≈ 6.0% in the mutation importance measure, while detecting

≈ 90% of the high-priority operators (whose mutants are

hard to catch) by examining as few as 20% of the avail-

able mutants. Furthermore, the approach automatically and

elegantly trades-off computational effort against accuracy.

This work has only opened up a new direction of further

research. As mentioned in Section VI, there are many

interesting questions that require further investigation. This

work is part of a long-term goal of designing Bayesian

formulations for software testing challenges.
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