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Abstract 

 This paper describes the design and implementation of a quadrotor that 

autonomously analyses moving objects and generates real-time waypoints for persistent 

reconnaissance of objects of interest.  The system is equipped with an autopilot to control 

the craft in flight and an onboard image processor.  The processor analyses images to 

create real-time estimations of target direction and velocity.  An algorithm to create a 

flight plan from the imaging data acquired is described.  A simulation of an algorithm to 

generate optimal trajectories through a sequence of positions and yaw angles is 

developed.  Experimental results of the system are shown. 
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Introduction 

Unmanned Aerial Vehicles (UAVs) are gaining in popularity and capability.  

Their applications include search and rescue, surveillance, and mobile sensor networks. 

UAVs currently in use for military surveillance applications include the MQ-9 Reaper, 

RQ-7 Shadow, and the RQ-11 Raven.  These systems consist of an aerial vehicle with a 

sensor package and data link to communicate sensor data to an associated ground station.  

The purpose of this is to provide the Warfighter with near real-time situational awareness 

of the battle space. As of 2010, the US Army possesses more than 4,000 unmanned aerial 

systems (UAS) with still more planned (Dempsey 2010). 

Current UAS technologies operate with a low degree of autonomy.  This may 

include automatic takeoff and landing, or following a flight plan.  While the ground 

control station (GCS) is used to receive the data collected from the system, it is also used 

to control the UAS.  This project seeks to add autonomy to the control aspects of the 

UAS and reduce the workload on the Warfighter. 

The ability to automatically and intelligently process UAS sensor data is a key 

capability when operating in an urban environment or indoors.  With recent advances in 

embedded system technology, sensor data can now be processed onboard to determine 

the needed movements of the vehicle.  This increases the degree of autonomy the system 

can operate at and allows for the user to receive the data while not needing to control the 

UAS. 

Motivation 

I became interested in starting this project over the course of a year or so while 

working in the defense industry as an electrical engineer.  I have seen how the aerospace 

industry is evolving in response to the presence of advancing UAS technology.  The need 

for higher degrees of autonomy is a key aspect that will make the system easier to operate 

and allow users to focus on the primary goal of the system.   

Additional inspiration comes from University of Pennsylvania’s GRASP Lab.  Dr. 

Vijay Kumar and his associates have put out some fantastic videos highlighting their 
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work on agile quadrotors (Aggressive Quadrotor Part II 2010).  This led me to the 

concept of building a quadrotor of my own and adding additional capabilities to it. 

Background 

History 

 The first successful flight of a quadrotor was in 1907.  The first experiments of 

the Gyroplane No. 1 were carried out in France where the machine is reported to have 

lifted into flight (Leishman n.d.).  The craft lifted as high as 5 ft for a brief amount of 

time.  The pilot had little means of control besides a throttle to change the rotor speed.  

However, the inability to control four motors simultaneously with sufficient bandwidth 

rendered the platform ineffective (Hoffmann, et al. 2007). 

Recent Developments 

Recently with the advent of modern microcontrollers and advances in sensor 

technology has spawned a surging interest in quadrotor design and capability.  Today, the 

multicopter market is expanding with more and more vendors and various platforms.  

Uses and applications for these platforms are being researched and expanded upon 

(Drone journalism Lab 2011) (Ungerleider 2012). 

Multicopters typically give high agility at the expense of range.  The multcopter 

must generate all of its lift with propellers and it unaided by airfoils such as is a fixed 

wing aircraft. 

The civilian population contains creativity like none other.    Multicopter video 

platforms are being used for finding 10,000 year trails in Kenya (Autodesk Octo-Copters 

Scouring for Kenyan Trails 2012).  A San Francisco based company aims to deliver food 

by using multicopters (Tacocopter 2012).  New uses for these platforms are appearing 

frequently in places that are unexpected. 
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Modeling Quadrotor Dynamics 

 The dynamic model of a quad rotor is presented to illustrate the needed control 

algorithms.  Z, X, and Y are used to define the roll, pitch, and yaw angles on a local 

coordinate system. 

Frame Configuration 

Typically, the motors are placed along the X and Y axes, known as the “+” 

configuration.  In this project, the motors are rotated 45 degrees, known as the “X” 

configuration (Attaching the props to the motors 2011).  Illustrations are shown below.  

The “X” configuration is used to allow the camera’s Field of View (FOV) to be 

unobstructed by the motor props.  Modeling the control of the quadrotor is complicated 

by laying the motors off of the axes. 

 

 

Figure 1:  Quadrotor Frame Configurations 
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Dynamics 

Two pairs of propellers (1, 2) and (3, 4) spin in opposite directions.  The four 

thrust combinations F1, F2, F3 and F4 can be used to create stable and controllable flight. 

System Goals 

 These are the high level considerations for the design of the complete system.  

The concepts and requirements described here are the goals of the project. 

System Requirements 

 To design the system, requirements are needed.  The system has the following 

requirements: 

1. Capability of stable flight. 

2. Flight time of at least 20 minutes. 

3. Ability to identify an object of interest while in flight 

4.  Ability to follow the identified target while in flight 

 

Action Language Model 

 When designing an autonomous agent, it can be viewed as a representation of 

knowledge and reasoning (Gelfond and Kahl 2012).  The goal is an agent capable of 

reasoning and acting in a changing environment.   Several principle ideas are 

implemented to allow the agent, in this case a quadrotor, to “act intelligently”.  A model 

of the dynamic domain using Action Language is presented.  Action language is used to 

specify state transitions.  Sets of beliefs that are held by the agent are guided by the 

following informal principles: 

 

1. Do not believe in contradictions. 

2. Adhere to “the rationality principle” which says: “Believe nothing you are not 

forced to believe.” 
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Modeling Dynamic Domains 

 The properties of the domain are described using statics and fluents.  Fluents are 

the properties of the system which can be changed by actions (i.e. the location of the 

quadrotor).  Statics cannot be changed by an action (i.e. the number of motors). 

 An action language model is composed of the following statements: 

1. Causal Laws: 

a causes l if p 

2. State Constraints: 

l if p 

3. Executability Conditions: 

impossible a0,…,ak if p 

 

Where a is an action, l is an arbitrary domain literal, p is a set of domain literals, and k≥0. 

  A set S of domain literals is called complete if for any domain property p either p or –p 

is in S (Gelfond and Kahl 2012). 

Inertia Axiom 

 At any given period in time, the agent must have a set of beliefs about its 

environment and its state.  As a dynamic domain evolves and changes, so to should the 

agents beliefs.  The Inertia Axiom creates rules stating that “without evidence to the 

contrary, things stay the way they are.”  Any fluent that is not observed to have changed 

is assumed to have not changed. 

 

Awareness Axiom 

 At all times, the agent must be able to take into consideration all fluents of the 

system (Gelfond and Kahl 2012).  At any given period in time, including history, the 

agent must be able to know whether a fluent was true or false.  If the agent is unaware of 

the state of a fluent, then both cases are thereby possible, which is undesired.  
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Objects of the domain 

 Stating the objects of the domain simply acknowledges their existence.  It makes 

no observation on their initial state or their properties.  The objects of this domain are: 

 

quadrotor 

target 

This creates the assumption that there is only one quadrotor in the domain and 

only one target to be tracked. 

Static relationships 

 The static relationships must be known to describe the environment to the agent 

and to describe relationships that do not change by actions.  This allows us to create 

constraints for the agent to direct reasoning.  The statics of the domain are: 

 

World Size 

Camera FOV 

Camera Length 

 

Fluents 

 Fluents is this domain change with actions and time.  The fluents of this domain 

are: 

quad_location – The location of the quadrotor. 

target_location - The location of the target. 

detected – whether a target has been detected. 

searching – whether the quadrotor is searching for a target. 

 

 



Texas Tech University, Justin Griggs, August 2012 

 

 7 

Actions 

 Actions are, as they sound, used to change the environment.  These actions are 

used to change the state of the system and modify the value of fluents.  The objects of 

this domain are: 

 

move - moves the quadrotor to a new location 

detect - detects the presence of a target. 

execute_strategy – causes the desired tracking strategy to be executed 

execute_search– causes the desired search to be executed 

 

The following actions are used by the detect action to find information about the 

target. 

find_location 

find_distance 

find_yaw 

find_velocity 

 

System Description 

 The model has the following system description.  This describes relations between 

knowledge and dynamic properties. 

 

move causes location 

searching causes execute_search 

detected causes execute_strategy 

searching if –detected 

detected if –searching 

 

impossible execute_search if –searching 

impossible execute_strategy if –detected 

impossible find_location, find_distance, find_yaw, find_velocity if –detected 
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Model Limitations 

 There are several noted limitations in this model.  The previously mentioned 

implied assumptions of one target object limit the ability to track multiple targets.  In 

addition, AL models are typically unable to handle uncertainty.  In order to create valid 

state transitions, all values of all fluents must be known (Gelfond and Kahl 2012). 

 AL models when used in application of intelligent agents are typically used with a 

declarative programming language, such as Prolog.  When this model is simulated using 

MATLAB, translation to a procedural programming language means the model must be 

adapted to fit the environment. 

 

 The presented model is used to create a framework that facilitates the 

development of a simulation.  This model can be simulated or implemented in various 

languages to suit multiple applications. 

Search and Track Modeling 

 The conceptual functions of the agent are presented here.   The major functions of 

the agent are to search for and track a target.  State transitions and user defined variables 

are described and developed. 

Search 

 When the quadrotor is not tracking a target, it must be searching for one.  Many 

methods of physical search are available.  The methods used are able to take advantage of 

the agility of the platform.  Two methods of searching are presented, known as 

Uninformed and Informed. 

Uninformed 

When no previous information about a target is available, then the probability 

distribution of the target location is equally distributed.  This is the initial condition when 

nothing has been found yet.  The only user defined variable needed is the Tracking 

Strategy, S, which is to be executed once a target is found.  The expressed purpose of the 

strategy is to cover area as quickly as possible, in order to find a target quickly, while 
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minimizing overlap, which depends upon camera characteristics.  The values used are the 

following: 

Detected – True if a target is detected, false otherwise. 

S – The tracking strategy to be executed 

 

The following actions are used: 

Detect – detects the presence of a target. 

Execute_strategy(S) – when a target is detected, a strategy is called 

 

The state transition diagram below shows the search starting when first initialized.  

The first state is the initial undetected state which then begins the search.  When a 

“move” command is called, the next command called is “detect”, which evaluates the 

data from the camera at the current frame.  If a target is detected from the “detect” 

command, the value, Detected becomes true.  When Detected becomes true, 

Execute_strategy calls the desired tracking strategy.  The quadrotor leaves the search 

state and begins tracking its acquired target. 

 

 

Figure 2:  Uninformed Search State Transition 
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Figure 3:  Uninformed Search Path 

Informed 

 When a target is identified then later lost, the probability of its location is 

dependent upon its previous position.  The needed variables are the last known location 

of the target. 

XL – the last recorded location of the target in X 

YL – the last recorded location of the target in Y 

The transitions are similar to that of the uninformed search, except the initial 

condition used is XL and YL.  Location is described using the following: 

  (1)  

  (2)  

Where 

 
 (3)  

 
 (4)  
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Where is the radius propagation factor, is the angular propagation factor, and 

 is the current frame in time.  By varying  and , the rate of radial expansion can be 

controlled. 

 

Figure 4:  Informed Search Path 

 

Tracking 

 There are many possible ways to track a target.  Two are presented here to take 

advantage of the quadrotor’s inherit agility with respect to forward velocity and strafing. 

 When a fixed wing aircraft is used for surveilling a moving target, the velocity of 

the aircraft is constrained to its operating envelope.  Typically, the aircraft cannot slow 

down to the velocity of a target such as a vehicle.  The aircraft is then forced to circle 

around the target, following a forward trajectory.  This necessitates adding complexity 

such as a camera gimbal to rotate the camera view (L-3 Communications - WESCAM 

2012).  Several variables are needed to describe the model.  The quadrotor related 

variables are the following: 

 - quadrotor location  
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Vt - quadrotor velocity 

 

 

 

The target related variables are the following: 

 - target location 

Dt - distance from the target to the quadrotor 

Vt - target velocity 

 

Station Keeping 

 The purpose of the Station Keeping strategy is to maintain a desired angle relative 

to the target’s movement.  By matching the velocity of the quadrotor and the target when 

in a linear trajectory, a consistent view of the target is accomplished. 

 The needed user defined variables are the following: 

Phid - The desired yaw angle relative to target yaw phit  

Where 

  (5)  

Circle 

 The circle strategy is used to give a rotating view of the target.  A rotating view 

gives a more complete model of the target while forcing the quad rotor to maneuver more 

aggressively. 

 The needed user defined variables are the following: 

Ratephi = The desired rate of rotation. 

 The simulation of the circle strategy is described below. 
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Simulation 

A Matlab simulation was written to develop, test, and illustrate the autonomous 

functions.  A simulation environment allows for control over process noise and allows for 

a controlled model of the vision system.   

 

World 

 The model of the world is viewed as a 100 meter by 100 meter space.  The 

quadrotor and the target are modeled as single points in space due to the large size of the 

world.  Time is discretely modeled with 30 frames per second. 

Target Trajectory 

 The Target trajectory is hard coded into the simulation to give a deterministic 

output.  A variety of trajectories and velocities were simulation with a maximum velocity 

of 10m/s.  An example trajectory path is shown below. 

 

 

Figure 5:  Example Target Trajectory 
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PID-Vision Based Control 

 The controller for the quadrotor is modeled with PID control.  Separate 

controllers for X, Y, and yaw movements provide response to the input error and 

setpoint.  The setpoints and error change as the states are transitioned.  

The model of the vision system is used to create a desired setpoint in X and Y.  

From the quadrotor’s position, using the FOV of the camera and a distance, a triangular 

polygon is created to represent the space the camera can see. 

With the camera’s sight modeled, the set point can be created.  The set point is set 

at 55% the length that the camera sees and in the center of the FOV.  By creating this 

setpoint, the object’s location is used to create an error in X and Y to create the desired 

response. 

 

 

And 

  (6)  

  (7)  

 
 (8)  

 

Where C is the distance the camera’s effective range. 

 

The PID controller used is a discrete version of the classical analog PID controller 

in matrix form. 

 

 
(9)  

Where  is the error function at a time .  Errors for all aspects of position are calculated 

simultaneously. 
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After tuning the PID constants, the impulse response is tested.  The object is 

placed such that it is on the edge of the FOV of the camera in X and Y. 

 

Figure 6:  Camera PID Impulse Test Start 

 

The quadrotor corrects for the error in X,Y, and yaw (phi) all at once.  The end of 

the test after 100 frames is shown below. 
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Figure 7:  Camera PID Impulse Test End 

 

The impulse responses for X,Y,and phi are shown below where 100 frames are 

rendered. 
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Figure 8:  Camera PID Impulse Test Response 

 The response data shows the advantage of rotating over translation to minimize 

error.  This control scheme forms the basis for all needed movements.  By varying the 

vision-based error, search and track are possible. 

Uninformed Searching 

 Uninformed Searching is run by creating a state machine to guide the execution of 

a series of paths.  Four paths are created to describe the necessary movements. 

These paths are called in succession until all world surface area is covered.  When the 

Y maximum is reached, the search is restarted with a Y minimum.  The following image 

series illustrate the pattern taken.  The yaw during these movements is set to coordinate 

with the quadrotor’s direction, so it always points forward. 
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Figure 9:  Uninformed Search at frame 10 

 

Figure 10:  Uninformed Search at frame 140 

 

Figure 11:  Uninformed Search at frame 250 
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Figure 12:  Uninformed Search at frame 440 

 

Figure 13:  Uninformed Search at frame 700 

 

Figure 14:  Uninformed Search at frame 1000 
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Figure 15:  Uninformed Search at frame 1200 

 

Figure 16:  Uninformed Search at frame 1450 

 

 

 

 

 

 

 

 

 

 

 



Texas Tech University, Justin Griggs, August 2012 

 

 21 

Informed Searching 

Informed searching is used when a target has been detected but then is lost. 

The test shown below places the target in the detection range of the quadrotor.  The target 

is then moved instantaneously to another location, causing the target location to be lost.  

The quadrotor moves into the informed searching state.  The error for the PID controller 

is constructed as follows: 

 
 (10)  

 

 
 (11)  

 

 
 (12)  

 

Where i is the current frame.  Rotation is simple set to a constant rate.  In this 

simulation, = 22 and  = 0.33 

 

Figure 17:  Informed Search at Frame 5 
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Figure 18:  Informed Search at Frame 50 

 

 

Figure 19:  Informed Search at Frame 110 
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Figure 20:  Informed Search at Frame 265 

 

 

Figure 21:  Informed Search at Frame 430 
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Figure 22:  Informed Search at Frame 735 

 

 

Figure 23:  Informed Search at Frame 1035 
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When the target is detected again, the quadrotor moves back into a tracking state; 

in this case auto is used.  The associated PID responses are shown below. 

 

Figure 24:  Informed Search Error Response 

 

 

Auto Tracking 

 The Auto strategy is used when no user specified strategy is given.  If there are no 

constraints on the tracking strategy given, then full control over the quadrotors 

movements is given to the vision based PID controllers.  X, Y, and yaw errors are 

corrected for simultaneously. 
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Figure 25:  Auto Tracking at Frame 2 

 

Figure 26:  Auto Tracking at Frame 30 
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Figure 27:  Auto Tracking at Frame 50 

 

Figure 28:  Auto Tracking at Frame 100 
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Figure 29:  Auto Tracking at Frame 160 

 

Figure 30: Auto Tracking at Frame 225 
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Figure 31:  Auto Tracking at Frame 360 

 

 

 

Figure 32:  Auto Tracking at Frame 500 
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Figure 33:  Auto Tracking at Frame 630 

 

Figure 34:  Auto Tracking at Frame 700 
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Figure 35:  Auto Tracking at Frame 755 

 

Figure 36:  Auto Tracking at Frame 835 
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Figure 37:  Auto Tracking at Frame 950 

 

Figure 38:  Auto Tracking at Frame 970 
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Figure 39:  Auto Tracking at Frame 990 

 

 

Figure 40:  Auto Tracking at Frame 1050 
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Figure 41:  Auto Tracking at Frame 1300 

 

 

Figure 42:  Auto Track Error Response 
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Station Keeping Tracking 

 The Station Keeping strategy is created by guiding the input error of the yaw PID 

controller.  The following operations are performed: 

 

  (13)  

 

The current yaw of the target object plus the input Phid desired relative yaw angle 

creates the setpoint yaw. 

  (14)  

 

 

 The error is then the setpoint minus the current yaw, which is fed into the PID 

yaw controller.  If the error is too high and the target is close to the edge of the FOV, then 

the yaw controller is reverted back to the auto track mode and the error is the relative yaw 

from the target to the quadrotor.  This prevents the target from being lost when a target 

trajectory with high velocities is observed. 

 An example of the strategy simulation is shown below using the previously noted 

target trajectory where Phid = 90 degrees.  The initial condition is shown where the target 

starts at 0,0 and the quadrotor is at 20,5,50. 
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Figure 43:  Station Keeping at Frame 0 

 

Figure 44:  Station Keeping at Frame 30 
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 The quadrotor moves into the uninformed search state before the target is 

detected.  When the target is detected, the station keeping state is called and the quadrotor 

begins to move into the desired position. 

 

 

Figure 45:  Station Keeping at Frame 50 
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Figure 46:  Station Keeping at Frame 70 

 

Figure 47:  Station Keeping at Frame 130 
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Figure 48:  Station Keeping at Frame 200 

 

 As the target trajectory changes, the target yaw is update and the quadrotor yaw is 

updated.  
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Figure 49:  Station Keeping at Frame 400 

 

 

Figure 50:  Station Keeping at Frame 500 
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Figure 51:  Station Keeping at Frame 620 

 

Figure 52:  Station Keeping at Frame 660 
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Figure 53:  Station Keeping at Frame 750 

 

Figure 54:  Station Keeping at Frame 800 
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Figure 55:  Station Keeping at Frame 960 

 

Figure 56:  Station Keeping at Frame 1000 
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Figure 57:  Station Keeping at Frame 1150 

 

 At frame 1200, the target velocity drops to zero so the steady state response can 

be observed. 
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Figure 58:  Station Keeping at Frame 1200 

 

Figure 59:  Station Keeping at Frame 1400 

 After the trajectory and tracking is rendered, the associated PID error response for 

X,Y, and Phi are illustrated below. 
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Figure 60:  Station Keeping Strategy Error Response 

 

 Desired responses are shown in that there is low ripple, overshoot is low, and 

steady-state error is within acceptable limits. 
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Circle Tracking 

 The Circle strategy creates a constant error in the yaw controller which forces 

constant rotation. 
 

  (15)  

 

Where 

  (16)  

 This allows Ratephi to stay in terms of radians per second, which is converted from 

degrees to allow for easy user input. 

 In the following illustration, Ratephi is set to 2 degrees per second.  A higher 

Ratephi will cause proportionally higher input error which can cause instability.  This was 

typically observed where Ratephi > 5. 

 

 

Figure 61:  Circle at frame 0 
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Figure 62:  Circle at frame 30 

 

Figure 63:  Circle at frame 50 
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Figure 64:  Circle at frame 190 

 

Figure 65:  Circle at frame 350 
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Figure 66:  Circle at frame 450 

 

Figure 67:  Circle at Frame 500 
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Figure 68:  Circle at frame 550 

 

Figure 69:  Circle at frame 600 
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Figure 70:  Circle at frame 650 

 

 

Figure 71:  Circle at frame 750 
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Figure 72:  Circle at frame 850 

 

Figure 73:  Circle at frame 950 
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Figure 74:  Circle at frame 1000 

 

 

Figure 75:  Circle at frame 1050 
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Figure 76:  Circle at frame 1100 

 

 

Figure 77:  Circle at frame 1200 
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Figure 78:  Circle at frame 1400 

After the trajectory and tracking is rendered, the associated PID error response for 

X,Y, and Phi are illustrated below.  X and Y responses are partially sinusoidal as 

expected.  Phi contains a constant steady state error due to the method of inducing the 

rotation. 

 

Figure 79:  Circle Strategy Error Response 
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System Design and Implementation 

Weight Based Airframe Design 

MathCAD was used to find the target weight of the quadrotor.  The manufacturer 

estimates each motor combined with a 8x4.3 propeller produce approximately 1000g of 

thrust.  Four motors provide a total of 4000g of thrust to lift the vehicle.  A torque curve 

was unavailable from the manufacturer, so it was chosen that the quadrotor should hover 

at 45% duty cycle.  A calculated 1800g of thrust gives a target weight of approximately 4 

lbs.  The sum of component weights is estimated with Autodesk Inventor. 

 

Data Flow 

 It is desired to keep the control of the vehicle and the intelligence algorithms 

separate.  This allows for a failsafe in the event of a software problem to allow for 

manual control of the quadrotor.  This creates the following diagram. 

 

 

Figure 80:  Data Flow Diagram 

 The image processor collects data from the imaging sensor.  In this case, a 

Logitech C310 USB webcam is used as the sensor.  The webcam is rigidly mounted 

under the quadrotor to give visual feedback. 
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 The autopilot keeps track of the quadrotor’s orientation.  Notice the bidirectional 

flow between the image processor and the autopilot.  This allows the image processor to 

access the sensor data from the autopilot when needed, while not having to calculate the 

orientation.   

A software diagram showing the software implementation layout is shown below.  

Image detection software combined with a MAVlink communication protocol sends 

command and control instructions to the Arducopter software on the APM.  The APM 

then gives feedback to the Pandaboard on the current state of the quadcopter. 

 

 

Figure 81:  Software Block Diagram 
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Airframe 

Design 

 The airframe is designed to be lightweight, agile, and able to carry the necessary 

payload.  The design consists of several plates stacked upon each other with four booms 

supporting the motors.  The primary CAD tool used was Autodesk Inventor.  

Manufacturing was accomplished on a Hurco VM1 CNC mill (Hurco CNC Machine 

Tools 2012). 

 A major factor in determining the agility of a quadrotor is its overall diameter 

(Michael, et al. 2010).  When high agility is needed, a smaller diameter is used and 

overall stability is reduced.  The result is higher positioning error and a higher propensity 

for horizontal drift.  This is not a high agility application due to the need for stable 

camera images.  The overall diameter of the quadrotor is 20.75 in., which provides a 

balance between agility and stability. 

 

 

Figure 82:  CAD Model Assembly 
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 The electronics were designed to be a cradle for easy access and removal. 

The image processor sits on top and connects to the top frame plate.  The autopilot and 

sensor package sits below the image processor and does not connect to the frame directly.  

This design isolates the gyro and accelerometer from motor vibrations. 

 

 

Figure 83:  Electronics Cradle 

 

 Two 5Ah batteries sit below the frame plates to keep the CG below the motors for 

stability.  A lower plate is mounted below the bottom frame plate to support the batteries 

and carries the mount for the camera. 

 Four Turnigy Parkfly 480 brushless motors are used.  The motors mount directly 

to the square aluminum booms.  The motors are fastened with screwed and secured with 

Loctite.  The booms are lightened to reduce weight while still maintaining their desired 

strength to support the payload and weight of the quadrotor.  Rivets fasten the booms to 

the frame plates. 
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Figure 84:  Square Boom 

 

 

Figure 85:  Frame plates and Electronics Cradle 

 

 The primary fasteners used are blind rivets and #4 button head screws.  The 

booms are riveted between two frame plates to create a strong frame.  Hex standoffs are 

used to mount the additional plates to accommodate the batteries and the electronics 

cradle. 
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Manufacturing 

 3D CAD models are exported from Inventor and used to create the realization of 

the model.  The major materials used are 1/8" thick ABS plastic for the plates and 1/16 

in. thick by 3/4 in. square aluminum tubing for the booms.  Plastic is used because of its 

low cost when purchased in sheets and its high machinability compared to composite 

materials.  The total system weighs 1.9kg. 

 

 

Figure 86:  Quadrotor Airframe and Electronics 
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Figure 87:  Quadrotor Electronics Side View 

 

 A webcam mount was 3D printed from ABS plastic to keep the camera pointed 

down 30 degrees and aligned with the center axis of the quadrotor. 
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Figure 88:  Landing Gear and Webcam Mount 

 

 Landing struts were also 3D printed in order to provide support under landing.  It 

was learned through flight tests that there is commonly a horizontal velocity associated 

when landing.  Landing struts with high friction caught debris when moving close to the 

ground and could cause the quadrotor to flip over.  The more robust current landing gear 

have an inherit spring factor which causes a rebound when impacted with the ground to 

prevent inversions. 

 

Image Processor 

A core focus of this project is to keep all data processing onboard, so an RF data 

link is not required for unprocessed data.  This is a divergence from previous autonomous 

research (Michael, et al. 2010).  This on board processing focus will allow for greater 

expansion of capability later. 
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A Pandaboard ES is used to process images from a camera, analyze and generate 

a trajectory if necessary, and communicate with the autopilot.  It is used as a platform for 

mobile software development and contains a Dual-core ARM Cortex A9 processor 

operating at 1.2 GHz.  It was chosen for its low power consumption, ability to run Linux, 

and its small size.  Measuring only 4 in. by 4.5 in. makes this ideally suited for the small 

size of the quad rotor. 

 

 

Figure 89:  Pandaboard ES 

Autopilot 

The Ardupilot Mega (APM) is a full-featured IMU autopilot suited for a variety 

of unmanned aircraft applications (DIYdrones 2012).  It interfaces to the motor 

controllers to stabilize the airframe in flight and execute maneuvers such as takeoff and 

landing.  Onboard sensors include a gyroscope, an accelerometer, magnetometer, and a 

barometer.  GPS is used for location reference when needed.  An external ultrasonic 

sensor is used to obtain altitude readings because it is more accurate than a barometer at 

low altitudes. 
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Figure 90:  ArduPilot Mega 2560 

ArduCopter 

 The software set used on this autopilot is an open source project called 

ArduCopter (ArduCopter 2012).  ArduCopter aims to create an easy to setup and fly 

platform for multi-rotor UAVs.  The project provides software to control the copter in 

flight.  An interface to an RC receiver allows for manual control and override.  For debug 

purposes, a Bluetooth link is used as a wireless serial data link to a ground station. 

 ArduCopter is a popular project and receives regular updates from its developers.  

When the APM was purchased, the version 2.0.48 was current.  As of May 2012, version 

2.5.5 is used. 

Mission Planner 

 Mission Planner is another open source project that is leveraged (The Mission 

Planner Utility 2012).  Written by Michael Oborne, it provides a GUI interface to 

configure the APM, monitor flight status, input waypoints, analyze log files, and change 

the flight modes.  This software is used for functionally testing the APM and loading 

firmware changes.  It is normally run on a Windows desktop.  While there have been 
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attempts to run the planner under other operating systems using Mono 

(ArdupilotMegaPlanner runs natively on ubuntu linux with the program mono 2011), the 

Mission Planner was unable to run on the Pandaboard under Linux. 

 

Power Distribution 

 The power distribution system for this application must provide enough current 

for all flight critical components to achieve a successful flight.  Main power comes from 

two 12V Lithium polymer batteries.  Each battery has a capacity of 5000mAh and is rated 

for 200A continuous discharge.  The major loads on the systems are the four motors.  The 

maximum current draw per motor is 28A when stalled.  Four stalled motors produce a 

load of 112A that is easily handled by a single battery. 

 Power from the batteries is fed through a power switch to four Electronic Speed 

Controllers (ESCs).  Each ESC can supply one motor with up to 30A at 12V 

continuously.  Every ESC also provides 2A at 5V, which will power the autopilot and the 

image processor.  The four ESCs together create a 5V rail capable of 8A. 

 The autopilot and the image processor are minor loads and consume <3% of the 

total power.  The autopilot receives 5V power from the ESCs.  The image processor 

connects to the 5V rail at the autopilot.  While the ESCs filter out much of the high 

frequency noise from the motors, additional protection is added for the image processor.  

An LC filter between the autopilot and the image processor filters out any additional 

noise and stabilizes the current. 
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Figure 91:  Power Distribution Block Diagram 

Imaging Sensor 

 The imaging sensor is an integral part of the system.  It delivers imaging feedback 

to the Pandaboard image processor.  A variety of imaging sensors were considered, but 

only video sensors were purchased due to cost. 

 

 A GoPro Hero HD was tested on the first and second prototype (GoPro HERO 

Cameras 2012).  The camera provides excellent video quality.  However, the high weight 

of 167 grams and the inability to convert the output video stream in real-time to the linux 

OS caused the camera to be replaced. 

 A Logitech C310 Webcam was chosen for its low profile, low weight, and 

compatibility with linux on the pandaboard (C310 Technical Specifications 2012).   

 

MAVLink 

 MAVLink is a message marshalling library for micro air vehicles (MAVLink 

Micro Air Vehicle Communication Protocol 2012).  This library is used to provide a 

bidirectional interface between the image processor and the autopilot.  The protocol is 
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geared towards transmission speed and safety as it is normally used in a Ground Control 

Station (GCS) to MAV architecture.  Python scripting is used to implement the protocol.  

 

 The packet structure is shown below.  The overhead used is 8 bytes with a 

maximum payload of 255 bytes.  The USB – serial interface provides a bandwidth of 

115200 bps or approximately 56 MAVLink Packets per second. 

 

 

Figure 92:  MAVLink Packet Structure (MAVLink Micro Air Vehicle Communication Protocol 2012) 

 

In this application, the Pandaboard is used to send MAVLink messages to the 

APM all on board the quadrotor.  The message headers are generated with unique 

message IDs. 

 To facilitate autonomous functions, a fork of MAVProxy was created 

(MAVProxy 2012).  Functions for overriding RC channels were available.  This allows 

for the development of more autonomous procedures.  Functions to “arm” and “disarm” 

motors were written.  Various functions to take off to a given altitude and then land were 

written to demonstrate autonomy. 

 While a framework has been setup, further development is needed to create a fully 

autonomous agent. Input for the image processing software will be processed and 

outputted using the presented MAVLink code. 

Object Detection 

 Imaging data taken from the camera is processed to detect the presence of a target 

and its attributes.  The image analysis identifies the location of the target relative to the 

quadrotor and creates the setpoint needed for the PID movement controllers. 
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OpenCV 

 OpenCV is library of functions for real-time computer vision (OpenCV 2012).  It 

contains optimized algorithms used for general image processing.  All code is written in 

C++ with OpenCV version 2.3. 

Processing Operations 

 The basic target used for detection was a tennis ball due to its distinct shape and 

color.   The tennis ball would be attached to a mobile target such as small robot.  The 

software to detect and analysis this object is run under a Linux operating system.  

Multiple iterations of the image detection software set were made. 

After opening the video stream the image is resized to 320 pixels by 240 pixels 

for performance.  The image is masked with an upper and lower bound to isolate the 

object.  The mask is filtered using a combination of erosion and dilation to clean up the 

mask.  The object is then successfully isolated in an image.  A sample mask is shown 

below where the object is placed .5 meters away from the camera. 

 

 

Figure 93:  Mask at .5 Meters 

 

 The first motion analysis method used masking, sensing circular contours, and 

recording the locations in a circular buffer.  The buffer is then used to calculate target 

movement.  The block diagram is shown below with an example output. 
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Figure 94:  First Image Detection Block Diagram 

 

 

Figure 95:  First Image Detection Output 

 

This method suffered from low frame rates and another method was researched.  

To further refine the motion detection of the object, an optical flow algorithm is used.  

The Lucas-Kanade method is used with a sparse feature set (Motion Analysis and Object 

Tracking 2010). 
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Figure 96:  Optical Flow Image Analysis Block Diagram 

 

 

Figure 97:  Image Detection with Optical Flow 

 

Currently, little is done with the output of the image detection software.  The 

software currently suffers from low reliability.  Further analysis is needed to determine 

the object’s movement relative to the quadrotors movement in order to create a desired 

setpoint for vision-PID control. 
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Testing 

Safety 

 An external RC transmitter can be used to override autonomous control in the 

event that the quadrotor comes into close proximity of an object or person. 

Flight Time 

 To test the flight time of the quadrotor, and tether and a weight were used to keep 

it close to the ground.  Then under manual control, the unit was brought into a hover with 

all systems running to give maximum load.  The quadrotor stayed aloft for 27 minutes 

and 40 seconds. 

 

Manual Flight 

 The current prototype, as well as previous prototypes, has been flown under 

manual control using visual feedback to characterize the flight characteristics. 

 

 

Figure 98:  First Prototype Outdoor Flight 1 
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Figure 99:  First Prototype Outdoor Flight 2 

 

 When outside, all prototypes have exhibited vulnerability to wind.  Even low 

wind gusts have an effect upon horizontal positioning.  Because of this, the platforms are 

not flown outdoors in high winds. 

 

Reliability 

 Reliability has been an ongoing problem.  The components exhibiting problems 

have typically been motors and propellers.  There is no redundancy built into the 

platform, so either failure causes catastrophic failure. 

 Motor failures have been traced back to connectors that fail under high vibration 

causing intermittent signal integrity problems.  These connector failures cause motor 

RPM to drastically decrease, causing a crash.  This issue was addressed by changing 

connectors. 

Motor shaft retaining clips have failed, causing the armature to disconnect from 

the motor housing. This issue was exhibited by only one model of motor and has been 



Texas Tech University, Justin Griggs, August 2012 

 

 75 

replaced by a higher quality motor without a shaft retaining clip.  A photo of one such 

motor is shown below. 

 

Figure 100:  Failed Motor 

 

Results and Current Status 

 As of now, the current model for autonomous search and tracking has been 

modeled and simulated successfully.  The simulation has reached a level of maturity that 

accurately reflects the intent of the action language model.   The model and simulation 

together provide an insight which allows development of autonomous agents of various 

applications. 

Three prototypes were constructed and revised upon.  The current prototype is 

capable of stable flight and provides sufficient battery life and agility to further 

development.  It is capable of basic autonomous maneuvers from the APM and 

Pandaboard.  Local autonomous navigation is currently not available in a GPS denied 

environment.  While image processing software has reached some milestones such as 

object identification, further work is needed. 
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 Several attempts were made to gather long term funding from various sources, but 

were unsuccessful.  Fortunately, the low cost of the quadrotor and no proprietary 

software allows for development without major expenses.   

 Awareness of the project was generated by posting a video of some in flight 

footage around the department.  This has spurred interest in the project and has caused 

several students to build a quadrotor of their own. 

 

 

Figure 101:  Department Awareness Video. 
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Future Work 

 This project represents the beginning of a large collaboration between many 

disciplines.  There are many future possibilities and additional work to be done. 

Local Navigation 

 One of the chief technical difficulties for multicopters is local navigation is GPS-

denied environments.  Additional sensor input such as an optical flow sensor can be 

combined with the imaging and gyro data and processed to create a stable local 

navigation system. 

Image Processing Software 

 The vision based PID controller has not been fully implemented due to 

complexity.  It is desired that additional manpower be tasked to implement the needed 

software sets. 

Test Bed Development 

 Due to problems with reliability and the time spent on repairs, a controllable 

environment where the quadrotor can be tested is desirable.  The test bed would provide 

hard limits to its movement and stop the quadrotor in a failure without damaging it.  This 

would allow for repeatable tests without a lot of time spent on repairs in a crash. 

Platform Agnosticism and Teamwork 

 It would be advantageous if the methods described were able to function 

independent of what platform it was implemented on.  When multiple platforms are used, 

strategies can be tailored to take advantage of the quantity of UAVs available, known as 

Swarm. 

Competition Team 

Competition can push teams of people to create their best work.  IARC 

competition with the current platform is possible and can foster teamwork and technical 

skills (International Aerial Robotics Competition 2012).  The competition’s goals are 

compatible with the aim and intent of this project. 
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Conclusion 

 In this paper, a model for controlling and directing actions of an autonomous 

quadrotor was presented and simulated.  An action language model of the autonomous 

agent was presented.  Various tracking strategies were simulated and shown through 

illustrations.  The design of the physical system including hardware, airframe, and 

software has been discussed.  The manufacturing of a quadrotor airframe and the 

associated hardware has been shown.  The quadrotor’s flight characteristics have been 

described.  Problem areas have been discussed as well as available future work. 
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