
Intelligent Data Acquisition and Processing for Unmanned Aerial Vehicles

by

Justin Griggs B.S.E.E

A Thesis

In

Electrical Engineering

Submitted to the Graduate Faculty

of Texas Tech University in

Partial Fulfillment for

The Requirements for

The Degree of

Master of Science

Approved

Richard Gale

Chair of Committee

Mohan Sridharan

Peggy Gordon Miller

Dean of the Graduate School

August, 2012

Texas Tech University, Justin Griggs, August 2012

 ii

Acknowledgments

First and foremost I’d like to thank my parents, Robert and Rosie Griggs, for their

endless support. I would not be where I am today without them. They have provided

encouragement and financial support through this process.

My sincere thanks go to Dr. Richard Gale for providing guidance and support

during my undergraduate and graduate careers. His support for STEM robotics has

brought me into leadership roles, challenged me intellectually, and created a support

structure that helped carry me through my curriculum.

I’d like to thank FIRST Robotics for getting me interested in engineering during

high school. Being involved in FIRST through college has challenged my engineering

skills that supplement my classroom knowledge and make me a better person.

Texas Tech University, Justin Griggs, August 2012

 iii

Table of Contents

Acknowledgments ... ii

Abstract ... vi

List of Figures .. vii

List of Abbreviations ... xi

Introduction ... 1

Motivation .. 1

Background ... 2

History .. 2

Recent Developments .. 2

Modeling Quadrotor Dynamics ... 3

Frame Configuration ... 3

Dynamics .. 4

System Goals.. 4

System Requirements .. 4

Action Language Model ... 4

Modeling Dynamic Domains ... 5

Inertia Axiom ... 5

Awareness Axiom .. 5

Objects of the domain.. 6

Static relationships .. 6

Fluents .. 6

Actions .. 7

System Description .. 7

Model Limitations ... 8

Search and Track Modeling ... 8

Search ... 8

Texas Tech University, Justin Griggs, August 2012

 iv

Uninformed ... 8

Informed .. 10

Tracking ... 11

Station Keeping ... 12

Circle ... 12

Simulation .. 13

World .. 13

Target Trajectory .. 13

PID-Vision Based Control ... 14

Uninformed Searching .. 17

Informed Searching ... 21

Auto Tracking .. 25

Station Keeping Tracking ... 35

Circle Tracking .. 47

System Design and Implementation .. 57

Weight Based Airframe Design .. 57

Data Flow ... 57

Airframe... 59

Design.. 59

Manufacturing ... 62

Image Processor ... 64

Autopilot ... 65

ArduCopter .. 66

Mission Planner ... 66

Power Distribution .. 67

Imaging Sensor .. 68

MAVLink ... 68

Object Detection .. 69

OpenCV .. 70

Processing Operations ... 70

Testing .. 73

Safety .. 73

Texas Tech University, Justin Griggs, August 2012

 v

Flight Time ... 73

Manual Flight ... 73

Reliability ... 74

Results and Current Status .. 75

Future Work .. 77

Local Navigation .. 77

Image Processing Software ... 77

Test Bed Development ... 77

Platform Agnosticism and Teamwork ... 77

Competition Team ... 77

Conclusion ... 78

Works Cited ... 79

Texas Tech University, Justin Griggs, August 2012

 vi

Abstract

 This paper describes the design and implementation of a quadrotor that

autonomously analyses moving objects and generates real-time waypoints for persistent

reconnaissance of objects of interest. The system is equipped with an autopilot to control

the craft in flight and an onboard image processor. The processor analyses images to

create real-time estimations of target direction and velocity. An algorithm to create a

flight plan from the imaging data acquired is described. A simulation of an algorithm to

generate optimal trajectories through a sequence of positions and yaw angles is

developed. Experimental results of the system are shown.

Texas Tech University, Justin Griggs, August 2012

 vii

List of Figures

Figure 1: Quadrotor Frame Configurations ... 3

Figure 2: Uninformed Search State Transition .. 9

Figure 3: Uninformed Search Path .. 10

Figure 4: Informed Search Path ... 11

Figure 5: Example Target Trajectory ... 13

Figure 6: Camera PID Impulse Test Start .. 15

Figure 7: Camera PID Impulse Test End ... 16

Figure 8: Camera PID Impulse Test Response .. 17

Figure 9: Uninformed Search at frame 10 ... 18

Figure 10: Uninformed Search at frame 140 ... 18

Figure 11: Uninformed Search at frame 250 ... 18

Figure 12: Uninformed Search at frame 440 ... 19

Figure 13: Uninformed Search at frame 700 ... 19

Figure 14: Uninformed Search at frame 1000 ... 19

Figure 15: Uninformed Search at frame 1200 ... 20

Figure 16: Uninformed Search at frame 1450 ... 20

Figure 17: Informed Search at Frame 5 ... 21

Figure 18: Informed Search at Frame 50 ... 22

Figure 19: Informed Search at Frame 110 ... 22

Figure 20: Informed Search at Frame 265 ... 23

Figure 21: Informed Search at Frame 430 ... 23

Figure 22: Informed Search at Frame 735 ... 24

Figure 23: Informed Search at Frame 1035 ... 24

Figure 24: Informed Search Error Response ... 25

Figure 25: Auto Tracking at Frame 2 .. 26

Figure 26: Auto Tracking at Frame 30 .. 26

Figure 27: Auto Tracking at Frame 50 .. 27

Figure 28: Auto Tracking at Frame 100 .. 27

Figure 29: Auto Tracking at Frame 160 .. 28

Figure 30: Auto Tracking at Frame 225 ... 28

Texas Tech University, Justin Griggs, August 2012

 viii

Figure 31: Auto Tracking at Frame 360 .. 29

Figure 32: Auto Tracking at Frame 500 .. 29

Figure 33: Auto Tracking at Frame 630 .. 30

Figure 34: Auto Tracking at Frame 700 .. 30

Figure 35: Auto Tracking at Frame 755 .. 31

Figure 36: Auto Tracking at Frame 835 .. 31

Figure 37: Auto Tracking at Frame 950 .. 32

Figure 38: Auto Tracking at Frame 970 .. 32

Figure 39: Auto Tracking at Frame 990 .. 33

Figure 40: Auto Tracking at Frame 1050 .. 33

Figure 41: Auto Tracking at Frame 1300 .. 34

Figure 42: Auto Track Error Response .. 34

Figure 43: Station Keeping at Frame 0 .. 36

Figure 44: Station Keeping at Frame 30 .. 36

Figure 45: Station Keeping at Frame 50 .. 37

Figure 46: Station Keeping at Frame 70 .. 38

Figure 47: Station Keeping at Frame 130 .. 38

Figure 48: Station Keeping at Frame 200 .. 39

Figure 49: Station Keeping at Frame 400 .. 40

Figure 50: Station Keeping at Frame 500 .. 40

Figure 51: Station Keeping at Frame 620 .. 41

Figure 52: Station Keeping at Frame 660 .. 41

Figure 53: Station Keeping at Frame 750 .. 42

Figure 54: Station Keeping at Frame 800 .. 42

Figure 55: Station Keeping at Frame 960 .. 43

Figure 56: Station Keeping at Frame 1000 .. 43

Figure 57: Station Keeping at Frame 1150 .. 44

Figure 58: Station Keeping at Frame 1200 .. 45

Figure 59: Station Keeping at Frame 1400 .. 45

Figure 60: Station Keeping Strategy Error Response .. 46

Figure 61: Circle at frame 0 ... 47

Texas Tech University, Justin Griggs, August 2012

 ix

Figure 62: Circle at frame 30 ... 48

Figure 63: Circle at frame 50 ... 48

Figure 64: Circle at frame 190 ... 49

Figure 65: Circle at frame 350 ... 49

Figure 66: Circle at frame 450 ... 50

Figure 67: Circle at Frame 500 .. 50

Figure 68: Circle at frame 550 ... 51

Figure 69: Circle at frame 600 ... 51

Figure 70: Circle at frame 650 ... 52

Figure 71: Circle at frame 750 ... 52

Figure 72: Circle at frame 850 ... 53

Figure 73: Circle at frame 950 ... 53

Figure 74: Circle at frame 1000 ... 54

Figure 75: Circle at frame 1050 ... 54

Figure 76: Circle at frame 1100 ... 55

Figure 77: Circle at frame 1200 ... 55

Figure 78: Circle at frame 1400 ... 56

Figure 79: Circle Strategy Error Response .. 56

Figure 80: Data Flow Diagram .. 57

Figure 81: Software Block Diagram .. 58

Figure 82: CAD Model Assembly ... 59

Figure 83: Electronics Cradle .. 60

Figure 84: Square Boom .. 61

Figure 85: Frame plates and Electronics Cradle .. 61

Figure 86: Quadrotor Airframe and Electronics .. 62

Figure 87: Quadrotor Electronics Side View ... 63

Figure 88: Landing Gear and Webcam Mount .. 64

Figure 89: Pandaboard ES ... 65

Figure 90: ArduPilot Mega 2560 ... 66

Figure 91: Power Distribution Block Diagram .. 68

Texas Tech University, Justin Griggs, August 2012

 x

Figure 92: MAVLink Packet Structure (MAVLink Micro Air Vehicle Communication

Protocol 2012) ... 69

Figure 96: Mask at .5 Meters ... 70

Figure 93: First Image Detection Block Diagram .. 71

Figure 94: First Image Detection Output ... 71

Figure 95: Optical Flow Image Analysis Block Diagram ... 72

Figure 97: Image Detection with Optical Flow ... 72

Figure 98: First Prototype Outdoor Flight 1 .. 73

Figure 99: First Prototype Outdoor Flight 2 .. 74

Figure 100: Failed Motor ... 75

Figure 101: Department Awareness Video. ... 76

Texas Tech University, Justin Griggs, August 2012

 xi

List of Abbreviations

APM – ArduPilot Mega

CAD - Computer Aided Design

ESC – Electronic Speed Controller

FOV – Field of View

GCS – Ground Control Station

IMU – Inertial Measurement Unit

ISR – Intelligence, Surveillance, and Reconnaissance

MAV – Micro Air Vehicle

UAS – Unmanned Aircraft System

UAV – Unmanned Aerial Vehicle

Texas Tech University, Justin Griggs, August 2012

 1

Introduction

Unmanned Aerial Vehicles (UAVs) are gaining in popularity and capability.

Their applications include search and rescue, surveillance, and mobile sensor networks.

UAVs currently in use for military surveillance applications include the MQ-9 Reaper,

RQ-7 Shadow, and the RQ-11 Raven. These systems consist of an aerial vehicle with a

sensor package and data link to communicate sensor data to an associated ground station.

The purpose of this is to provide the Warfighter with near real-time situational awareness

of the battle space. As of 2010, the US Army possesses more than 4,000 unmanned aerial

systems (UAS) with still more planned (Dempsey 2010).

Current UAS technologies operate with a low degree of autonomy. This may

include automatic takeoff and landing, or following a flight plan. While the ground

control station (GCS) is used to receive the data collected from the system, it is also used

to control the UAS. This project seeks to add autonomy to the control aspects of the

UAS and reduce the workload on the Warfighter.

The ability to automatically and intelligently process UAS sensor data is a key

capability when operating in an urban environment or indoors. With recent advances in

embedded system technology, sensor data can now be processed onboard to determine

the needed movements of the vehicle. This increases the degree of autonomy the system

can operate at and allows for the user to receive the data while not needing to control the

UAS.

Motivation

I became interested in starting this project over the course of a year or so while

working in the defense industry as an electrical engineer. I have seen how the aerospace

industry is evolving in response to the presence of advancing UAS technology. The need

for higher degrees of autonomy is a key aspect that will make the system easier to operate

and allow users to focus on the primary goal of the system.

Additional inspiration comes from University of Pennsylvania’s GRASP Lab. Dr.

Vijay Kumar and his associates have put out some fantastic videos highlighting their

Texas Tech University, Justin Griggs, August 2012

 2

work on agile quadrotors (Aggressive Quadrotor Part II 2010). This led me to the

concept of building a quadrotor of my own and adding additional capabilities to it.

Background

History

 The first successful flight of a quadrotor was in 1907. The first experiments of

the Gyroplane No. 1 were carried out in France where the machine is reported to have

lifted into flight (Leishman n.d.). The craft lifted as high as 5 ft for a brief amount of

time. The pilot had little means of control besides a throttle to change the rotor speed.

However, the inability to control four motors simultaneously with sufficient bandwidth

rendered the platform ineffective (Hoffmann, et al. 2007).

Recent Developments

Recently with the advent of modern microcontrollers and advances in sensor

technology has spawned a surging interest in quadrotor design and capability. Today, the

multicopter market is expanding with more and more vendors and various platforms.

Uses and applications for these platforms are being researched and expanded upon

(Drone journalism Lab 2011) (Ungerleider 2012).

Multicopters typically give high agility at the expense of range. The multcopter

must generate all of its lift with propellers and it unaided by airfoils such as is a fixed

wing aircraft.

The civilian population contains creativity like none other. Multicopter video

platforms are being used for finding 10,000 year trails in Kenya (Autodesk Octo-Copters

Scouring for Kenyan Trails 2012). A San Francisco based company aims to deliver food

by using multicopters (Tacocopter 2012). New uses for these platforms are appearing

frequently in places that are unexpected.

Texas Tech University, Justin Griggs, August 2012

 3

Modeling Quadrotor Dynamics

 The dynamic model of a quad rotor is presented to illustrate the needed control

algorithms. Z, X, and Y are used to define the roll, pitch, and yaw angles on a local

coordinate system.

Frame Configuration

Typically, the motors are placed along the X and Y axes, known as the “+”

configuration. In this project, the motors are rotated 45 degrees, known as the “X”

configuration (Attaching the props to the motors 2011). Illustrations are shown below.

The “X” configuration is used to allow the camera’s Field of View (FOV) to be

unobstructed by the motor props. Modeling the control of the quadrotor is complicated

by laying the motors off of the axes.

Figure 1: Quadrotor Frame Configurations

Texas Tech University, Justin Griggs, August 2012

 4

Dynamics

Two pairs of propellers (1, 2) and (3, 4) spin in opposite directions. The four

thrust combinations F1, F2, F3 and F4 can be used to create stable and controllable flight.

System Goals

 These are the high level considerations for the design of the complete system.

The concepts and requirements described here are the goals of the project.

System Requirements

 To design the system, requirements are needed. The system has the following

requirements:

1. Capability of stable flight.

2. Flight time of at least 20 minutes.

3. Ability to identify an object of interest while in flight

4. Ability to follow the identified target while in flight

Action Language Model

 When designing an autonomous agent, it can be viewed as a representation of

knowledge and reasoning (Gelfond and Kahl 2012). The goal is an agent capable of

reasoning and acting in a changing environment. Several principle ideas are

implemented to allow the agent, in this case a quadrotor, to “act intelligently”. A model

of the dynamic domain using Action Language is presented. Action language is used to

specify state transitions. Sets of beliefs that are held by the agent are guided by the

following informal principles:

1. Do not believe in contradictions.

2. Adhere to “the rationality principle” which says: “Believe nothing you are not

forced to believe.”

Texas Tech University, Justin Griggs, August 2012

 5

Modeling Dynamic Domains

 The properties of the domain are described using statics and fluents. Fluents are

the properties of the system which can be changed by actions (i.e. the location of the

quadrotor). Statics cannot be changed by an action (i.e. the number of motors).

 An action language model is composed of the following statements:

1. Causal Laws:

a causes l if p

2. State Constraints:

l if p

3. Executability Conditions:

impossible a0,…,ak if p

Where a is an action, l is an arbitrary domain literal, p is a set of domain literals, and k≥0.

 A set S of domain literals is called complete if for any domain property p either p or –p

is in S (Gelfond and Kahl 2012).

Inertia Axiom

 At any given period in time, the agent must have a set of beliefs about its

environment and its state. As a dynamic domain evolves and changes, so to should the

agents beliefs. The Inertia Axiom creates rules stating that “without evidence to the

contrary, things stay the way they are.” Any fluent that is not observed to have changed

is assumed to have not changed.

Awareness Axiom

 At all times, the agent must be able to take into consideration all fluents of the

system (Gelfond and Kahl 2012). At any given period in time, including history, the

agent must be able to know whether a fluent was true or false. If the agent is unaware of

the state of a fluent, then both cases are thereby possible, which is undesired.

Texas Tech University, Justin Griggs, August 2012

 6

Objects of the domain

 Stating the objects of the domain simply acknowledges their existence. It makes

no observation on their initial state or their properties. The objects of this domain are:

quadrotor

target

This creates the assumption that there is only one quadrotor in the domain and

only one target to be tracked.

Static relationships

 The static relationships must be known to describe the environment to the agent

and to describe relationships that do not change by actions. This allows us to create

constraints for the agent to direct reasoning. The statics of the domain are:

World Size

Camera FOV

Camera Length

Fluents

 Fluents is this domain change with actions and time. The fluents of this domain

are:

quad_location – The location of the quadrotor.

target_location - The location of the target.

detected – whether a target has been detected.

searching – whether the quadrotor is searching for a target.

Texas Tech University, Justin Griggs, August 2012

 7

Actions

 Actions are, as they sound, used to change the environment. These actions are

used to change the state of the system and modify the value of fluents. The objects of

this domain are:

move - moves the quadrotor to a new location

detect - detects the presence of a target.

execute_strategy – causes the desired tracking strategy to be executed

execute_search– causes the desired search to be executed

The following actions are used by the detect action to find information about the

target.

find_location

find_distance

find_yaw

find_velocity

System Description

 The model has the following system description. This describes relations between

knowledge and dynamic properties.

move causes location

searching causes execute_search

detected causes execute_strategy

searching if –detected

detected if –searching

impossible execute_search if –searching

impossible execute_strategy if –detected

impossible find_location, find_distance, find_yaw, find_velocity if –detected

Texas Tech University, Justin Griggs, August 2012

 8

Model Limitations

 There are several noted limitations in this model. The previously mentioned

implied assumptions of one target object limit the ability to track multiple targets. In

addition, AL models are typically unable to handle uncertainty. In order to create valid

state transitions, all values of all fluents must be known (Gelfond and Kahl 2012).

 AL models when used in application of intelligent agents are typically used with a

declarative programming language, such as Prolog. When this model is simulated using

MATLAB, translation to a procedural programming language means the model must be

adapted to fit the environment.

 The presented model is used to create a framework that facilitates the

development of a simulation. This model can be simulated or implemented in various

languages to suit multiple applications.

Search and Track Modeling

 The conceptual functions of the agent are presented here. The major functions of

the agent are to search for and track a target. State transitions and user defined variables

are described and developed.

Search

 When the quadrotor is not tracking a target, it must be searching for one. Many

methods of physical search are available. The methods used are able to take advantage of

the agility of the platform. Two methods of searching are presented, known as

Uninformed and Informed.

Uninformed

When no previous information about a target is available, then the probability

distribution of the target location is equally distributed. This is the initial condition when

nothing has been found yet. The only user defined variable needed is the Tracking

Strategy, S, which is to be executed once a target is found. The expressed purpose of the

strategy is to cover area as quickly as possible, in order to find a target quickly, while

Texas Tech University, Justin Griggs, August 2012

 9

minimizing overlap, which depends upon camera characteristics. The values used are the

following:

Detected – True if a target is detected, false otherwise.

S – The tracking strategy to be executed

The following actions are used:

Detect – detects the presence of a target.

Execute_strategy(S) – when a target is detected, a strategy is called

The state transition diagram below shows the search starting when first initialized.

The first state is the initial undetected state which then begins the search. When a

“move” command is called, the next command called is “detect”, which evaluates the

data from the camera at the current frame. If a target is detected from the “detect”

command, the value, Detected becomes true. When Detected becomes true,

Execute_strategy calls the desired tracking strategy. The quadrotor leaves the search

state and begins tracking its acquired target.

Figure 2: Uninformed Search State Transition

Texas Tech University, Justin Griggs, August 2012

 10

Figure 3: Uninformed Search Path

Informed

 When a target is identified then later lost, the probability of its location is

dependent upon its previous position. The needed variables are the last known location

of the target.

XL – the last recorded location of the target in X

YL – the last recorded location of the target in Y

The transitions are similar to that of the uninformed search, except the initial

condition used is XL and YL. Location is described using the following:

 (1)

 (2)

Where

 (3)

 (4)

Texas Tech University, Justin Griggs, August 2012

 11

Where is the radius propagation factor, is the angular propagation factor, and

 is the current frame in time. By varying and , the rate of radial expansion can be

controlled.

Figure 4: Informed Search Path

Tracking

 There are many possible ways to track a target. Two are presented here to take

advantage of the quadrotor’s inherit agility with respect to forward velocity and strafing.

 When a fixed wing aircraft is used for surveilling a moving target, the velocity of

the aircraft is constrained to its operating envelope. Typically, the aircraft cannot slow

down to the velocity of a target such as a vehicle. The aircraft is then forced to circle

around the target, following a forward trajectory. This necessitates adding complexity

such as a camera gimbal to rotate the camera view (L-3 Communications - WESCAM

2012). Several variables are needed to describe the model. The quadrotor related

variables are the following:

 - quadrotor location

Texas Tech University, Justin Griggs, August 2012

 12

Vt - quadrotor velocity

The target related variables are the following:

 - target location

Dt - distance from the target to the quadrotor

Vt - target velocity

Station Keeping

 The purpose of the Station Keeping strategy is to maintain a desired angle relative

to the target’s movement. By matching the velocity of the quadrotor and the target when

in a linear trajectory, a consistent view of the target is accomplished.

 The needed user defined variables are the following:

Phid - The desired yaw angle relative to target yaw phit

Where

 (5)

Circle

 The circle strategy is used to give a rotating view of the target. A rotating view

gives a more complete model of the target while forcing the quad rotor to maneuver more

aggressively.

 The needed user defined variables are the following:

Ratephi = The desired rate of rotation.

 The simulation of the circle strategy is described below.

Texas Tech University, Justin Griggs, August 2012

 13

Simulation

A Matlab simulation was written to develop, test, and illustrate the autonomous

functions. A simulation environment allows for control over process noise and allows for

a controlled model of the vision system.

World

 The model of the world is viewed as a 100 meter by 100 meter space. The

quadrotor and the target are modeled as single points in space due to the large size of the

world. Time is discretely modeled with 30 frames per second.

Target Trajectory

 The Target trajectory is hard coded into the simulation to give a deterministic

output. A variety of trajectories and velocities were simulation with a maximum velocity

of 10m/s. An example trajectory path is shown below.

Figure 5: Example Target Trajectory

Texas Tech University, Justin Griggs, August 2012

 14

PID-Vision Based Control

 The controller for the quadrotor is modeled with PID control. Separate

controllers for X, Y, and yaw movements provide response to the input error and

setpoint. The setpoints and error change as the states are transitioned.

The model of the vision system is used to create a desired setpoint in X and Y.

From the quadrotor’s position, using the FOV of the camera and a distance, a triangular

polygon is created to represent the space the camera can see.

With the camera’s sight modeled, the set point can be created. The set point is set

at 55% the length that the camera sees and in the center of the FOV. By creating this

setpoint, the object’s location is used to create an error in X and Y to create the desired

response.

And

 (6)

 (7)

 (8)

Where C is the distance the camera’s effective range.

The PID controller used is a discrete version of the classical analog PID controller

in matrix form.

(9)

Where is the error function at a time . Errors for all aspects of position are calculated

simultaneously.

Texas Tech University, Justin Griggs, August 2012

 15

After tuning the PID constants, the impulse response is tested. The object is

placed such that it is on the edge of the FOV of the camera in X and Y.

Figure 6: Camera PID Impulse Test Start

The quadrotor corrects for the error in X,Y, and yaw (phi) all at once. The end of

the test after 100 frames is shown below.

Texas Tech University, Justin Griggs, August 2012

 16

Figure 7: Camera PID Impulse Test End

The impulse responses for X,Y,and phi are shown below where 100 frames are

rendered.

Texas Tech University, Justin Griggs, August 2012

 17

Figure 8: Camera PID Impulse Test Response

 The response data shows the advantage of rotating over translation to minimize

error. This control scheme forms the basis for all needed movements. By varying the

vision-based error, search and track are possible.

Uninformed Searching

 Uninformed Searching is run by creating a state machine to guide the execution of

a series of paths. Four paths are created to describe the necessary movements.

These paths are called in succession until all world surface area is covered. When the

Y maximum is reached, the search is restarted with a Y minimum. The following image

series illustrate the pattern taken. The yaw during these movements is set to coordinate

with the quadrotor’s direction, so it always points forward.

Texas Tech University, Justin Griggs, August 2012

 18

Figure 9: Uninformed Search at frame 10

Figure 10: Uninformed Search at frame 140

Figure 11: Uninformed Search at frame 250

Texas Tech University, Justin Griggs, August 2012

 19

Figure 12: Uninformed Search at frame 440

Figure 13: Uninformed Search at frame 700

Figure 14: Uninformed Search at frame 1000

Texas Tech University, Justin Griggs, August 2012

 20

Figure 15: Uninformed Search at frame 1200

Figure 16: Uninformed Search at frame 1450

Texas Tech University, Justin Griggs, August 2012

 21

Informed Searching

Informed searching is used when a target has been detected but then is lost.

The test shown below places the target in the detection range of the quadrotor. The target

is then moved instantaneously to another location, causing the target location to be lost.

The quadrotor moves into the informed searching state. The error for the PID controller

is constructed as follows:

 (10)

 (11)

 (12)

Where i is the current frame. Rotation is simple set to a constant rate. In this

simulation, = 22 and = 0.33

Figure 17: Informed Search at Frame 5

Texas Tech University, Justin Griggs, August 2012

 22

Figure 18: Informed Search at Frame 50

Figure 19: Informed Search at Frame 110

Texas Tech University, Justin Griggs, August 2012

 23

Figure 20: Informed Search at Frame 265

Figure 21: Informed Search at Frame 430

Texas Tech University, Justin Griggs, August 2012

 24

Figure 22: Informed Search at Frame 735

Figure 23: Informed Search at Frame 1035

Texas Tech University, Justin Griggs, August 2012

 25

When the target is detected again, the quadrotor moves back into a tracking state;

in this case auto is used. The associated PID responses are shown below.

Figure 24: Informed Search Error Response

Auto Tracking

 The Auto strategy is used when no user specified strategy is given. If there are no

constraints on the tracking strategy given, then full control over the quadrotors

movements is given to the vision based PID controllers. X, Y, and yaw errors are

corrected for simultaneously.

Texas Tech University, Justin Griggs, August 2012

 26

Figure 25: Auto Tracking at Frame 2

Figure 26: Auto Tracking at Frame 30

Texas Tech University, Justin Griggs, August 2012

 27

Figure 27: Auto Tracking at Frame 50

Figure 28: Auto Tracking at Frame 100

Texas Tech University, Justin Griggs, August 2012

 28

Figure 29: Auto Tracking at Frame 160

Figure 30: Auto Tracking at Frame 225

Texas Tech University, Justin Griggs, August 2012

 29

Figure 31: Auto Tracking at Frame 360

Figure 32: Auto Tracking at Frame 500

Texas Tech University, Justin Griggs, August 2012

 30

Figure 33: Auto Tracking at Frame 630

Figure 34: Auto Tracking at Frame 700

Texas Tech University, Justin Griggs, August 2012

 31

Figure 35: Auto Tracking at Frame 755

Figure 36: Auto Tracking at Frame 835

Texas Tech University, Justin Griggs, August 2012

 32

Figure 37: Auto Tracking at Frame 950

Figure 38: Auto Tracking at Frame 970

Texas Tech University, Justin Griggs, August 2012

 33

Figure 39: Auto Tracking at Frame 990

Figure 40: Auto Tracking at Frame 1050

Texas Tech University, Justin Griggs, August 2012

 34

Figure 41: Auto Tracking at Frame 1300

Figure 42: Auto Track Error Response

Texas Tech University, Justin Griggs, August 2012

 35

Station Keeping Tracking

 The Station Keeping strategy is created by guiding the input error of the yaw PID

controller. The following operations are performed:

 (13)

The current yaw of the target object plus the input Phid desired relative yaw angle

creates the setpoint yaw.

 (14)

 The error is then the setpoint minus the current yaw, which is fed into the PID

yaw controller. If the error is too high and the target is close to the edge of the FOV, then

the yaw controller is reverted back to the auto track mode and the error is the relative yaw

from the target to the quadrotor. This prevents the target from being lost when a target

trajectory with high velocities is observed.

 An example of the strategy simulation is shown below using the previously noted

target trajectory where Phid = 90 degrees. The initial condition is shown where the target

starts at 0,0 and the quadrotor is at 20,5,50.

Texas Tech University, Justin Griggs, August 2012

 36

Figure 43: Station Keeping at Frame 0

Figure 44: Station Keeping at Frame 30

Texas Tech University, Justin Griggs, August 2012

 37

 The quadrotor moves into the uninformed search state before the target is

detected. When the target is detected, the station keeping state is called and the quadrotor

begins to move into the desired position.

Figure 45: Station Keeping at Frame 50

Texas Tech University, Justin Griggs, August 2012

 38

Figure 46: Station Keeping at Frame 70

Figure 47: Station Keeping at Frame 130

Texas Tech University, Justin Griggs, August 2012

 39

Figure 48: Station Keeping at Frame 200

 As the target trajectory changes, the target yaw is update and the quadrotor yaw is

updated.

Texas Tech University, Justin Griggs, August 2012

 40

Figure 49: Station Keeping at Frame 400

Figure 50: Station Keeping at Frame 500

Texas Tech University, Justin Griggs, August 2012

 41

Figure 51: Station Keeping at Frame 620

Figure 52: Station Keeping at Frame 660

Texas Tech University, Justin Griggs, August 2012

 42

Figure 53: Station Keeping at Frame 750

Figure 54: Station Keeping at Frame 800

Texas Tech University, Justin Griggs, August 2012

 43

Figure 55: Station Keeping at Frame 960

Figure 56: Station Keeping at Frame 1000

Texas Tech University, Justin Griggs, August 2012

 44

Figure 57: Station Keeping at Frame 1150

 At frame 1200, the target velocity drops to zero so the steady state response can

be observed.

Texas Tech University, Justin Griggs, August 2012

 45

Figure 58: Station Keeping at Frame 1200

Figure 59: Station Keeping at Frame 1400

 After the trajectory and tracking is rendered, the associated PID error response for

X,Y, and Phi are illustrated below.

Texas Tech University, Justin Griggs, August 2012

 46

Figure 60: Station Keeping Strategy Error Response

 Desired responses are shown in that there is low ripple, overshoot is low, and

steady-state error is within acceptable limits.

Texas Tech University, Justin Griggs, August 2012

 47

Circle Tracking

 The Circle strategy creates a constant error in the yaw controller which forces

constant rotation.

 (15)

Where

 (16)

 This allows Ratephi to stay in terms of radians per second, which is converted from

degrees to allow for easy user input.

 In the following illustration, Ratephi is set to 2 degrees per second. A higher

Ratephi will cause proportionally higher input error which can cause instability. This was

typically observed where Ratephi > 5.

Figure 61: Circle at frame 0

Texas Tech University, Justin Griggs, August 2012

 48

Figure 62: Circle at frame 30

Figure 63: Circle at frame 50

Texas Tech University, Justin Griggs, August 2012

 49

Figure 64: Circle at frame 190

Figure 65: Circle at frame 350

Texas Tech University, Justin Griggs, August 2012

 50

Figure 66: Circle at frame 450

Figure 67: Circle at Frame 500

Texas Tech University, Justin Griggs, August 2012

 51

Figure 68: Circle at frame 550

Figure 69: Circle at frame 600

Texas Tech University, Justin Griggs, August 2012

 52

Figure 70: Circle at frame 650

Figure 71: Circle at frame 750

Texas Tech University, Justin Griggs, August 2012

 53

Figure 72: Circle at frame 850

Figure 73: Circle at frame 950

Texas Tech University, Justin Griggs, August 2012

 54

Figure 74: Circle at frame 1000

Figure 75: Circle at frame 1050

Texas Tech University, Justin Griggs, August 2012

 55

Figure 76: Circle at frame 1100

Figure 77: Circle at frame 1200

Texas Tech University, Justin Griggs, August 2012

 56

Figure 78: Circle at frame 1400

After the trajectory and tracking is rendered, the associated PID error response for

X,Y, and Phi are illustrated below. X and Y responses are partially sinusoidal as

expected. Phi contains a constant steady state error due to the method of inducing the

rotation.

Figure 79: Circle Strategy Error Response

Texas Tech University, Justin Griggs, August 2012

 57

System Design and Implementation

Weight Based Airframe Design

MathCAD was used to find the target weight of the quadrotor. The manufacturer

estimates each motor combined with a 8x4.3 propeller produce approximately 1000g of

thrust. Four motors provide a total of 4000g of thrust to lift the vehicle. A torque curve

was unavailable from the manufacturer, so it was chosen that the quadrotor should hover

at 45% duty cycle. A calculated 1800g of thrust gives a target weight of approximately 4

lbs. The sum of component weights is estimated with Autodesk Inventor.

Data Flow

 It is desired to keep the control of the vehicle and the intelligence algorithms

separate. This allows for a failsafe in the event of a software problem to allow for

manual control of the quadrotor. This creates the following diagram.

Figure 80: Data Flow Diagram

 The image processor collects data from the imaging sensor. In this case, a

Logitech C310 USB webcam is used as the sensor. The webcam is rigidly mounted

under the quadrotor to give visual feedback.

Texas Tech University, Justin Griggs, August 2012

 58

 The autopilot keeps track of the quadrotor’s orientation. Notice the bidirectional

flow between the image processor and the autopilot. This allows the image processor to

access the sensor data from the autopilot when needed, while not having to calculate the

orientation.

A software diagram showing the software implementation layout is shown below.

Image detection software combined with a MAVlink communication protocol sends

command and control instructions to the Arducopter software on the APM. The APM

then gives feedback to the Pandaboard on the current state of the quadcopter.

Figure 81: Software Block Diagram

Texas Tech University, Justin Griggs, August 2012

 59

Airframe

Design

 The airframe is designed to be lightweight, agile, and able to carry the necessary

payload. The design consists of several plates stacked upon each other with four booms

supporting the motors. The primary CAD tool used was Autodesk Inventor.

Manufacturing was accomplished on a Hurco VM1 CNC mill (Hurco CNC Machine

Tools 2012).

 A major factor in determining the agility of a quadrotor is its overall diameter

(Michael, et al. 2010). When high agility is needed, a smaller diameter is used and

overall stability is reduced. The result is higher positioning error and a higher propensity

for horizontal drift. This is not a high agility application due to the need for stable

camera images. The overall diameter of the quadrotor is 20.75 in., which provides a

balance between agility and stability.

Figure 82: CAD Model Assembly

Texas Tech University, Justin Griggs, August 2012

 60

 The electronics were designed to be a cradle for easy access and removal.

The image processor sits on top and connects to the top frame plate. The autopilot and

sensor package sits below the image processor and does not connect to the frame directly.

This design isolates the gyro and accelerometer from motor vibrations.

Figure 83: Electronics Cradle

 Two 5Ah batteries sit below the frame plates to keep the CG below the motors for

stability. A lower plate is mounted below the bottom frame plate to support the batteries

and carries the mount for the camera.

 Four Turnigy Parkfly 480 brushless motors are used. The motors mount directly

to the square aluminum booms. The motors are fastened with screwed and secured with

Loctite. The booms are lightened to reduce weight while still maintaining their desired

strength to support the payload and weight of the quadrotor. Rivets fasten the booms to

the frame plates.

Texas Tech University, Justin Griggs, August 2012

 61

Figure 84: Square Boom

Figure 85: Frame plates and Electronics Cradle

 The primary fasteners used are blind rivets and #4 button head screws. The

booms are riveted between two frame plates to create a strong frame. Hex standoffs are

used to mount the additional plates to accommodate the batteries and the electronics

cradle.

Texas Tech University, Justin Griggs, August 2012

 62

Manufacturing

 3D CAD models are exported from Inventor and used to create the realization of

the model. The major materials used are 1/8" thick ABS plastic for the plates and 1/16

in. thick by 3/4 in. square aluminum tubing for the booms. Plastic is used because of its

low cost when purchased in sheets and its high machinability compared to composite

materials. The total system weighs 1.9kg.

Figure 86: Quadrotor Airframe and Electronics

Texas Tech University, Justin Griggs, August 2012

 63

Figure 87: Quadrotor Electronics Side View

 A webcam mount was 3D printed from ABS plastic to keep the camera pointed

down 30 degrees and aligned with the center axis of the quadrotor.

Texas Tech University, Justin Griggs, August 2012

 64

Figure 88: Landing Gear and Webcam Mount

 Landing struts were also 3D printed in order to provide support under landing. It

was learned through flight tests that there is commonly a horizontal velocity associated

when landing. Landing struts with high friction caught debris when moving close to the

ground and could cause the quadrotor to flip over. The more robust current landing gear

have an inherit spring factor which causes a rebound when impacted with the ground to

prevent inversions.

Image Processor

A core focus of this project is to keep all data processing onboard, so an RF data

link is not required for unprocessed data. This is a divergence from previous autonomous

research (Michael, et al. 2010). This on board processing focus will allow for greater

expansion of capability later.

Texas Tech University, Justin Griggs, August 2012

 65

A Pandaboard ES is used to process images from a camera, analyze and generate

a trajectory if necessary, and communicate with the autopilot. It is used as a platform for

mobile software development and contains a Dual-core ARM Cortex A9 processor

operating at 1.2 GHz. It was chosen for its low power consumption, ability to run Linux,

and its small size. Measuring only 4 in. by 4.5 in. makes this ideally suited for the small

size of the quad rotor.

Figure 89: Pandaboard ES

Autopilot

The Ardupilot Mega (APM) is a full-featured IMU autopilot suited for a variety

of unmanned aircraft applications (DIYdrones 2012). It interfaces to the motor

controllers to stabilize the airframe in flight and execute maneuvers such as takeoff and

landing. Onboard sensors include a gyroscope, an accelerometer, magnetometer, and a

barometer. GPS is used for location reference when needed. An external ultrasonic

sensor is used to obtain altitude readings because it is more accurate than a barometer at

low altitudes.

Texas Tech University, Justin Griggs, August 2012

 66

Figure 90: ArduPilot Mega 2560

ArduCopter

 The software set used on this autopilot is an open source project called

ArduCopter (ArduCopter 2012). ArduCopter aims to create an easy to setup and fly

platform for multi-rotor UAVs. The project provides software to control the copter in

flight. An interface to an RC receiver allows for manual control and override. For debug

purposes, a Bluetooth link is used as a wireless serial data link to a ground station.

 ArduCopter is a popular project and receives regular updates from its developers.

When the APM was purchased, the version 2.0.48 was current. As of May 2012, version

2.5.5 is used.

Mission Planner

 Mission Planner is another open source project that is leveraged (The Mission

Planner Utility 2012). Written by Michael Oborne, it provides a GUI interface to

configure the APM, monitor flight status, input waypoints, analyze log files, and change

the flight modes. This software is used for functionally testing the APM and loading

firmware changes. It is normally run on a Windows desktop. While there have been

Texas Tech University, Justin Griggs, August 2012

 67

attempts to run the planner under other operating systems using Mono

(ArdupilotMegaPlanner runs natively on ubuntu linux with the program mono 2011), the

Mission Planner was unable to run on the Pandaboard under Linux.

Power Distribution

 The power distribution system for this application must provide enough current

for all flight critical components to achieve a successful flight. Main power comes from

two 12V Lithium polymer batteries. Each battery has a capacity of 5000mAh and is rated

for 200A continuous discharge. The major loads on the systems are the four motors. The

maximum current draw per motor is 28A when stalled. Four stalled motors produce a

load of 112A that is easily handled by a single battery.

 Power from the batteries is fed through a power switch to four Electronic Speed

Controllers (ESCs). Each ESC can supply one motor with up to 30A at 12V

continuously. Every ESC also provides 2A at 5V, which will power the autopilot and the

image processor. The four ESCs together create a 5V rail capable of 8A.

 The autopilot and the image processor are minor loads and consume <3% of the

total power. The autopilot receives 5V power from the ESCs. The image processor

connects to the 5V rail at the autopilot. While the ESCs filter out much of the high

frequency noise from the motors, additional protection is added for the image processor.

An LC filter between the autopilot and the image processor filters out any additional

noise and stabilizes the current.

Texas Tech University, Justin Griggs, August 2012

 68

Figure 91: Power Distribution Block Diagram

Imaging Sensor

 The imaging sensor is an integral part of the system. It delivers imaging feedback

to the Pandaboard image processor. A variety of imaging sensors were considered, but

only video sensors were purchased due to cost.

 A GoPro Hero HD was tested on the first and second prototype (GoPro HERO

Cameras 2012). The camera provides excellent video quality. However, the high weight

of 167 grams and the inability to convert the output video stream in real-time to the linux

OS caused the camera to be replaced.

 A Logitech C310 Webcam was chosen for its low profile, low weight, and

compatibility with linux on the pandaboard (C310 Technical Specifications 2012).

MAVLink

 MAVLink is a message marshalling library for micro air vehicles (MAVLink

Micro Air Vehicle Communication Protocol 2012). This library is used to provide a

bidirectional interface between the image processor and the autopilot. The protocol is

Texas Tech University, Justin Griggs, August 2012

 69

geared towards transmission speed and safety as it is normally used in a Ground Control

Station (GCS) to MAV architecture. Python scripting is used to implement the protocol.

 The packet structure is shown below. The overhead used is 8 bytes with a

maximum payload of 255 bytes. The USB – serial interface provides a bandwidth of

115200 bps or approximately 56 MAVLink Packets per second.

Figure 92: MAVLink Packet Structure (MAVLink Micro Air Vehicle Communication Protocol 2012)

In this application, the Pandaboard is used to send MAVLink messages to the

APM all on board the quadrotor. The message headers are generated with unique

message IDs.

 To facilitate autonomous functions, a fork of MAVProxy was created

(MAVProxy 2012). Functions for overriding RC channels were available. This allows

for the development of more autonomous procedures. Functions to “arm” and “disarm”

motors were written. Various functions to take off to a given altitude and then land were

written to demonstrate autonomy.

 While a framework has been setup, further development is needed to create a fully

autonomous agent. Input for the image processing software will be processed and

outputted using the presented MAVLink code.

Object Detection

 Imaging data taken from the camera is processed to detect the presence of a target

and its attributes. The image analysis identifies the location of the target relative to the

quadrotor and creates the setpoint needed for the PID movement controllers.

Texas Tech University, Justin Griggs, August 2012

 70

OpenCV

 OpenCV is library of functions for real-time computer vision (OpenCV 2012). It

contains optimized algorithms used for general image processing. All code is written in

C++ with OpenCV version 2.3.

Processing Operations

 The basic target used for detection was a tennis ball due to its distinct shape and

color. The tennis ball would be attached to a mobile target such as small robot. The

software to detect and analysis this object is run under a Linux operating system.

Multiple iterations of the image detection software set were made.

After opening the video stream the image is resized to 320 pixels by 240 pixels

for performance. The image is masked with an upper and lower bound to isolate the

object. The mask is filtered using a combination of erosion and dilation to clean up the

mask. The object is then successfully isolated in an image. A sample mask is shown

below where the object is placed .5 meters away from the camera.

Figure 93: Mask at .5 Meters

 The first motion analysis method used masking, sensing circular contours, and

recording the locations in a circular buffer. The buffer is then used to calculate target

movement. The block diagram is shown below with an example output.

Texas Tech University, Justin Griggs, August 2012

 71

Figure 94: First Image Detection Block Diagram

Figure 95: First Image Detection Output

This method suffered from low frame rates and another method was researched.

To further refine the motion detection of the object, an optical flow algorithm is used.

The Lucas-Kanade method is used with a sparse feature set (Motion Analysis and Object

Tracking 2010).

Texas Tech University, Justin Griggs, August 2012

 72

Figure 96: Optical Flow Image Analysis Block Diagram

Figure 97: Image Detection with Optical Flow

Currently, little is done with the output of the image detection software. The

software currently suffers from low reliability. Further analysis is needed to determine

the object’s movement relative to the quadrotors movement in order to create a desired

setpoint for vision-PID control.

Texas Tech University, Justin Griggs, August 2012

 73

Testing

Safety

 An external RC transmitter can be used to override autonomous control in the

event that the quadrotor comes into close proximity of an object or person.

Flight Time

 To test the flight time of the quadrotor, and tether and a weight were used to keep

it close to the ground. Then under manual control, the unit was brought into a hover with

all systems running to give maximum load. The quadrotor stayed aloft for 27 minutes

and 40 seconds.

Manual Flight

 The current prototype, as well as previous prototypes, has been flown under

manual control using visual feedback to characterize the flight characteristics.

Figure 98: First Prototype Outdoor Flight 1

Texas Tech University, Justin Griggs, August 2012

 74

Figure 99: First Prototype Outdoor Flight 2

 When outside, all prototypes have exhibited vulnerability to wind. Even low

wind gusts have an effect upon horizontal positioning. Because of this, the platforms are

not flown outdoors in high winds.

Reliability

 Reliability has been an ongoing problem. The components exhibiting problems

have typically been motors and propellers. There is no redundancy built into the

platform, so either failure causes catastrophic failure.

 Motor failures have been traced back to connectors that fail under high vibration

causing intermittent signal integrity problems. These connector failures cause motor

RPM to drastically decrease, causing a crash. This issue was addressed by changing

connectors.

Motor shaft retaining clips have failed, causing the armature to disconnect from

the motor housing. This issue was exhibited by only one model of motor and has been

Texas Tech University, Justin Griggs, August 2012

 75

replaced by a higher quality motor without a shaft retaining clip. A photo of one such

motor is shown below.

Figure 100: Failed Motor

Results and Current Status

 As of now, the current model for autonomous search and tracking has been

modeled and simulated successfully. The simulation has reached a level of maturity that

accurately reflects the intent of the action language model. The model and simulation

together provide an insight which allows development of autonomous agents of various

applications.

Three prototypes were constructed and revised upon. The current prototype is

capable of stable flight and provides sufficient battery life and agility to further

development. It is capable of basic autonomous maneuvers from the APM and

Pandaboard. Local autonomous navigation is currently not available in a GPS denied

environment. While image processing software has reached some milestones such as

object identification, further work is needed.

Texas Tech University, Justin Griggs, August 2012

 76

 Several attempts were made to gather long term funding from various sources, but

were unsuccessful. Fortunately, the low cost of the quadrotor and no proprietary

software allows for development without major expenses.

 Awareness of the project was generated by posting a video of some in flight

footage around the department. This has spurred interest in the project and has caused

several students to build a quadrotor of their own.

Figure 101: Department Awareness Video.

Texas Tech University, Justin Griggs, August 2012

 77

Future Work

 This project represents the beginning of a large collaboration between many

disciplines. There are many future possibilities and additional work to be done.

Local Navigation

 One of the chief technical difficulties for multicopters is local navigation is GPS-

denied environments. Additional sensor input such as an optical flow sensor can be

combined with the imaging and gyro data and processed to create a stable local

navigation system.

Image Processing Software

 The vision based PID controller has not been fully implemented due to

complexity. It is desired that additional manpower be tasked to implement the needed

software sets.

Test Bed Development

 Due to problems with reliability and the time spent on repairs, a controllable

environment where the quadrotor can be tested is desirable. The test bed would provide

hard limits to its movement and stop the quadrotor in a failure without damaging it. This

would allow for repeatable tests without a lot of time spent on repairs in a crash.

Platform Agnosticism and Teamwork

 It would be advantageous if the methods described were able to function

independent of what platform it was implemented on. When multiple platforms are used,

strategies can be tailored to take advantage of the quantity of UAVs available, known as

Swarm.

Competition Team

Competition can push teams of people to create their best work. IARC

competition with the current platform is possible and can foster teamwork and technical

skills (International Aerial Robotics Competition 2012). The competition’s goals are

compatible with the aim and intent of this project.

Texas Tech University, Justin Griggs, August 2012

 78

Conclusion

 In this paper, a model for controlling and directing actions of an autonomous

quadrotor was presented and simulated. An action language model of the autonomous

agent was presented. Various tracking strategies were simulated and shown through

illustrations. The design of the physical system including hardware, airframe, and

software has been discussed. The manufacturing of a quadrotor airframe and the

associated hardware has been shown. The quadrotor’s flight characteristics have been

described. Problem areas have been discussed as well as available future work.

Texas Tech University, Justin Griggs, August 2012

 79

Works Cited

Aggressive Quadrotor Part II. 9 15, 2010.

http://www.youtube.com/watch?v=geqip_0Vjec.

ArduCopter. 2012. http://code.google.com/p/arducopter/wiki/ArduCopter (accessed

2012).

ArdupilotMegaPlanner runs natively on ubuntu linux with the program mono. 5 16, 2011.

http://diydrones.com/profiles/blogs/ardupilotmegaplanner-runs (accessed 2011).

Attaching the props to the motors. 9 8, 2011.

http://code.google.com/p/arducopter/wiki/AC2_Props.

Autodesk Octo-Copters Scouring for Kenyan Trails. June 21, 2012.

http://www.pddnet.com/video-autodesk-octo-copters-scouring-for-kenyan-trails-

062112/.

C310 Technical Specifications. 5 15, 2012. http://logitech-en-

amr.custhelp.com/app/answers/detail/a_id/17181/~/c310-technical-specifications.

Dempsey, Martin E. "Eyes of the Army - U.S. Army Roadmap for unmanned Aircraft

Systems 2010-2035." United States Army. April 9, 2010. http://www-

rucker.army.mil/usaace/uas/US%20Army%20UAS%20RoadMap%202010%2020

35.pdf (accessed 5 27, 2012).

DIYdrones. 2012. https://store.diydrones.com/default.asp.

Drone journalism Lab. 2011. http://www.dronejournalismlab.org/about.

Gelfond, Michael, and Yulia Kahl. “Knowledge Representation, Rasoning, and the

Design of Intelligent Agents.” Michael Gelfond. 2012.

http://www.cs.ttu.edu/~mgelfond/FALL02/book.pdf.

GoPro HERO Cameras. 2012. http://gopro.com/hd-hero-cameras/.

Texas Tech University, Justin Griggs, August 2012

 80

Hoffmann, Gabriel M, Haomiao Huang, Steven L Waslander, and Claire J Tomlin.

“Quadrotor Helicopter Flight Dynamics and Control: Theory and Experiment.”

2007. http://www.stanford.edu/~haomiao/papers/GNC07_Quadrotor.pdf.

Hurco CNC Machine Tools. 2012. http://www.hurco.com/.

International Aerial Robotics Competition. 2012. http://iarc.angel-strike.com/.

L-3 Communications - WESCAM. L-3 Wescam Products. 2012. http://www2.l-

3com.com/wescam/products/products_services_1.asp.

Leishman, J.G. “The Breguet-Richet Quad-Rotor Helicopter of 1907.”

http://www.enae.umd.edu/AGRC/Aero/Breguet.pdf.

MAVLink Micro Air Vehicle Communication Protocol. 2012.

http://qgroundcontrol.org/mavlink/start.

MAVProxy. 2012

 https://github.com/tridge/MAVProxy

Michael, Nathan, Mellinger, Daniel Mellinger, Quentin Lindsey, and Vijay Kumar. “The

GRASP Multiple Micro-UAV Test Bed Experimental Evaluation of Multirobot

Aerial Control Algorithms.” IEEE ROBOTICS & AUTOMATION MAGAZINE,

2010: 56-65.

Motion Analysis and Object Tracking. 2010.

http://opencv.willowgarage.com/documentation/c/video_motion_analysis_and_ob

ject_tracking.html.

OpenCV. 2012. http://opencv.willowgarage.com/wiki/.

Pandaboard. 2012. http://pandaboard.org/.

Tacocopter. 2012. http://tacocopter.com/.

http://qgroundcontrol.org/mavlink/start
https://github.com/tridge/MAVProxy

Texas Tech University, Justin Griggs, August 2012

 81

The Mission Planner Utility. 2012.

http://code.google.com/p/arducopter/wiki/AC2_Mission (accessed 2012).

Ungerleider, Neal. Unmanned Drones Go From Afghanistan To Hollywood. 2012 йил

15-2. http://www.fastcompany.com/1816578/unmanned-drones-go-from-

afghanistan-to-hollywood.

