Autonomous Agents and Multi-Agent Systems (2023) 37:4
https://doi.org/10.1007/s10458-022-09584-4

®

Check for
updates

Towards combining commonsense reasoning and knowledge
acquisition to guide deep learning

Mohan Sridharan'® - Tiago Mota?

Accepted: 26 September 2022
© The Author(s) 2022

Abstract

Algorithms based on deep network models are being used for many pattern recognition and
decision-making tasks in robotics and Al. Training these models requires a large labeled
dataset and considerable computational resources, which are not readily available in many
domains. Also, it is difficult to explore the internal representations and reasoning mecha-
nisms of these models. As a step towards addressing the underlying knowledge represen-
tation, reasoning, and learning challenges, the architecture described in this paper draws
inspiration from research in cognitive systems. As a motivating example, we consider an
assistive robot trying to reduce clutter in any given scene by reasoning about the occlu-
sion of objects and stability of object configurations in an image of the scene. In this con-
text, our architecture incrementally learns and revises a grounding of the spatial relations
between objects and uses this grounding to extract spatial information from input images.
Non-monotonic logical reasoning with this information and incomplete commonsense
domain knowledge is used to make decisions about stability and occlusion. For images
that cannot be processed by such reasoning, regions relevant to the tasks at hand are auto-
matically identified and used to train deep network models to make the desired decisions.
Image regions used to train the deep networks are also used to incrementally acquire pre-
viously unknown state constraints that are merged with the existing knowledge for sub-
sequent reasoning. Experimental evaluation performed using simulated and real-world
images indicates that in comparison with baselines based just on deep networks, our archi-
tecture improves reliability of decision making and reduces the effort involved in training
data-driven deep network models.

Keywords Non-monotonic logical reasoning - Deep learning - Decision tree induction -
Scene understanding

< Mohan Sridharan
m.sridharan @bham.ac.uk

Tiago Mota
tmot987 @aucklanduni.ac.nz

School of Computer Science, University of Birmingham, Birmingham, UK

Electrical and Computer Engineering, The University of Auckland, Auckland, New Zealand

Published online: 01 November 2022) Springer

http://orcid.org/0000-0001-9922-8969
http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-022-09584-4&domain=pdf

4 Page 2 of 41 Autonomous Agents and Multi-Agent Systems (2023) 37:4

Fig. 1 A simulated scene with
toys on the ground. The robot
has to reason about occlusion of
objects and stability of object
configurations to reduce clutter

1 Introduction

Imagine an assistive robot! that has to clear away toys and objects that children have (mis)
placed in different configurations in different rooms of a home. Figure 1 shows an example
simulated scene of toys in a room. The robot’s task poses knowledge representation, rea-
soning, and learning challenges because it is difficult to provide labeled training examples
of all possible arrangements of objects or of all combinations of object attributes. Also, the
robot has to reason with different descriptions of incomplete domain knowledge and the
associated uncertainty. This may include qualitative descriptions of some attributes of the
robot and domain objects, e.g., default statements such as “structures with a large object
placed on a small object are typically unstable” that hold in all but a few exceptional cir-
cumstances, and an initial grounding of some relations between objects, i.e., the meaning
in the physical world for relations such as “left of”” and “behind”. The qualitative descrip-
tion may also include axioms (i.e., rules) governing actions and change in the domain. At
the same time, the robot may obtain quantitative descriptions of knowledge and uncer-
tainty, e.g., statements such as “T am 90% certain the big red box is stable” obtained from
algorithms that compute probabilistic estimates of the uncertainty in sensing and naviga-
tion. Furthermore, human participants are unlikely to have the time and expertise to inter-
pret raw sensor data or to provide comprehensive feedback, and the robot’s decisions may
be incorrect or sub-optimal because it does not possess comprehensive knowledge about
the domain.

We use the robot assistant (RA) domain described above as a motivating example to
describe an architecture that is a step towards addressing the knowledge representation,
reasoning, and learning challenges in such integrated (agent) systems that jointly sense,
reason, act, and learn in dynamic domains. In particular, we consider the scene under-
standing tasks of estimating the partial occlusion of objects and the stability of object
configurations. We also consider a visual planning task that require the robot to reason
with its prior knowledge and observations to compute and execute a sequence of actions to

! Qur focus is on enabling “agency”; we build on the textbook definition of an agent as a computer sys-
tem that can perceive, reason, act, and learn independently [64]. We use the terms “robot”, “agent”, and
“learner” interchangeably; other than the desired perception and actuation capabilities, no specific embodi-

ment (physical form) is necessary for the algorithms described in this paper.

@ Springer

Autonomous Agents and Multi-Agent Systems (2023) 37:4 Page 3 of 41 4

achieve a desired goal. State of the art methods for such tasks are based on deep network
architectures. Although these methods often provide high accuracy, they require a large
number of labeled training examples, are computationally expensive, and make it difficult
to understand the decisions made. Research in cognitive systems has demonstrated the ben-
efits of considering different representations and reasoning methods, and of coupling rep-
resentation, reasoning, and learning such that they inform and guide each other. Drawing
inspiration from such systems, our architecture exploits the complementary strengths of
non-monotonic logical reasoning based on incomplete commonsense domain knowledge,
deep learning, and incremental inductive learning of constraints governing domain states.

In the context of the RA domain, a robot equipped with our architecture obtains 3D
point clouds of the scenes of interest. The robot is also provided incomplete domain knowl-
edge in the form of the type and attributes (e.g., color, size) of some domain objects; an
initial qualitative grounding (i.e., meaning in the physical world) of prepositional words
(e.g., “above”, “left_of”, and “near”) describing spatial relations between objects in the
scene; and some axioms (i.e., rules) governing actions, states, and change in the domain,
including default statements such as “any object configuration with a large object placed on
a small object is typically unstable” that is true in all but a few exceptional circumstances.
The architecture enables the robot to:

(1) Interactively and cumulatively learn and revise a quantitative (i.e., metric) grounding
of the spatial relations between objects, using the qualitative grounding, point cloud
data of objects in a small number of input (RGB-D) images, and limited feedback from
humans.

(2) Use non-monotonic logical reasoning to perform the estimation tasks on any given
input image using a relational representation of the information extracted from the
image (e.g., object attributes, spatial relations between objects) and the incomplete
(prior) domain knowledge.

(3) Automatically identify regions of interest (ROIs) in images for which the estimation
tasks cannot be completed using non-monotonic logical reasoning. These ROIs and the
corresponding (occlusion, stability) labels are used to guide the construction of deep
networks during training, and the ROIs are processed by the trained networks during
testing, for the estimation tasks.

(4) Incrementally learn previously unknown relational constraints using the information
used to train the deep networks, i.e., the relational information extracted from the ROIs
and the corresponding labels. A heuristic approach inspired by human forgetting helps
merge and update the learned and existing knowledge for subsequent reasoning.

We use CR-Prolog, an extension of Answer Set Prolog (ASP) [4, 22], for non-monotonic
logical reasoning with incomplete commonsense domain knowledge.> We also adapt exist-
ing network architectures for the deep learning component of our architecture. The design
and evaluation of our architecture is subject to two caveats:

* State of the art scene understanding methods often focus on generalizing across dif-
ferent tasks and domains using a large number of labeled training examples. Our
focus, on the other hand, is on enabling a robot to use a small number of images and to

2 We will use the terms “ASP” and “CR-Prolog” interchangeably in this paper.

@ Springer

4 Page 4 of 41 Autonomous Agents and Multi-Agent Systems (2023) 37:4

automatically limit learning to previously unknown information relevant to the tasks at
hand in any given domain. We thus do not use existing benchmark datasets for experi-
mental comparison. Instead, we use a small set of real world and simulated images of
scenes in the RA domain.

x The coupling between representation, reasoning, and learning in architectures for inte-
grated systems makes it rather difficult to isolate and evaluate individual components
the architecture [32]. Instead of comparing against existing methods for just reasoning
or learning, we run ablation studies and use a combination of quantitative and qualita-
tive measures to compare against data-driven deep network baselines for the estima-
tion tasks of interest. For ease of understanding, we also limit perceptual processing to
that of 3D point clouds of scenes, and limit previously unknown domain knowledge to
state constraints. We have explored the learning of other axioms, and the interpretation
of the behavior of deep networks, in other work [45, 57].

Some components of this architecture have been described in conference papers, e.g., the

incremental learning of a quantitative grounding of spatial relations [41] and the incre-
mental learning of state constraints [42, 52]. Here, we describe these components in detail,
highlight recent revisions to these components, and explore the capabilities supported by
the interplay between these components. We also provide additional experimental results
to demonstrate a marked increase in the accuracy of decision-making and a reduction in
the computational effort in comparison with architectures that only use deep networks.

The remainder of this paper is organized as follows. First, Sect. 2 discusses related work
to motivate our architecture, whose components are described in Sect. 3. The experimental
setup and results are described in Sect. 4. Finally, the conclusions and directions for further
research are discussed in Sect. 5.

2 Related work

The scene understanding tasks in the motivating RA domain considered in this paper are
representative of a wide range of estimation and prediction problems that pose the knowl-
edge representation, reasoning, and learning problems of interest. Deep networks provide
state of the art performance for these problems and for many other computer vision and
control problems. For instance, a Convolutional Neural Network (CNN) has been used to
predict the stability of a tower of blocks [36, 37], the movement of an object sliding down
an inclined surface and colliding with another object [65], and the trajectory of an object
after bouncing against a surface [50]. However, CNNs and other deep networks require a
large number of labeled examples and considerable computational resources to learn the
mapping from inputs to outputs. In addition, it is difficult to understand the operation of
the learned networks, which also makes it challenging to transfer knowledge learned in one
scenario or task to a related scenario or task [60, 70].

Since labeled training examples are not readily available in many domains, researchers
have explored approaches that simulate labeled data or use prior knowledge to constrain
learning. For instance, physics engines have been used to generate labeled data for train-
ing deep networks that predict the movement of objects in response to external forces [18,
46, 63], or for understanding the physics of scenes [5]. A recurrent neural network (RNN)
architecture augmented by arithmetic and logical operations has been used to answer ques-
tions about scenes [47], but it used textual information instead of the more informative

@ Springer

Autonomous Agents and Multi-Agent Systems (2023) 37:4 Page 5 of 41 4

visual data and did not support reasoning with commonsense knowledge. Another example
is the use of prior knowledge to encode state constraints in the CNN loss function; this
reduces the effort in labeling training images, but it requires the constraints to be encoded
manually as loss functions for each task [59]. The structure of deep networks has also
been used to constrain learning, e.g., by using relational frameworks for visual question
answering (VQA) that consider pairs of objects and related questions to learn the rela-
tions between objects [54]. This approach, however, only makes limited use of the avail-
able knowledge, and does not revise the constraints over time.

For many problems in robotics and Al, prior domain knowledge often includes the
grounding, i.e., an interpretation in the physical world, of words such as in, behind, and
above representing spatial relations between objects. Many systems for grounding such
relations are based on manually encoded descriptions, or on learning algorithms. Meth-
ods using the former typically rely on Qualitative Spatial Representations (QSR) of spatial
relations [13, 66, 69], whereas in the latter case, it is more common to use Metric Spatial
Representations (MSR), i.e., measures based on distances and angles [6, 40]. QSR-based
approaches often approximate objects as points and establish static boundaries between
spatial relations, whereas the grounding of spatial relations is likely to change over time in
dynamic domains. MSR-based systems often learn the grounding of spatial relations offline
or in a separate training phase. Specific instances of QSR and MSR have been used for
different tasks in robotics and computer vision, e.g., QSR relations have been extracted
from videos [20], MSR and kd-trees have been used to infer spatial relations between
objects [71], QSR and MSR have been compared for scene understanding on robots [61],
the relative position of objects has been used to predict successful action execution [17],
and methods have been developed to reason about and learn spatial relations between
objects [27, 29]. Specialized meetings have explored the use of natural language to
describe spatial relationships between objects [12, 62]. Deep networks have also been used
to infer spatial relations between objects using images and natural language expressions,
for manipulation [48], navigation [49], and human-robot interaction [55]. Our approach for
learning the grounding of spatial relations starts with a manually-encoded generic (QSR)
grounding, and interactively learns a specialized (MSR) grounding from experience and
human feedback [41].

There is an established literature on generic methods for learning domain knowledge.
Examples include the incremental revision of a first-order logic representation of action
operators [23], the use of inductive logic programming to learn domain knowledge repre-
sented as an Answer Set Prolog (ASP) program [33, 34], and work in our group on cou-
pling of non-monotonic logical reasoning, inductive learning, and relational reinforce-
ment learning to incrementally acquire actions and axioms [57]. Our approach for learning
domain axioms is inspired by work in interactive task learning, a general framework for
acquiring domain knowledge using labeled examples or reinforcement signals obtained
from domain observations, demonstrations, or human instructions [9, 31]. However, unlike
approaches that learn from many training examples, our approach seeks to incrementally
acquire and revise domain knowledge from limited, partially-defined, training exam-
ples. It can be viewed as building on early work on heuristic search through the space of
hypotheses and observations [56], but such methods have rarely been explored for scene
understanding.

Studies in neural-symbolic learning and reasoning have explored the benefits and
limitations of interleaving statistical learning and symbolic reasoning [7, 53]. For exam-
ple, the probabilistic logic programming language ProbLog has been extended to Deep-
ProbLog, which supports symbolic and sub-symbolic inference, program induction, and

@ Springer

4 Page 6 of 41 Autonomous Agents and Multi-Agent Systems (2023) 37:4

deep (neural) learning from examples based on neural predicates [38]. Another example
is a neural-symbolic visual question answering system that uses deep networks to infer
structural object-based scene representation from images, and to generate a hierarchical
(symbolic) program of functional modules from the question. Running the program on the
representation answers the desired question [67]. There is also work on a neuro-symbolic
method that learns visual concepts and semantic parsing of sentences about the scene by
looking at images and reading paired questions and answers [39]. Many of these methods
rely on classical first-order logic [26] that is not expressive enough for reasoning with com-
monsense knowledge, use simplified neural architectures corresponding to specific sym-
bolic representations [19], associate probability values with all logic statements which is
not always meaningful, or do not clearly establish the link between reasoning and learning.
In addition, although retracting imperfect or incorrect beliefs has long been considered as
important as learning new knowledge [10, 25], existing neural-symbolic approaches rarely
support the automatic detection and correction of errors in learned knowledge. In parallel,
there has been much work on interpreting the operation of deep networks, e.g., by comput-
ing gradients and decompositions at different layers of the network, and providing heat-
maps that indicate the features most relevant to the observed output(s) of deep network [2,
53]. However, these approaches do not exploit the incomplete commonsense domain
knowledge for reliable and efficient reasoning and learning, and for generating explana-
tions in the form of relational descriptions.

A recent evaluation of state of the art computational models for reasoning (and under-
standing) on a diagnostic video dataset revealed that existing methods are able to answer
descriptive questions about the scene, but perform poorly on explanatory, predictive, and
counterfactual questions [68]. The results indicate that causal reasoning methods need an
understanding of the domain dynamics and causal relations. This understanding can be
provided using models of domain physics, as described above. Work in our research group,
on the other hand, is inspired by research in cognitive systems, and focuses on integrated
systems that perceive, reason, act, and learn in dynamic domains. Our research indicates
that coupling knowledge representation, reasoning, and interactive learning, can help
address the limitations described above [24, 45, 52, 57, 58]. The architecture described
in this paper combines the complementary strengths of reasoning with incomplete com-
monsense knowledge, deep learning, and inductive learning. It explores the interplay
between our prior work on incrementally learning a grounding of spatial relations between
objects [41] and on learning constraints that govern domain states [42, 52], introduces a
heuristic approach inspired by human forgetting [14] to detect and correct errors while
merging the learned knowledge with existing knowledge, and describes detailed results of
ablation studies and other experiments evaluating the capabilities of our architecture.

3 Reasoning and learning architecture

Figure 2 is an overview of our reasoning and learning architecture whose components are
adapted and described in this paper in the context of estimating the occlusion of objects and
stability of object configurations in the RA domain. An object is considered to be occluded
if the view of any minimal fraction of its frontal face is hidden by another object, and a
configuration (or structure), i.e., a stack of objects, is unstable if any object in the structure
is unstable. This architecture takes as input RGB-D images of scenes with different object
configurations. During training, the inputs also include the occlusion labels of objects and

@ Springer

Autonomous Agents and Multi-Agent Systems (2023) 37:4 Page 7 of 41 4

Inputs:
Grounding
RGB-D images > of spatial > ASP
¢ program
relations

Relations

Attenti.on - Output labels
New axi mechanism
W axioms lROI ; (occlusion, stability)
images
Decision
Labels > tree CNN
(training phase) induction T

Fig.2 Architecture combines the complementary strengths of deep learning, non-monotonic logical reason-
ing with incomplete commonsense domain knowledge, and decision tree induction; architecture illustrated
here in the context of estimating occlusion of objects and stability of object structures

the stability labels of object configurations in these images. Also, a static qualitative rep-
resentation is provided for the grounding of the prepositional words encoding spatial rela-
tions between objects; this grounding is used to learn and revise a histogram-based metric
representation of the grounding.

For any given image, our architecture first attempts to assign the desired (occlusion
and stability) labels to scene objects using ASP-based non-monotonic logical reasoning.
This reasoning considers the incomplete commonsense domain knowledge and the rela-
tional (i.e., logic-based) representation of the noisy information extracted from the RGB-D
image, i.e., object attributes and spatial relations between objects. If such reasoning is able
to complete the estimation tasks, i.e., provide correct labels during training and estimate
labels during testing, no further analysis of this image is performed. Otherwise, an “atten-
tion mechanism” reasons with existing knowledge (of task and domain) to automatically
identify Regions of Interest (ROIs) in the image relevant to the tasks to be performed, with
each ROI containing one or more objects. A CNN is trained with image ROIs and the cor-
responding ground truth labels, and used (during testing) to map these ROIs to the desired
labels. In addition, ROIs used to train the CNN are also used as input to a decision tree
induction algorithm that maps object attributes and spatial relations to the target labels.
Branches in the tree that have sufficient support among the training examples are used to
construct axioms representing state constraints. The learned constraints are automatically
and heuristically merged with the existing domain knowledge by adding or removing axi-
oms as appropriate, and used for subsequent reasoning. We will use the following illustra-
tive domain to describe the components of our architecture in more detail.

Example 1 [Robot Assistant (RA) Domain]

A simulated robot analyzes images of scenes containing objects in different configura-
tions. The goal is to estimate occlusion of objects and stability of object structures, and to
rearrange object structures so as to minimize clutter. Domain knowledge includes incom-
plete information about the robot’s attributes, the object’s attributes such as size (small,
medium, large), surface (flat, irregular), and shape (cube, cylinder, duck), and the spatial
(i.e., geometric) relation between objects (above, below, front, behind, right, left, close).
The robot can move objects to achieve the desired goals. Domain knowledge also includes
some axioms governing domain dynamics (i.e., states and actions) but some other axioms
may be unknown, e.g.:

@ Springer

4 Page 8 of 41 Autonomous Agents and Multi-Agent Systems (2023) 37:4

RGB-D image

QSR —» Control Node <+—» MSR

Prepositions
Update

ASP program Feedback

Fig.3 Overview of approach for grounding spatial relations between objects. A static QSR-based ground-
ing and human input (if available) are used to incrementally learn and revise a MSR-based grounding

— Placing an object on top of an object with an irregular surface causes instability;
— An object is not occluded if all objects in front of it are moved away.

Note that this notion of domain knowledge or “knowledge base” is a combination of
generic information and specific observations about any particular domain of interest; this
is different from the large knowledge bases that seek to represent information across many
different domains. Over time, the robot may need to learn previously unknown axioms and
revise the existing axioms based on observations, e.g., the robot may find that it is possible
to place an object on another with an irregular surface under certain conditions.

Using this domain as a running example, Sect. 3.1 first describes the approach for
incremental and interactive grounding of the spatial relations between objects. Section 3.2
describes the approach for representing and reasoning with incomplete commonsense
domain knowledge and the information extracted from images to assign the desired labels.
Next, Sect. 3.3 describes the identification of the relevant ROIs in images for which ASP-
based reasoning could not assign (correct) labels, and the learning of CNNs that map fea-
tures from these ROIs to the desired labels. Finally, Sect. 3.4 describes the incremental
decision-tree induction of previously unknown domain axioms, and the heuristic approach
to merge and revise the new axioms and existing knowledge.

3.1 Grounding of spatial relations

Our architecture includes a hybrid approach, which combines a Qualitative Spatial Repre-
sentation (QSR) and a Metric Spatial Representation (MSR), for grounding (i.e., assigning
meaning in the physical world for) the prepositional words encoding the spatial relations
between scene objects. Figure 3 presents an overview of our approach. We consider seven
position-based prepositions (in, above, below, front, behind, right, left) and three distance-
based prepositions (touching, not-touching, far). These prepositions are used to encode
spatial relations between specific scene objects as logic statements in an ASP program.
The QSR module provides an initial, manually-encoded, generic grounding of spatial rela-
tions, which is used to extract spatial relations between pairs of 3D point clouds in any
given input scene. Human feedback, when available, is in the form of labels for the spatial
relations between pair(s) of point clouds in a scene. Both the QSR-based output and human

@ Springer

Autonomous Agents and Multi-Agent Systems (2023) 37:4 Page 9 of 41 4

(a)

Fig.4 QSR representation: (a) Bounding box for point cloud of a particular object; and (b) Pyramids delim-
iting space around the bounding box

feedback are transmitted by the control node to the MSR module, which incrementally
acquires and revises a histogram-based grounding of the prepositions for spatial relations.
Assuming human feedback to be accurate, the control node also computes the relative trust
in the two groundings (QSR, MSR). The more reliable grounding is used to extract spa-
tial relations between scene objects in subsequent images. This information is translated to
logic statements that are added to the ASP program for inference. The individual modules
of this approach are described below.

3.1.1 Qualitative spatial representation

Our QSR model is based on an established approach described in [69]. For each 3D point
cloud in any given image, a bounding box containing it (i.e., a convex cuboid around the
object) is created—see Fig. 4a. If this point cloud is considered the reference object, the
space around this object is divided into non-overlapping pyramids representing the rela-
tions left, right, front, behind, above and below—see Fig. 4b. In our implementation, the
spatial relation of an object with respect to a reference object is determined by the non-
overlapping pyramid around the reference that has most of the point cloud of the object
under consideration. Also, any object with most of its point cloud located inside the bound-
ing box of the reference object is said to be “in” the reference object. In this paper, we
disregard the fact that this definition of in can lead to errors, especially in domains with
non-convex objects, e.g., a book that is actually under a large table may be classified
(incorrectly) as being in the table because the bounding box of the table envelopes most of
the point cloud of the book.

For ease of representation, our approach differs from [69] in the definition of the dis-
tance-related prepositions: fouching, not-touching and far. For a pair of point cloud clus-
ters, the 10% closest distances between pairs of points drawn from the point clouds are
computed, and the following heuristics are used to determine if the two objects are fouch-
ing, not touching, or far (i.e., distinctly separated) from each other:

touching = distance(10%) < 0.01

not-touching = 0.01 < distance(10%) < 1.0 (1)
far = distance(10%) > 1.0

where distances are measured in meters. In other words, two objects are touching if the 10%
closest distances are less than or equal to 1cm. The generic, manually-encoded grounding
based on this QSR model does not change over time, whereas changes in factors such as

@ Springer

4 Page 10 of 41 Autonomous Agents and Multi-Agent Systems (2023) 37:4

©

®

~

L3

o

IS

@

N

AT e A A e

i, W

) 05 1l0 15 2lo 2’5 30
distance [meters]

=)

(a) 1D histogram for “not-touching”. (b) 2D histogram for “left”.

Fig.5 Illustrative examples of MSR-based grounding: (a) 1D histogram grounding distance-based preposi-
tion “not-touching”; (b) 2D histogram grounding position-based preposition “left”

camera pose may require the grounding to be revised. However, based on the reasonable
assumption that the robot’s initial estimate of spatial relations is based on its view of the
scene, our approach has the robot use the QSR-based grounding to identify spatial relations
between objects in the initial stages. This grounding and human input of spatial relations
between object pairs (when available) are used to incrementally learn and revise a special-
ized, quantitative grounding of spatial relations between objects, which we describe next.

3.1.2 Metric spatial representation

Unlike the QSR-based grounding, the MSR-based grounding model supports incremental
and continuous updates from observations and human feedback. Assume temporarily that
the MSR module receives a pair of point cloud clusters corresponding to two objects, and
the prepositions of the spatial relations between the objects, e.g., from QSR or humans.
Our MSR module grounds each preposition using histograms, also referred to as “visual
words”, which are created by considering the point cloud data in a spherical coordinate
system. Specifically, each point is represented by its distance to a reference point and two
angles: 6 € [0°,180°] and ¢ € [—180°, 180°]. On a robot, the coordinate frame for ground-
ing is defined with respect to the robot’s coordinate frame, its camera, and/or reference
objects—information in one coordinate frame can be transformed to other coordinate
frames as needed. Also, although processing the sensor input(s) can introduce noise, the
non-monotonic logical reasoning and incremental learning abilities of our architecture sup-
port recovery from associated errors, as described later.

In our MSR-based representation, each of the seven position-based prepositions (in,
left, right, front, behind, above, below) are ground using 2D histograms of angles 6 and
@, whereas each of the three distance-based prepositions (touching, not-touching, far) are
ground using 1D histograms of the 10% closest distances between points in pairs of objects.
Figure 5a and b show one illustrative example (each) of a histogram grounding a distance-
based and position-based preposition. All histograms are normalized to ensure that large
objects with many points do not have any undue influence on the grounding of relations.

Any learned MSR-based groundings are used for the subsequent new scenes. For any
given pair of point cloud clusters in a new scene, the corresponding 2D and 1D histograms
(i.e., visual words) are constructed. The learned visual words that are most similar to the

@ Springer

Autonomous Agents and Multi-Agent Systems (2023) 37:4 Page 11 of 41 4

extracted visual words are used to assign the distance-based and position-based spatial
relations between the corresponding scene objects, e.g., “object, is below object, and not
touching it”. These inferred spatial relations are automatically translated to logic state-
ments that are added to the ASP program, e.g., obj_relation(below, obj,, obj,). Since axi-
oms in the ASP program are applied recursively for inference, each point cloud cluster only
needs to be considered once.

The similarity between visual words is computed using the standard intersection meas-
ure for 1D (distance) histograms. For the 2D (position) histograms, we use the y? measure,
i.e., for two histograms H and G:

|/’li —g,'|2

D0 = Y S ey @

i

where h; and g; are bins in H and G respectively. Smaller values of this measure denote
greater similarity. We only use this measure for 2D histograms because the boundaries
between position-based relations are more difficult to define than those between distance-
based relations. Once the spatial relations between a pair of point cloud clusters have been
determined in a new scene, the learned visual words are updated using a standard normal-
ized histogram merging approach, i.e., the MSR-based grounding is updated continuously.
Next, we consider the use of human feedback when it is available.

3.1.3 Combined QSR-MSR model

Recall that we are focusing on applications where many training examples and human
supervision are not readily available. However, we do want to use the rich information
encoded in human feedback when it is available. While the QSR-based grounding remains
unchanged, the MSR-based grounding changes as new scenes are processed. Since the
QSR-based and MSR-based groundings may disagree on the relation between some pairs
of objects, the control node initially assigns high (low) confidence to the QSR-based (MSR-
based) grounding. The relative confidence in each grounding is then updated based on the
number of times the output from the grounding matches human input—the more reli-
able grounding is then used for processing the subsequent scenes. Note that this approach
assumes that human input of spatial relations between point cloud clusters is accurate most
of the time, i.e., each human participant providing feedback is expected to interpret spa-
tial relations correctly. Incorrect human annotation can affect the confidence in a ground-
ing and the subsequent grounding of spatial relations between objects, but our approach
ensures that this only happens if the number of such incorrect annotations is comparable to
the number of correct annotations.

Object shapes and sizes may also influence spatial relations depending on the viewpoint.
However, since the MSR-based grounding is based on histograms of relative distances
and angles, it can be used to infer spatial relations over a range of viewpoints. Also, the
architecture has two mechanisms to limit and recover from errors. First, if the QSR-based
grounding is applicable, e.g., viewpoint has not changed substantially from the initial view,
the system can use it to obtain an initial estimate of spatial relations and incrementally
acquire the MSR-based grounding. Second, if the QSR-based grounding is not applicable,
it is still possible to acquire an MSR-based grounding from a small number of images and
limited human input, and to use it for subsequent inference.

There are some caveats related to the proposed approach. First, the QSR-based ground-
ing is assumed to be reasonably accurate initially. If this assumption does not hold and

@ Springer

4 Page 12 of 41 Autonomous Agents and Multi-Agent Systems (2023) 37:4

no human input is available, an inaccurate MSR-based grounding may be acquired, result-
ing in incorrect estimates of spatial relations. Also, it is possible to use an accurate MSR-
based grounding or human input to revise the QSR-based grounding; we do not pursue
that option in this paper in order to simplify the process of understanding the two different
groundings. Second, human feedback improves the specialized MSR-based grounding and
overall accuracy, but it is not essential for estimating spatial relations. Third, the encoded
prepositions (with learned grounding) are translated to logic statements (i.e., observation
literals) in an ASP program. These observations and the commonsense knowledge encoded
in the ASP program limit possible relations between scene objects and help infer com-
posite relations (e.g., on, close to, next to etc). For instance, the spatial relation on may be
defined by the following axiom:

obj_relation(on, O, 0,) < obj_relation(above, O, O,), obj_relation(touching, O, 0,)

(©))
which states that if object O, is above O, and touching it, then O, is on O,; the syntax
and semantics of axioms are described in the next section. However, all axioms need not
be defined in advance; our overall architecture supports reasoning with incomplete knowl-
edge and incremental learning of these axioms as described later in this paper. Finally, we
currently assume that each pair of objects is related through one position-based and one
distance-based spatial relation, but not all the prepositions are (or need to be) mutually
exclusive.

3.2 Knowledge representation and reasoning

This section describes our approach for representing and reasoning with incomplete domain
knowledge. First, Sect. 3.2.1 introduces the action language used in our architecture. Next,
Sect. 3.2.2 describes the use of the action language to represent a dynamic domain, and
the translation of this domain representation to an ASP program for non-monotonic logical
inference.

3.2.1 Action language

Action languages are formal models of part of a natural language used for describing tran-
sition diagrams of dynamic domains. Our architecture uses the action language AL [21],
which has a sorted signature with three types of sorts: statics, which are domain attributes
whose values do not change over time; fluents, which are domain attributes that can be
changed; and actions. Fluents can be inertial, which can be directly modified by actions
and obey the laws of inertia, or defined, which are not directly changed by actions and do
not obey inertia laws. A domain literal is a domain attribute p or its negation 7p. AL allows
three types of statements:

Lif py,....p, State Constraints

a causes [, if p,.....p, Causal Laws
impossible «y,....q; if py,....p, Executability Conditions
where a is an action, [is a literal, [;, is an inertial literal, and p, ... ,p,, are domain liter-

als. Our architecture uses AL to describe the transition diagram of any given domain, as
described below.

@ Springer

Autonomous Agents and Multi-Agent Systems (2023) 37:4 Page 13 of 41 4

3.2.2 Knowledge representation and reasoning in ASP

A domain’s description in AL comprises a system description D and a history H. D
comprises a sorted signature X~ and axioms. X includes the basic sorts arranged hier-
archically, domain attributes (i.e., statics and fluents), and actions. In the RA domain,
sorts include object, robot, entity, size, relation, and surface, and the sort step for tem-
poral reasoning, with object and robot being subsorts of entity. Statics include some
object attributes such as obj_size(object, size) and obj_surface(obj, surface). Fluents of
the form obj_relation(relation, object, object) model relations between objects in terms
of their arguments’ sorts, e.g., obj_relation(above, A, B) implies object A is above object
B—the last argument in these relations is the reference object for the spatial rela-
tion under consideration. Fluents also describe other aspects of the domain such as:
in_hand(robot, object) and stable(object), which describe whether a robot is holding a
particular object, and whether a particular object is stable (respectively). Actions of the
domain include pickup(robot, object) and putdown(robot, object, location). A state of
the domain is then a collection of ground literals, i.e., statics, fluents, actions, and rela-
tions with values assigned to their arguments.

The axioms of D are defined in terms of the signature X and govern domain dynam-
ics. These axioms include a distributed representation of the constraints related to
domain actions, i.e., causal laws and executability conditions that define the precondi-
tions and effects of actions, and constraints related to states, i.e., state constraints. The
axioms of the RA domain include statements such as:

pickup(robot, object) causes in_hand(robot, object) (4a)
obj_relation(below, B,A) if obj_relation(above, A, B) (4b)
obj_relation(behind, B, A) if obj_relation(infront, A, B) (4c)
impossible pickup(robot, object) if in_hand(robot, object) (4d)

impossible putdown(robot, object, location) if not in_hand(robot, object) (4e)

where Statement 4(a) is a causal law which states that if the robot executes the pickup
action on an object, it ends up holding the object. Statements 4(b-c) describe state con-
straints regarding some spatial relations between two objects. Statement 4(d) describes
an executability condition which indicates that a robot cannot pick up an object that it is
already holding. Statement 4(e) describes an executability condition that uses default nega-
tion (i.e., not) in the body of the axiom. This encodes a stronger constraint than the use of
classical negation (i.e., 7). This statement implies that it is impossible for a robot to put a
particular object down in a particular location if it does not know whether the object is in
its hand or not, and not just when it is sure that it is not in its hand.

A history H of a dynamic domain typically includes records of observations of flu-
ents at particular time steps, i.e., obs(fluent, boolean, step), and actions actually exe-
cuted by the robot at particular time steps, i.e., Apd(action, step). In robotics domains,
it is common to have some default knowledge that holds in all but a few exceptional cir-
cumstances. In other work from our research group, we expanded the notion of history
to include default statements describing the values of fluents in the initial state [58]. For

@ Springer

4 Page 14 of 41 Autonomous Agents and Multi-Agent Systems (2023) 37:4

example, we may encode in the RA domain that “structures with four or more blocks are
usually unstable”.

To reason with the encoded domain knowledge, we construct the CR-Prolog/ASP pro-
gram II(D, H) from the system description D in AL and the history . ASP is a declar-
ative language that can represent recursive definitions, defaults, causal relations, special
forms of self-reference, and language constructs that occur frequently in non-mathematical
domains, and are difficult to express in classical logic formalisms. ASP is based on stable
model semantics [22] and supports concepts such as default negation (negation by failure)
and epistemic disjunction, e.g., unlike “— a”, which implies that “a is believed to be false”,
“not a” only implies “a is not believed to be true”. Each literal can be true, false, or
unknown and the robot only believes that which it is forced to believe. Unlike classical first
order logic, ASP supports non-monotonic logical reasoning, i.e., adding a statement can
reduce the set of inferred consequences, aiding in the recovery from errors and situations
in which observations do not match expectations due to reasoning with incomplete knowl-
edge; this is an essential capability in robotics. ASP and other knowledge-based reasoning
paradigms are often criticized for requiring considerable prior knowledge, and for being
unwieldy in large, complex domains. However, modern ASP solvers support reasoning
with incomplete knowledge and efficient reasoning in large knowledge bases. These solvers
and related reasoning systems are used by an international research community in robot-
ics [15] and other applications [16].

A custom-built script is used to automate the translation of D and H to I1(D, H). The
program II includes the signature and axioms of D, inertia axioms, reality checks (to
ensure observations are consistent with current beliefs), closed world assumptions for
defined fluents and actions, and observations, actions, and defaults from H. For instance,
Statements 4(a-e) of AL are translated to:

holds(in_hand(robot, object), I + 1) <« occurs(pickup(robot, object), I) (52)
holds(obj_relation(above, A, B),I) <« holds(obj_relation(below, B,A),) (5b)
holds(obj_relation(infront, A, B),I) « holds(obj_relation(behind, B,A),I) (5¢c)
—occurs(pickup(robot, object),I) <« holds(in_hand(robot, object), I) (5d)

—occurs(putdown(robot, object, location), I) < not holds(in_hand(robot, object), I)
(3e)
where the predicate holds(fluent, step) implies that a particular fluent holds true at a par-
ticular timestep, and the predicate occurs(action, step) implies that a particular action is
supposed to be executed at a particular time step in a plan. In the context of the scene
understanding tasks in the RA domain, the program encodes prior knowledge about stabil-
ity using axioms such as:

—holds(stable(A),I) < holds(obj_relation(above, A, B), I), size(A, large),

size(B, small), not holds(stable(A),I) ©)

which states that larger objects on smaller objects are unstable unless there is evidence to
the contrary. The spatial relations extracted from RGB-D images are also automatically
converted to statements in ASP program that describe the current domain state. Please

@ Springer

Autonomous Agents and Multi-Agent Systems (2023) 37:4 Page 15 of 41 4

see [22] for further examples of translating a system description in AL to ASP. Note
that the program II(D, H) is the “knowledge base” for the domain under consideration.
An illustrative example of a complete program for the RA domain is in our open source
repository [43].

Once II(D, H) is constructed, all reasoning, i.e., planning, diagnostics, and inference
can be reduced to computing answer sets of I1. These answer sets of IT represent beliefs of
the robot associated with IT; this would include inferred beliefs, plans, and results of diag-
nostics, as appropriate. In the RA domain, an answer set could include beliefs about the
occlusion of individual objects and the stability of object structures, and a plan to reduce
clutter. To compute the answer set(s) of any given ASP program, we use the SPARC sys-
tem [3], which is based on a SAT solver. The computation of answer set for planning or
diagnostics also requires us to introduce some helper axioms, which would include a goal
definition and the following for planning:

success < goal(l) (7a)

<« not success

(7b)

occurs(A,I) | —occurs(A,I) < not goal(I) (7¢)

« occurs(A,), occurs(Ay, 1), A; # A, (7d)
something_happened(l) < occurs(A,I) (7e)

« goal(l), goal(I — 1), J < I, not something_happened(J) (7f)

which force the robot to search for actions until the goal is achieved and prevent the robot

from executing multiple actions concurrently. Some axioms are also introduced such that
unexpected observations result in an inconsistency that the robot resolves using Consist-
ency Restoring (CR) rules [4]. We do not include all these axioms here but the ASP pro-
gram for the RA domain is in our code repository [43].

Since the robot only believes that which it is forced to believe, the inability to compute
an answer set indicates an unresolved inconsistency that is considered to be due to incom-
plete knowledge or an error in the encoding that needs to be probed further. In the context
of the scene understanding tasks under consideration, the robot would either be unable to
make a decision regarding occlusion and stability, or provide an incorrect inference (when
ground truth is available). This situation is addressed in our architecture using the attention
mechanism and deep networks as described below.

3.3 Attention mechanism and deep learning

The attention mechanism module is used when ASP-based reasoning is unable to assign
(occlusion and stability) labels to objects in the input image, or when it assigns an incorrect
label (for training data). In each such image, this module automatically directs attention to
regions of interest (ROIs) that contain information relevant to the task at hand. To do so,
it identifies each axiom in the ASP program whose head corresponds to a relation relevant
to the task at hand. The relations in the body of each such selected axiom are then used

@ Springer

4 Page 16 of 41 Autonomous Agents and Multi-Agent Systems (2023) 37:4

(a) (b)

Fig.6 Examples of ROIs automatically identified by the attention mechanism for further analysis in the
context of estimating: (a) stability of object structures; and (b) occlusion of objects

to identify image ROIs to be processed further; the remaining image regions are unlikely
to provide relevant information and are not analyzed further. Note that our formulation of
“attention” draws on early work in computer vision, Al, and psychologys; it is not based on
how this concept has been modeled in the deep learning literature.

As an example, consider the task of determining the stability of object structures in the
image in Fig. 6a. Axioms that define conditions under which a particular object is consid-
ered to be stable, and those that define conditions under which an object is considered to
be unstable, are relevant to this task. These axioms would have stable(A) or —stable(A) in
the head of the axiom, e.g., Statement 8(a) and Statement 9 respectively in Sect. 3.4 below.
The head of any such axiom holds true in any state in which all the relations in the body
of the axioms are satisfied. In the case of Statement 8(a) and Statement 9, the body of the
axiom contains the spatial relation above, leading the attention mechanism to consider the
stack comprising the duck, the red can, and the white cube, as indicated by the red rectan-
gle in Fig. 6a, because they satisfy the relevant relation. While this ROI is analyzed further,
other image regions and objects (e.g., mug, pitcher) are disregarded.

As another example, consider the task of identifying occluded objects in Fig. 6b. State-
ment 8(b) in Sect. 3.4, which defines conditions under which an object is not considered
to be occluded (as indicated by the axiom’s head), is relevant to the task. This axiom’s
body indicates that the relation behind is relevant for decisions about occlusion of objects,
and the attention mechanism will only consider pairs of objects in Fig. 6b that satisfy this
relation. The red rectangle in Fig. 6b indicates the relevant image region comprising the
mug, the red can, and the white cube. This region is analyzed further, whereas the other
image regions are disregarded. As before, this selection of the ROI is achieved without any
manual supervision. These examples highlight two important points about the underlying
process:

1. The process of selecting axioms in the knowledge base relevant to any given task, and
extracting image ROIs satisfying the body of these axioms, is fully automated; there is
no manual intervention.

2. The motivating tasks used in this paper (e.g., estimating stability and occlusion) result
in the use of spatial relations between objects being used as a key factor to identify rel-
evant axioms and ROIs. However, the methodology is not bound to these relations and

@ Springer

Autonomous Agents and Multi-Agent Systems (2023) 37:4 Page 17 of 41 4

the corresponding steps can be used (unchanged) to identify relevant axioms and ROIs
for other tasks.

Once the attention mechanism identifies image ROIs enveloping objects that could not
be assigned stability and occlusion labels using ASP-based reasoning, pixels of each
such ROI are considered to provide information that is relevant to the estimation tasks
but is not captured by the existing knowledge base (i.e., ASP program). The pixels in
these ROIs and the target labels to be assigned to objects (and structures) in the ROIs
are provided as inputs to a CNN. The CNN learns the mapping between the image pix-
els and target labels, and then assigns these labels to ROIs in previously unseen test
images that ASP-based reasoning is unable to process.

A CNN has many parameters based on size, number of layers, activation functions,
and the connections within and between layers, but the basic building blocks are convo-
lutional, pooling, and fully-connected layers. The convolutional and pooling layers are
used in the initial or intermediate stages of the network, whereas the fully-connected
layer is typically one of the final layers. In a convolutional layer, a filter (or kernel) is
convolved with the original input (to the network) or the output of the previous layer.
One or more convolutional layers are usually followed by a pooling layer. Common
pooling strategies such as max-pooling and average-pooling are used to reduce the
dimensions of the input data, limit the number of parameters, and control overfitting.
The fully-connected layers are equivalent to feed-forward neural networks in which all
neurons between adjacent layers are connected—they often provide the target outputs.
In the context of images, convolutional layers extract useful attributes to model the map-
ping from inputs to outputs, e.g., the initial layers may extract lines and arcs, whereas
the subsequent layers may compose more complex geometric shapes. While estimating
the stability of object configurations, the CNN’s layers may implicitly represent attrib-
utes such as whether: (i) a tower of blocks is aligned; (ii) an object with an uneven sur-
face is under another object; or (iii) a tower has a small base.

In this paper, we adapt and use two established CNN architectures: (i) Lenet [35], ini-
tially proposed for recognizing hand-written digits; and (ii) Alexnet [30], which has been
used widely since it provided very good results on the Imagenet benchmark dataset. The
Lenet has two convolutional layers, each one followed by a max-pooling layer and an acti-
vation layer. Two fully connected layers are placed at the end. Unlike the 28 X 28 gray-
scale input images and the ten-class softmax output layer used in the original implemen-
tation, we consider 56 X 56 RGB images as the input. Note that each such input to the
network corresponds to an image ROI under consideration. The input vector size was cho-
sen experimentally using validation sets and ROIs were scaled appropriately; the minimal
improvement in performance provided by longer input vectors did not justify the signifi-
cant increase in computational effort. The network’s outputs estimate the occlusion of each
object and the stability of object structure(s) in the ROI under consideration. As described
later in Sect. 4.1, we consider ROIs with up to five objects, and we use the sigmoid activa-
tion function. Figure 7 is a pictorial representation of this network. The Alexnet architec-
ture, on the other hand, contains five convolutional layers, each followed by max-pooling
and activation layers, along with three fully connected layers at the end. In our experi-
ments, each input vector is a 227 X 227 RGB image. The size of the output vector and the
activation function are the same as those for the Lenet architecture.

With both CNN architectures, we used the Adam optimizer [28] in TensorFlow [1]
with a learning rate of 0.0002 and 0.0001 for Lenet and Alexnet respectively; the initial

@ Springer

4 Page 18 of 41 Autonomous Agents and Multi-Agent Systems (2023) 37:4

Input convl output:

conv2 FC
(un)stable
(not-)occluded 1
(not-)occluded 2
(not-)occluded 3
(not-)occluded 4
(not-)Joccluded 5

56x56x3 pooll pool2

Fig. 7 Lenet architecture

weights were initialized randomly. The number of training iterations varied depending
on the network and the number of training examples. For example, the Lenet network
using 100 (5000) image samples was trained for 10000 (40000) iterations, whereas the
Alexnet with 100 (5000) training samples was trained for 8000 (20000) iterations. The
learning rate and number of iterations were chosen experimentally using validation sets.
The number of epochs was chosen as the stopping criteria, instead of the training error,
in order to allow the comparison between networks learned with and without the atten-
tion mechanism. The code for training the deep networks is in our open source reposi-
tory [43]. Note that other, potentially more sophisticated, deep network models could
be used in our overall architecture (instead of Lenet or Alexnet), but this is beyond the
scope of this work. Also, the chosen CNN architectures are sufficient for the learning
task when it is informed by reasoning with commonsense knowledge.

Recall that a CNN is only trained on ROIs from images for which ASP-based reason-
ing provides an incorrect outcome or is unable to provide an outcome. We consider any
such trained CNN to represent previously unknown knowledge not encoded, or encoded
incorrectly, in the ASP program. In other words, the observed incorrect outcome or lack
of any outcome is considered to be a consequence of reasoning with incomplete or incor-
rect knowledge, which (in turn) can be because the knowledge was incomplete or incorrect
when it was encoded initially, or because of changes in the domain over time. The next
component of our architecture supports the incremental acquisition of previously unknown
state constraints from the ROIs (used to train the deep networks), and the merging of this
information with the existing knowledge. This process also (indirectly) helps understand
the behavior of the trained deep networks.

3.4 Decision tree induction and axiom merging

In our architecture, previously unknown domain knowledge is learned incrementally using
decision tree induction, and a heuristic approach inspired by human forgetting merges the
learned knowledge with the existing knowledge for subsequent reasoning. As stated in
Sect. 1, we illustrate this capability in this paper by learning axioms that represent pre-
viously unknown state constraints. In other work, we have demonstrated the use of the
inductive learning approach, without the heuristic merging strategy, to learn other kinds of
axioms [44].

@ Springer

Autonomous Agents and Multi-Agent Systems (2023) 37:4 Page 19 of 41 4

Not-stable(A) (100% of 33 samples)
True True
Aby A, B)? Trregular(B)?
ey Y rregular(B) Not-stable(A) (92% of 13 samples)

False Tower S < 57

Not-stable(A)(67% of 15 samples)
Not-stable(A) (57% of 7 samples)

False
Below(A, B)?

Tower S < 47

L »Stable(A) (100% of 58 samples) Front(A, B)? True Stable(A) (60% of 5 samples)

True False Stable(A) (67% of 6 samples)

Fig.8 Example of a decision tree constructed for stability estimation using some labeled examples. High-
lighted branches are used to construct previously unknown axioms

Not-occluded(A) (75% of 8 samples)
True True
Bh'dAB?}—b{ Al ':A‘C'.’}—‘ . L.
chind(4, B) pove() Not-occluded(A) (56% of 9 samples)

False Tower S < 17

False

Occluded(A) (75% of 8 samples)

Front(A, B)?

L—»Not-occluded(A) (100% of 99 samples) Toleo Occluded(A) (69% of 13 samples)

Fig.9 Example of a decision tree constructed for occlusion estimation using some labeled examples. High-
lighted branch is used to construct previously unknown axiom

We adapt the well-known ID3 algorithm [51] to construct the desired decision trees,
using entropy minimization as the criterion to select the attribute to split the nodes. Build-
ing on the underlying distributed, relational representation of axioms, we learn separate
decision trees for each estimation task, e.g., in the RA domain, we learn separate decision
trees for stability estimation and occlusion estimation. The difference in the construction
of these decision trees is in the use of the relational descriptions based on prior knowl-
edge and the observations as the attributes. Specifically, relational domain attributes are
extracted automatically from the image ROIs used for training the deep networks; recall
that these attributes include the spatial relations between pairs of objects and the attributes
of the objects in each such ROI. This relational information and the corresponding occlu-
sion and stability labels are used as the labeled training examples to build the decisions
trees for the estimation tasks under consideration. For the illustrative example domain con-
sidered in this paper, each tree’s nodes encode splits based on the domain attributes, and
the labels of the leaf nodes are stable, unstable, occluded, and not occluded.

Once the decision trees are constructed, our approach automatically extracts candi-
date axioms from the trees. Consider, for example, the branches highlighted in gray in
Figs. 8 and 9, which show part of the decision trees learned in the RA domain. These
branches can be translated to the axioms:

holds(stable(A),) < not holds(obj_relation(above, A, B),) (8a)

—holds(occluded(A),I) < not holds(obj_relation(behind, A, B),I) (8b)

where Statement 8(a) implies that any object that is not known to be above any other
object is considered to be stable, whereas Statement 8(b) says that an object is not occluded
if it is not known to be behind any other object. Note that this translation from the decision
tree to axioms uses default negation to model the use of quantifiers with specific negated
literals in the body of axioms. As another example, the branch highlighted in gray and blue
in Fig. 8 translates to the following axiom:

@ Springer

4 Page 20 of 41 Autonomous Agents and Multi-Agent Systems (2023) 37:4

—holds(stable(A),I) < holds(obj_relation(above, A, B), I), obj_surface(B, irregular)
)
which states that an object is unstable if it is located above another object with an irregular
surface.

Algorithm 1: Learning and merging axioms

Input : Relational domain attributes from image ROIs; occlusion and stability labels of objects in ROIs;
thresholds thy (95%, purity threshold), ths (5%, support threshold), ths (40%, tree support
threshold), tha (10%, axiom strength threshold); ensemble_count (100).

Output: Learned axioms.

1 while frue do

2 if labeled_samples then
3 for j = 1: ensemble_count do
// Split training samples for learning and validation
4 training_set, validation_set = random_split(labeled_samples)
// Decision tree induction
5 learned_tree = tree_induction(training_set)
// Create candidate axioms
6 candidate_axioms = select(learned_tree, thi, tha)
// Validate axioms
7 validated_axioms = validate(candidate_axioms, validation_set, th2)
8 end
// Choose validated axioms with suff
9 axioms = select(validated_axioms, th3)
// Add validated axioms and merge similar axioms
10 add_merge(axioms)
11 end
// Update strength of axioms
12 update_strength(axioms)
// Remove axioms with low strength
13 remove(axioms, thq)
14 end

Algorithm 1 describes the steps for automatically constructing the decisions trees,
extracting and validating candidate axioms, and merging the valid new axioms with the
existing knowledge. The algorithm first checks for suitable labeled training examples, i.e.,
image ROIs for which the stability and occlusion labels could not be determined correctly
using ASP-based reasoning; these are used to induce new state constraints (lines 2-11).
Specifically, a training set is created by randomly selecting 50% of the labeled examples,
with the remaining examples making up the validation set (line 4). As stated earlier, the
construction of the tree is based on the ID3 algorithm [51]; it considers the relational
attributes extracted from the image ROIs under consideration to split nodes, and assigns
the known labels to the leaves. During the construction of the tree, the algorithm com-
putes the potential change in entropy (i.e., information gain) that would occur if a split is
introduced at a node in the tree based on each attribute that has not yet been used (line 5);
the attribute that is likely to provide the highest reduction in entropy is selected to split the
examples at a node.

Given any such tree, the branches of the tree (from root to leaves) that satisfy certain
minimum requirements are selected to construct candidate axioms (line 6). These mini-
mum requirements include thresholds on purity of samples at any given leaf, and on the
support from the labeled examples, e.g., > 95% examples at the leaf belong to a particular
(correct) label, and a branch under consideration has support from > 5% of the training

@ Springer

Autonomous Agents and Multi-Agent Systems (2023) 37:4 Page 21 of 41 4

samples. The selected branches of the learned decision trees represent previously unknown
candidate constraints, and the thresholds are set to construct such candidate axioms cau-
tiously, i.e., small changes in the value of these thresholds do not cause any significant
change in the branches of the tree selected to construct axioms. The values of these thresh-
olds can also be revised intentionally to achieve different desired behavior. For instance,
to identify default constraints that hold in all but a few exceptional circumstances (see
Sect. 3.2.2), we lower the threshold for selecting a branch of a tree to construct candidate
axioms (from 95% to 70%). As we will discuss later, lowering the thresholds results in
the discovery of additional axioms, but also introduces noise. In addition, in this paper,
learning of axioms containing default negation literals is restricted to default constraints
such as Eq. 6. In other words, the default negation is only associated with a literal in the
body that is the negation of the literal in the head. This restriction is imposed primarily for
computational efficiency because associating default negation with all literals would sig-
nificantly increase the search space. Also, in any particular domain, the default negation is
only applicable to certain literals, and this knowledge can be used during axiom learning.
So, we demonstrate the capabilities of our approach with this restriction.

Once the candidate axioms are constructed, each one is validated using the other half
of the labeled examples that have (so far) not been seen by the algorithm (line 7). The
validation process removes axioms without a minimum level of support (e.g., 5%) from
the labeled examples. Since the number of labeled examples available for training is often
small, we reduce the effect of noise through a homogeneous ensemble learning approach
(lines 3-8), i.e., we repeat the learning and validation steps a number of times (e.g., 100)
and only the axioms identified in more than a minimum number of iterations (e.g., 40%,
line 9) are retained. Adding all retained axioms can lead to the ASP program including dif-
ferent versions of the same axiom over time. For instance, two axioms may have identical
heads with one axiom’s body containing all the literals of the other, or two ground axioms
may include sorts that are subsorts of a more general sort. To address this issue the algo-
rithm reasons with the existing knowledge to identify the axioms to be added to the knowl-
edge base (add_merge(axioms), line 10). First, axioms with the same head and overlap in
the body are grouped together. Each possible combination of axioms from different groups
(one from each group at a time) is then encoded in an ASP program along with the axioms
that do not belong to any such group. The resulting program is used to classify ten labeled
scenes chosen randomly. Axioms in the program that results in the highest accuracy are
retained whereas the other axioms in each group are discarded.

The axiom learning approach described so far is based on a small number of labeled
examples in a dynamic domain. The learned axioms may be incorrect (e.g., incorrect nega-
tion in the head, or incorrect literals in the body), incomplete (e.g., one or more missing
literals in the body), or over-specified (e.g., one or more irrelevant literals in the body).
Reasoning with these axioms can lead to sub-optimal or incorrect behavior. To address this
issue, we incorporated a heuristic approach inspired by the human forgetting behavior [14].
This approach associates a “strength” values to each axiom. An axiom’s strength is revised
over time based on a decay factor using an exponential relation: axiom_relevance = e™*",
where a represents the decay factor (initially 1), and » is the number of time steps since the
axiom was learned. In each time step, irrespective of whether any new axioms are learned,
the strength of all learned axioms are updated (line 12). If an axiom is reinforced, i.e.,
learned again or used, its strength is elevated to the maximum value (i.e., 1) again, and its
decay factor is divided by \'/5, a value chosen experimentally such that it varies between
2 (for n =1) and 1 (for n — o0). Any axiom whose strength value falls below a threshold
(e.g., 0.1) is removed from further consideration (line 13).

@ Springer

4 Page 22 of 41 Autonomous Agents and Multi-Agent Systems (2023) 37:4

Algorithm 2: Overall control loop of architecture.

Input: I1(D, H); goal (for planning); observations including extracted attributes from image(s); object (stability and occlusion)
labels for training.
Output: Control signals (for planning task) or labels (for estimation tasks).
1 planMode = false, estimateLearnMode = false
2 while true do

3 Add observations to history.
4 ComputeAnswerSets(/1(D, H))
5 if existsGoal then
6 \ planMode = true, estimateLearnMode = false
7 else
8 ‘ estimateLearnMode = true, planMode = false
9 end
10 if planMode then
11 if expectedObs then
12 | ExecutePlanSteps()
13 else
14 planMode = false
15 estimateLearnMode = true
16 end
17 if estimateLearnMode then
18 success = ParseAnswerSets()
19 if — success then
20 ExtractROIs()
21 if knownLabels then
22 LearnReviseDNModel()
23 LearnMergeAxioms()
24 else
25 ‘ UseDNModel()
26 end
27 end

Control loop Finally, Algorithm 2 provides an overview of the control loop of the archi-
tecture. The robot first adds observations to history and computes answer sets (lines 3-4).
As described in Sect. 3, the robot either has to complete a visual planning task or an esti-
mation task, as determined in lines 5-9. In the planning mode, if there are no unexpected
observations, the robot continues executing plan steps (lines 11-13); else it changes mode
(lines 14-16). If the robot is instead asked to complete an estimation task on one or more
input images, it tries to do so based on the computed answer sets (line 18). Then, depend-
ing on whether it has ground truth labels for input images (line 21), the robot either learns
and revises the deep network models (for the estimation tasks) and learns and merges axi-
oms as described in Algorithm 1 (lines 22-23), or uses previously trained deep network
models (lines 24-26). Note that deep network models are revised in our architecture using
batch learning, i.e., a small set of labeled ROIs are used at a time; we can learn from as
few as 10 — 15 examples. Work by members of our research group has also explored con-
tinual learning methods for incrementally revising deep network embeddings of knowledge
graphs [11]. Furthermore, although we do not describe it in this paper, it is also possible
to solicit human feedback on specific ROIs if labels are not already available; lines 24-26
would then use these solicited labels to revise the deep network models and axioms.

4 Experimental setup and results
In this section, we describe the setup and results of experimental evaluation. As stated in

Sect. 1, evaluation primarily considered the scene understanding tasks of estimating the
occlusion of objects and stability of object structures. As a secondary task, we considered

@ Springer

Autonomous Agents and Multi-Agent Systems (2023) 37:4 Page 23 of 41 4

the visual planning task that requires a robot to reason with incomplete knowledge and
observations to compute and execute plans that achieve desired goal configurations in sim-
ulation. The grounding of spatial relations plays an important role in the estimation and
reasoning tasks.

It is important to recall the two caveats mentioned in Sect. 1 regarding experimental
evaluation. First, our focus is on integrated systems, and on reliable and efficient reasoning
and learning in any given dynamic domain with a limited number of labeled training exam-
ples. Benchmark datasets that include a large number of images from different domains
and approaches that do not support the desired coupling between representation, reasoning,
and learning are thus not used for experimental evaluation. Instead, we use a limited num-
ber of real-world and simulated images from the domain under consideration. Second, the
coupling of representation, reasoning, and learning makes it challenging to evaluate cogni-
tive architectures developed for integrated systems [32]. Unlike the analysis of algorithms
developed for specific tasks (e.g., perception, reasoning), it is often difficult to isolate and
analyze the individual components of such architectures. We thus had to use a combina-
tion of strategies based on quantitative and qualitative measures to demonstrate the desired
behaviors.

We begin by describing the experimental setup for evaluating our architecture’s capa-
bilities (Sect. 4.1). We also specify the hypotheses to be evaluated for the: (a) incremental
grounding of spatial relations (Sect. 4.1.1); and (b) the estimation (of occlusion and stabil-
ity), learning (of axioms), and planning tasks (Sect. 4.1.2). We also specify the measures to
be used for evaluation. Section 4.2 describes some execution traces and Sect. 4.3 discusses
the results of experimental evaluation.

4.1 Experimental setup

We first describe the experimental set up, datasets, and the hypotheses for experimen-
tal evaluation. We do so separately for the incremental grounding of spatial relations
(Sect. 4.1.1), and for the estimation, axiom learning, and planning tasks (Sect. 4.1.2).

4.1.1 Incremental grounding

For evaluating the grounding of spatial relations, we used the Table Object Scene Database
(TOSD)?, with 111 scenes for training and 131 scenes for testing. TOSD contains scenes
of real objects on a tabletop for evaluating segmentation algorithms. Many scenes include
complex object configurations, e.g., Fig. 10b, while some scenes have only two objects,
e.g., Fig. 10a. We chose this dataset because it provides a good combination of simple
and complex scenes, and has been used as a benchmark in other work on segmentation
and grounding of spatial relations. Since TOSD does not include spatial relation labels,
we manually labeled the relations between objects in 200 scenes. This manual labeling
can introduce errors (or bias) based on ambiguity in the scene and viewpoint of the per-
son assigning labels, especially in more complex scenes such as Fig. 10b. In an attempt
to minimize any such bias we: (i) used the QSR representation (see Fig. 4 and Sect. 3.1.1)
based on a specific viewpoint (i.e., from the front) for each image to obtain an initial label
for regions around each object; and (ii) assigned labels in two independent sessions (i.e., by

3 https://repo.acin.tuwien.ac.at/tmp/permanent/TOSD.zip

@ Springer

4 Page 24 of 41 Autonomous Agents and Multi-Agent Systems (2023) 37:4

(a) Scene with two objects. (b) Complex scene with multiple objects.

Fig. 10 Examples of images from the TOSD dataset

different people) and ensured correspondence between the sessions. Once the dataset was
ready, we experimentally evaluated the following hypothesis:

H1 The combination of manually-encoded QSR grounding and incrementally-learned
MSR grounding performs better than each grounding used individually, and enables
more effective use of human feedback.

The performance measure for evaluating this hypothesis was the accuracy of the labels
assigned to the spatial relations between objects in the scene under consideration. Note that
the labels assigned manually before the experimental evaluation provided the ground truth,
and the human feedback provided during the experiments was in the form of labels for spa-
tial relations between pairs of objects.

4.1.2 Occlusion estimation, stability estimation, learning, and planning

For evaluating the assignment of occlusion and stability labels to objects and object struc-
tures, we used a real-time physics engine (Bullet physics library) to generate 6000 images.
The objects we simulated included cylinders, spheres, cubes, a duck, and five objects from
the Yale-CMU-Berkeley dataset (apple, pitcher, mustard bottle, mug, and cracker box) [8].
Objects were characterized by different colors, textures, and shapes. We considered three
different arrangements of these objects:

— Towers: images containing 2 — 5 objects stacked on top of each other;

— Spread: images with five objects placed in different relative positions on a flat surface;
and

— Intersection: images with 2 — 4 objects stacked on each other, with the rest (1 —3
objects) on a flat surface.

The vertical alignment of stacked objects was randomized creating either a stable or an
unstable arrangement. The horizontal distance between objects was also randomized, cre-
ating scenes with complex, partial, or no occlusion. Lighting, orientation, camera distance,
camera orientation, and background, were also randomized. An additional 600 labeled sim-
ulated scenes were also created for evaluation, e.g., for the approach to update the strength
of learned axioms. Unlike the use of manual labeling Sect. 4.1.1, the use of a physics

@ Springer

Autonomous Agents and Multi-Agent Systems (2023) 37:4 Page 25 of 41 4

engine enables automation of the assignment of labels for occlusion (e.g., any object with
a partial obstruction of its surfaces when viewed from the front is occluded) and stability
(e.g., any structure whose objects do not retain their arrangement for at least five seconds is
unstable). In addition, in the experimental trials summarized below, the ASP program was
initially missing three state constraints (each) related to stability estimation and occlusion
estimation.

A second dataset was derived from the dataset described above to represent information
about ROIs in the input images. Recall from Sect. 3.3 that the attention mechanism mod-
ule automatically extracts ROIs from input images that could not be labeled using ASP-
based reasoning, by identifying relevant axioms and relations in the ASP program. Given
the object arrangements described above, any ROI in any given image can have up to five
objects. The second dataset automatically assigned labels to different possible ROIs in the
images, which is used as the ground truth. During experimental evaluation, the application
of the attention mechanism on any given image identified objects of interest in this image.
The corresponding ROI from the second dataset was identified and the information from
this ROI was analyzed instead of information from the entire image.

As baselines, the CNN architectures (Alexnet, Lenet) were trained and evaluated on the
first dataset without our reasoning and attention mechanism modules. These were com-
pared against the performance of our architecture for different number of training samples.
Recall that occlusion is estimated for each object (i.e., maximum of five outputs for a ROI)
and stability is estimated for each object structure (i.e., one output for each structure/ROI).
The following hypotheses were evaluated experimentally:

H2 Reasoning with commonsense domain knowledge and the attention mechanism to
guide deep learning improves accuracy in comparison with the baselines.

H3 Reasoning with commonsense domain knowledge and the attention mechanism to
guide deep learning reduces sample complexity and thus the computational effort in
comparison with the baselines.

H4 Our architecture is able to incrementally learn previously unknown axioms, and
using these axioms improves the accuracy of decision making in comparison with
reasoning without the learned axioms.

HS5 Our approach for revising the strength of axioms and merging similar axioms is able
to identify and remove incorrect axioms.

The main performance measures were the: (a) accuracy of the occlusion and stability
labels assigned to objects and objects structures; (b) correctness of the axioms learned and
retained in the ASP program; and (c) correctness of the plans created and executed for the
planning task. For the planning task (considered in second part of H4), we measured the
planning time and the number of optimal, sub-optimal, and incorrect plans computed for
any given goal. A plan is considered to be optimal if it is the shortest sequence of actions
that achieves the desired goal when executed. A plan is sub-optimal if it achieves the
goal when executed but is not the shortest sequence of actions (i.e., it includes additional,
unnecessary actions). A plan is incorrect if it does not result in the goal being achieved on
execution. All plan execution is performed in simulation with limited sensor noise, but the
robot can receive unexpected observations, e.g., see Execution Example 1 below. Also, the
minimal plans for specific goals (i.e., the ground truth) are computed in the initial setup

@ Springer

4 Page 26 of 41 Autonomous Agents and Multi-Agent Systems (2023) 37:4

phase by reasoning separately with complete domain knowledge; if multiple such plans
exist for any given goal, each of them is considered to be a correct choice.

When discussing the quantitative experimental results (in Sect. 4.3), we do not include
error bars in the plots because they did not always provide useful information. For exam-
ple, they ended up making the plots cluttered and, in some experiments, it was not mean-
ingful to average results over repeated trials. Instead, we performed statistical significance
tests wherever appropriate; unless stated otherwise, all claims made below are statistically
significant at the 95% significance level. Before we discuss the quantitative experimental
results, we first describe the working of our architecture using execution traces.

4.2 Execution trace

The following two execution traces illustrate the reasoning, axiom learning, and axiom
merging capabilities of our architecture.

Execution Example 1 [Planning and learning] Consider the scenario showed in
Fig. 6. The robot is given the goal of placing the red can on top of the white block, i.e.,
holds(relation(on, red_can, white_block), I). The agent initially does not know that an
object placed on another object with an irregular surface is unstable, i.e, Statement 9, and
creates the following plan:

Pick up the duck in step 0;

Put down the duck on the table in step 1;

Pick up the white cube in step 2;

Put down the white cube on the duck in step 3;
Pick up the red can in step 4;

Put down the red can on the white cube in step 5.

N W = O

Since the robot is unaware of the state constraint represented by Statement 9, it observes
the unexpected outcome of not having the white cube on the top of the duck after executing
the action to put it there, requiring a new plan at time step 4 (instead of trying to pick up
the red can). However, the robot learns from the unexpected observation and induces the
previously unknown axiom (i.e., Statement 9) from the corresponding decision tree based
on the relational representation. If the robot is then asked to achieve the same goal again
from the same initial conditions, the robot computes a revised plan:

Pick up the duck in step O;

Put down the duck on the table in step 1;

Pick up the white cube in step 2;

Put down the white cube on the table in step 3;
Pick up the red can in step 4;

Put down the red can on the white cube in step 5.

N W= O

The robot now avoids putting down the white cube (and thus the red can) on top of the
duck that has irregular surface; executing this plan results in the goal being achieved. This
example illustrates how learning previously unknown state constraints can help agents cre-
ating better plans. Table 6 shows quantitative results, which were obtained by considering
multiple different scenarios and goals, to further support this conclusion.

@ Springer

Autonomous Agents and Multi-Agent Systems

(2023) 37:4

Page 27 of 41 4

Table 1 Comparison of three
schemes (1) MSR-based
grounding trained with just
human feedback; (2) MSR-based
grounding trained with 200
pairs labeled by the QSR-based
grounding and seven pairs
labeled with human feedback;
and (3) the use of a control node
to choose between the MSR-
based grounding trained as in
#2 and QSR-based grounding.
The combined model supported
by the third scheme provides
significantly better performance
than the other two schemes

Accuracy of labels over test set of 200 object pairs

Training sets ~ MSR (feedback) MSR (QSR + Combined model
feedback)
Sets 1 65% 77% 84%
Sets 2 82% 80% 94%
Sets 3 68% 80% 85%
Sets 4 66% 83% 87%
Sets 5 65% 74% 82%
Sets 6 68% 77% 86%
Sets 7 64% 87% 90%
Sets 8 64% 84% 91%
Sets 9 62% 82% 87%
Sets 10 52% 72% 81%
Mean 65% 79% 87%
Std Dev 7.2% 4.6% 8.3%

Execution Example 2 [Axiom merging and generalization] Consider an agent with the fol-
lowing rule in its knowledge base:

—occluded(A) < not obj_relation(behind, A, B), obj_relation(above, A, C) (10)

This axiom is an over-specification of the axiom encoded by Statement 8(b); specifically,
it contains the unnecessary literal obj_relation(above, A, C). Now, consider the situation in
which the axiom learning approach has managed to extract a correct (ground) version of
this axiom encoded by Statement 8(b). This invokes the axiom merging approach described
in Sect. 3.4, which proceeds as follows.

— The robot compares the newly discovered axiom with the existing over-specified ver-
sion (in Statement 10) to recognize that they are different version of the same axiom.
— The two axioms are placed in different ASP programs and tested (along with other axi-

oms) in a number of different (artificially constructed) scenarios.

— The more general (i.e., concise) version of the axiom achieves better accuracy in these
scenarios and the over-specified version is discarded.
— Recall that the axiom merging approach attributes an initial strength to learned axioms
that decreases over time. If this strength falls bellow a threshold, the corresponding
axiom is discarded. This helps retain only the relevant axioms for subsequent reason-

ing.

This example illustrates the working of Algorithm 1, and shows how it leverages the exist-
ing knowledge to learn and revise axioms.

@ Springer

4 Page 28 of 41 Autonomous Agents and Multi-Agent Systems (2023) 37:4

Fig. 11 Accuracy of Lenet ‘ ‘
and Alexnet with and without 90 - |BLenet .
commonsense reasoning and 0 Lenet(Att) I
attention mechanism. Number @ a0l HAlexnet m |
of background images were = Alexnet(Att)
100. Our architecture improves oy I
. . . © -
accuracy in comparison with the S 701 -
baselines S
<
) ﬂl II II m
50 EL L |
100 200 1000 5000
Training images

4.3 Experimental results

We next describe and discuss quantitative results corresponding to the evaluation of the
hypotheses described in Sect. 4.1. The first set of experiments was designed to test the
incremental grounding of spatial relations (i.e., hypothesis H1) as follows, using the setup
procedure from Sect. 4.1.1, with the results summarized in Table 1:

1. Pairs of objects extracted from the training set of the TOSD were randomly divided into
10 subsets.

2. Seven pairs of objects from each subset were used to train the MSR-based grounding
with human feedback. Each pair represents one of the position-based spatial relations
under consideration (i.e., in, left, right, front, behind, above, below).

3. Seven pairs of objects from each subset labeled with human feedback, and 200 pairs with
relations labeled using the QSR-based grounding, were used to train the MSR-based
grounding.

4. The control node chose either the QSR-based grounding or the MSR-based grounding
trained using the QSR-based grounding and human feedback.

The three schemes (in Steps 2-4 above) were evaluated on 200 object pairs in test scenes
of varying complexity. Table 1 indicates that the MSR-based grounding learned using the
QSR-based grounding makes better use of human feedback than the MSR-based grounding
acquired using just the human feedback, which supports hypothesis H1. Since the same
amount of human feedback was provided with the scheme in Step-2 and the scheme in
Step-3, the difference in performance was due to the fact that the latter scheme bootstraps
off the generic knowledge encoded in the QSR-based grounding. These results indicate that
performance is improved by using prior knowledge, experience, and human feedback, and
an appropriate representation for knowledge.

The accuracy results obtained with the schemes in Steps 2-4 can vary based on the train-
ing and test images. We thus conducted experiments with ten different training sets and
report the performance separately for each of these training sets. The QSR-based ground-
ing is not revised over time; the corresponding average accuracy over the dataset is 70%.
In addition, the control node-based combination of the two groundings (scheme in Step-4)
provides better accuracy than just using the QSR-based approach or just using the MSR-
based approach (scheme in Step-2). When the combined model is used, the relative trust in
the QSR-based grounding and the MSR-based grounding varies depending on the sequence

@ Springer

Autonomous Agents and Multi-Agent Systems (2023) 37:4 Page 29 of 41 4

(@ (b)

Fig. 12 Test images for Lenet and Lenet(Att) architectures: (a) both networks detected the occlusion of the
red cube by green mug, but only the latter correctly estimated the tower’s instability; and (b) both networks
predicted the instability of the tower, but only Lenet(Att) detected the obstruction of green cube by yellow
cylinder (Color figure online)

and number of images used for training and testing. On average, the relative trust in the
MSR-based grounding changes from 0.15 (initial value) to 0.9 (after the entire test dataset
is considered). These results also support hypothesis HI1.

The subsequent experiments evaluated the ability of our architecture to assign occlusion
and stability labels to objects and object structures in images, following the setup described
in Sect. 4.1.2. Specifically, the second set of experiments was designed as follows, with
results summarized in Fig. 11:

1. Training datasets of different sizes (100, 200, 1000, and 5000 images) were used to train
the Lenet and Alexnet networks. The remaining images were used to test the learned
models. Recall that the baseline CNNs do not use the attention mechanism or com-
monsense reasoning; the corresponding results are plotted as “Lenet” and “Alexnet” in
Fig. 11;

2. Another instance of the Lenet and Alexnet networks were trained and tested as part of
our architecture, i.e., as directed by the reasoning module and the attention mechanism
module. This training and testing considered the same images as in Step-1 but automati-
cally identified the relevant ROIs and extracted the corresponding data from the second
dataset described in Sect. 4.1.2. The corresponding results are plotted as “Lenet(Att)”
and “Alexnet(Att)” in Fig. 11.

For each training dataset size, Fig. 11 presents the average performance over ten rep-
etitions of the process described above. The results indicate that reasoning with common-
sense knowledge and using the attention mechanism to guide deep learning improves accu-
racy in comparison with the baselines (based just on the deep networks) for the estimation
of stability and occlusion. Recall that with our architecture, the deep networks are trained
and tested with only relevant ROIs of images that cannot be processed by commonsense
reasoning. This use of reasoning to simplify and guide the learning process, i.e., to trigger
learning only when it is required and limit the search space of the parameters of the deep
network models, helps learn an accurate mapping between inputs and outputs, resulting in a
higher accuracy than the baselines for any given number of training images. The improve-
ment is more pronounced when the training set is smaller, but there is improvement at all
training dataset sizes considered in our experiments. These results support hypothesis H2.

@ Springer

4 Page 30 of 41 Autonomous Agents and Multi-Agent Systems (2023) 37:4

Fig.13 Effect of changing the I Lenet (train 100) [Lenet(Att) (train 100)
number of backgrounds on DLenet (train 5000) DLenet(Att) (train 5000)
I I I

the accuracy of the Lenet and
Lenet(Att) networks for 100 and
5000 training images. Without
the commonsense reasoning and
attention mechanism, variations
in the background influence the
classification accuracy

©
o

@
o

~
o

Accuracy (%)

[=)]
o

a1
o

10 30 100
Background

Figure 12 shows two specific instances of scenes in which the inclusion of common-
sense reasoning and the attention mechanism improves performance. In Fig. 12a, both
Lenet and Lenet(Att) were able to recognize the occlusion of the red cube caused by the
green mug, but only the latter, which uses the attention mechanism and commonsense
reasoning, was able to estimate the instability of the tower. In Fig. 12b, both networks
correctly predicted the instability of the tower. However, only Lenet(Att) was able to
identify the occlusion of the green cube by the yellow can. The classification errors of
baselines architectures are primarily because a similar example had not been observed
during training—this is a known limitation of deep network architectures. The attention
mechanism eliminates the analysis of unnecessary parts of images and focuses only on
the relevant parts, resulting in a more targeted network that provides better classification
accuracy. For these experiments, the CNNs were trained with 1000 images.

The number of different backgrounds (selected randomly) was fixed at 100 for the
experimental results in Fig. 11. The effect of the background on the observed perfor-
mance varies depending on the number of training examples. For instance, we had (on
average) one image that used each background image when the training data had 100
training samples, and we had 50 images per background for the training dataset with
5000 training examples. However, in real scenarios, it is unlikely that we will get a uni-
form distribution of backgrounds; other factors such as lighting, viewpoint, and orienta-
tion will be different in different images. To analyze the effect of different backgrounds,
we explored the use of the Lenet architecture with different number of training exam-
ples (100 and 5000) and different number of backgrounds (30, 50, and 100). As shown
in Fig. 13, varying the background did have an impact on accuracy, which degraded
from =~ 65% for one background per 10 images to ~ 62% when we had one background
per image (i.e., 100 backgrounds for 100 images). The degradation was smaller, i.e.,
~ 1%, for 5000 training examples with number of backgrounds varying from 10 — 100;
however, for 1000 backgrounds (one background per five training images) the accuracy
was reduced by ~ 2%. These results indicate that a network trained with a larger number
of images is less sensitive to variations in background, and that the inclusion of different
backgrounds has a negative effect on the performance of the baseline (e.g., Lenet) archi-
tecture. On the other hand, with the inclusion of commonsense reasoning and the atten-
tion mechanisms, i.e., with Lenet(Att), classification accuracy is similar over a range of

@ Springer

Autonomous Agents and Multi-Agent Systems (2023) 37:4 Page 31 of 41 4

Fig. 14 Accuracy of Lenet and ‘ ‘ ‘ ‘

A?exnet with ang without the 90— Lenet(Att)

attention mechanism and com- —#— Lenet

monsense reasoning. The number 85 1 —— Alexnet(Att) B
of background images was fixed Alexnet

at 100. Any desired accuracy is
achieved with a smaller training
set when commonsense reason-
ing and the attention mechanism
are used

Accuracy (%)
s 8

~
o

[=))
(&1

= <N IS I I S N R S E—
SIS NS S B TG RS IS BN
TESTSESSES

[=)]
o

Q
$
R

Training images

the number of backgrounds, which indicates that our architecture provides robustness to
background variations.

The third set of experiments was designed as follows to evaluate hypothesis H3 on
the computational effort of training the deep networks in our architecture, with the cor-
responding results summarized in Fig. 14:

1. The Lenet and Alexnet networks were trained with training datasets containing between
100and1000 images, in step-sizes of 100. Separate datasets were created for testing.
Recall that the baseline deep networks do not include commonsense reasoning or the
attention mechanism;

2. Another instance of the Lenet and Alexnet networks were trained and tested as part of
our architecture, i.e., as directed by the reasoning module and the attention mechanism
module. This training and testing considered the same images as in Step-1 but automati-
cally identified the relevant ROIs and extracted the corresponding data from the second
dataset described in Sect. 4.1.2. The corresponding results are plotted as “Lenet(Att)”
and “Alexnet(Att)” in Fig. 14.

As before, the values in Fig. 14 for each training dataset size represent the average over
ten repetitions of the process described above. The results indicate that using the atten-
tion mechanism and reasoning with commonsense knowledge helps achieve any desired
level of accuracy with much fewer training examples. The purple dashed line in Fig. 14
indicates that the baseline Lenet needs ~ 1000 images to reach an accuracy of 77%,
whereas our architecture reduces this number to ~ 600. The experiments indicates a
similar difference between the Alexnet and Alexnet(Att) for 80% accuracy—see the dark
green dash-dotted line in Fig. 14. In other words, reasoning with commonsense knowl-
edge about the domain (and robot) attributes and action theories helps guide learning
and limit the search space such that the deep networks models can be trained with fewer
examples. It is challenging to directly and meaningfully quantify the impact on compu-
tational cost in an architecture for integrated systems that couples reasoning and learn-
ing. Even the computation time required for just training the deep networks is a function
of multiple factors such as the processing power available for use and the size of the

@ Springer

4 Page 32 of 41 Autonomous Agents and Multi-Agent Systems (2023) 37:4

Table 2 Precision and recall for learning previously unknown domain axioms (normal, default) using deci-
sion tree induction. It is possible to learn default constraints, but that also introduces errors

Axiom type Precision Recall
Unknown (normal) 98% 100%
Unknown (default) 78% 62%
Fig. 15 Evolution of the 1
strengths of learned axioms
over time (i.e., different learn-
ing cycles); the set of learned 0.8
axioms does not include default =

)
statements g

S 06|

%]

>

o

g 041

o]

=

0.2+
0.1
0 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10
learning cycles

images to be processed for specific tasks. However, the computational effort involved
in training the deep network models is directly proportional to the number of images
needed for training. Our approach for using reasoning to guide learning thus reduces
both the computational and storage requirements, supporting hypothesis H3.

The fourth set of experiments was designed as follows to evaluate hypothesis H4,
i.e., the ability to incrementally learn previously unknown axioms, with the correspond-
ing results summarized in Table 2:

[a—

Ten sets of 50 labeled images were created, as described in Sect. 4.1.2;

2. The axiom learning algorithm was trained with each set five times, using thresholds of
95% and 70% at the leaf nodes of the decision trees. These are the values assigned to
threshold th, in the algorithm described in Algorithm 1 in Sect. 3.4;

3. The precision and recall (averaged over the five repetitions of the ten datasets) were
computed for learning previously unknown axioms, e.g., Statements 8(a), 8(b), and 9,
but excluding defaults and with threshold of th; = 95%. The corresponding results are
summarized as “unknown (normal)” in Table 2;

4. The precision and recall (averaged over the five repetitions of the ten datasets) were

computed for learning the unknown default statements, e.g., Statement 6 with threshold

of th; = 70%. The results are summarized as “unknown (default)” in Table 2.

In the results summarized in Table 2, errors were predominantly variants of the target axi-

oms that were not in the most generic form, i.e., they had irrelevant literals but were not
actually wrong. The lower precision and recall with defaults is understandable because it

@ Springer

Autonomous Agents and Multi-Agent Systems (2023) 37:4 Page 33 of 41 4

Table 3 Learned axioms (excluding defaults) whose strengths are revised over time, as shown in Fig. 15;
"obj_rel" is used as a short form of the relation "obj_relation", and each fluent F is short form for
holds(F, I

Color Axiom Discarded?
stable(A) :- not obj_rel(above,A,B), 7 has_surface(A, irregular). No

I —occluded(A) :- not obj_rel(behind,A,B). No

- - stable(A) :- irregular_below(A). No

- — occluded(A) :- obj_rel(above,A,B). Cycle 8

I — stable(A) :- obj_rel(above,A,B), tower_height(A,N), N>4. Cycle 5

I — stable(A) :- small_base(A), tower_height(A,N), N>4. Cycle 8

- stable(A) :- not obj_rel(above,A,B), obj_rel(behind,A,C). Cycle 6
stable(A) :- tower_height(A,N), N<=1. Cycle 9

is challenging to distinguish between defaults and their exceptions. Although we do not
describe it here, other studies indicated that reasoning with commonsense knowledge and
decision trees can also be used to provide relational descriptions as (at least partial) expla-
nations for the decisions made by the architecture [45].

The fifth set of experiments were designed as follows to evaluate hypothesis H5 on
revising and merging axioms, with results summarized in Figs. 15 and 16 for non-default
axioms and default axioms respectively:

1. Ten sets of 60 labeled scenes were created, as described in Sect. 4.1.2. Each set was
used in one run of ensemble learning (see Algorithm 1);

2. Ineach cycle (and for each set of scenes), 50 images were used for decision tree induc-
tion and axioms extraction. The other 10 images supported the choice of the best version
of similar axioms;

3. The decay factor and axiom strengths were updated, and the axioms with strength below
10% were eliminated (orange dashed line in the figures below); and

4. Steps 2 and 3 were repeated for 10 learning cycles, with the results (reported below)
averaged over the ten sets of labeled scenes (i.e., images) under consideration.

Figure 15 shows how the strength of the eight axioms in Table 3 behaved over 10 cycles.
The top three axioms are shown in green, red, and blue; they are learned or reinforced in
almost every cycle. Note that the first axiom corresponding to the green-colored plot is a
variant of the axiom in Statement 8(a); it states that any object that is not above another
object and does not have an irregular surface is stable. Although this axiom was not re-
learned in learning cycles 7 and 8, it was able to maintain a high value of strength. This is
because it was reinforced in all previous cycles, resulting in a small decay factor. In con-
trast, the other five axioms in Table 3 were not learned or used frequently. The strength of
each of these axioms decreased over time and eventually fell below a threshold, causing the
corresponding axiom to be removed. Figure 15 shows that our approach was able to iden-
tify and retain the correct axioms, and Fig. 16 shows similar results for 10 learned axioms
(that included default statements) in Table 4. Note that among the learned axioms shown
in Table 4, those on lines 4 and 5 (represented by brown and lime green-colored plots in

@ Springer

4 Page 34 of 41 Autonomous Agents and Multi-Agent Systems (2023) 37:4

Fig. 16 Evolution of the 1 [[I
strengths of learned axioms over
time; the set of learned axioms
includes the relevant default 0.8
< O
statements =
)
o
5 06|
%]
e
o
g 04
[}
=
0.2 |
0.1F
0 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10
7 learning cycles

Fig. 16) are different versions of the same axiom. Specifically, the axiom on line 4 has an
extra (unnecessary) literal (holds(obj_relation(front, A, D), 1)). When the similarity was
identified, the axioms were merged by retaining the more general version, and the brown-
colored plot stops after cycle 5 in Fig. 16. These results support hypothesis HS.

The final set of experiments was designed as follows to evaluate the second part of
hypothesis H4, i.e., to evaluate the ability to compute and execute plans to achieve the
desired goal:

(1) Forty initial object configurations were arranged; Fig. 17 shows an illustrative example;

(2) For each initial state, five goals were randomly chosen and encoded in the ASP pro-
gram. The robot reasoned with the existing knowledge to create plans for these 200
combinations (40 initial states, five goals);

(3) The plans were evaluated in terms of the number of optimal, sub-optimal and incorrect
plans, and the time taken to compute the plan; and

(4) Experiments were repeated with and without the learned axioms.

Since the number of plans and planning time vary depending on the initial conditions and
the goal, we conducted paired trials with and without the learned constraints included in the
ASP program used for reasoning. The initial conditions and goal were identical in each paired
trial, and differed between different paired trials. As stated in Sect. 4.1.2, computed plans were
executed in simulation. Then, the number of plans and the planning time with the learned con-
straints were expressed as a fraction of the corresponding values obtained by reasoning with-
out the learned constraints. The average of these fractions over all the trials (i.e., 200 different
combinations of initial state and goal) is reported in Table 5. In addition, we computed the
number of optimal, sub-optimal, and incorrect plans in each trial as a fraction of the total num-
ber of plans in the trial; we did this separately with and without using the learned axioms for
reasoning, and the average over all trials is summarized in Table 6. As described in Sect. 3.2.2,
ASP-based reasoning uses a SAT solver that includes heuristics to compute the plans. The
plans computed can vary depending on the knowledge encoded but the process is not sto-
chastic; the non-monotonic reasoning capability enables uncertainty handling and recovery
from errors. The results in Tables 5 and 6 indicate that using the learned axioms for reason-
ing significantly reduced the search space, resulting in a much smaller number of plans and a

@ Springer

Autonomous Agents and Multi-Agent Systems (2023) 37:4 Page 35 of 41 4

Table 4 Learned axioms (including defaults) whose strengths are revised over time, as shown in Fig. 16;
"obj_rel" is used as a short form of the relation "obj_relation", and each fluent F is short form for
holds(F, I

Color Axioms Discarded?

N —stable(A) :- small_base(A). No

- —stable(A) :- obj_rel(above,A,B). No

N —stable(A) :- tower_height(A,N), N>4. No

R occluded(A) :- obj_rel(behind,A,B), not obj_rel(above,A,C), not obj_ Cycle 5

rel(front,A,D).

occluded(A) :- obj_rel(behind,A,B), not obj_rel(above, A, C). Cycle 6
~occluded(A) :- obj_rel(above,A,B). Cycles 6, 10

R stable(A) :- not obj_rel(above,A,B). No

- stable(A) :- obj_rel(behind,A,B). No
stable(A) :- obj_rel(front,A,B). No
stable(A) :- —small_base(A). Cycle 5

substantial reduction in the planning time. In addition, when the robot used the learned axioms
for reasoning, it resulted in a much smaller number of sub-optimal plans and eliminated all
incorrect plans. Also, each such sub-optimal plan was created only when the corresponding
goal could not be achieved without creating an exception to a default, e.g., stacking an object
on a small base. Without the learned axioms, a larger fraction of the plans are sub-optimal or
incorrect. These results support hypothesis H4.

As a specific example of the planning trials, the goal in one trial was to move the large
red box partially hidden behind the white box and the duck in Fig. 17 such that it is no longer
occluded. With all the axioms the robot found eight plans (all of which were correct); how-
ever, with some axioms missing, the robot found as many as 90 plans, many of which were
incorrect. A plan was considered to be correct if executing it (in simulation) resulted in the
corresponding goal being achieved.

5 Discussion and future work

Deep network architectures and algorithms represent the state of the art for many tasks
in robotics and Al. However, they require large labeled training datasets and considera-
ble computational resources, and it is difficult to understand the decisions made by the
learned networks. The architecture described in this paper draws inspiration from research
in cognitive systems to address these limitations. Instead of focusing of generalizing across
domains, our architecture integrates the complementary principles of deep learning, non-
monotonic logical reasoning with commonsense knowledge, and decision tree induction
of knowledge for reliable and efficient reasoning and learning for any given domain. The
underlying intuition is that commonsense knowledge is available in almost every appli-
cation domain—in fact, some such knowledge is often used implicitly or explicitly to
optimize the parameters of deep networks. Our architecture seeks to fully exploit this
knowledge.

We have experimentally validated our intuition in the context of estimating the occlusion
of objects and the stability of object structures in simulated and real-world images. The
corresponding results highlight the key characteristics and strengths of our architecture:

@ Springer

4 Page 36 of 41 Autonomous Agents and Multi-Agent Systems (2023) 37:4

Fig. 17 Illustrative image from the planning experiments with and without the learned axioms

Table 5 Number of plans and planning time with the learned axioms expressed as a fraction of the values
without the learned axioms. Reasoning with the learned axioms improves performance

Measures Ratio
(with/
without)

Number of plans 0.33

Planning time 0.89

Table 6 Number of optimal,

. . Plans Without With
sub-optimal, and incorrect plans
expressed as a fraction of the ' Optimal 0.15 0.49
total number of plans. Reasoning)
with the learned axioms Sub-optimal 0.31 0.51
improves performance Incorrect 0.54 0

— Interplay between reasoning and learning Inspired by research in cognitive systems
and insights from human cognition, our architecture exploits the interplay between
knowledge-based reasoning and data-driven learning to improve the reliability and effi-
ciency of reasoning and learning. The integrated nature of our architecture makes it dif-
ficult to meaningfully quantify some of these benefits, e.g., the amount of prior knowl-
edge required to achieve a desired accuracy or the impact on computational cost can
vary substantially based on the complexity of the domain and tasks. However, we are
able to demonstrate the desired behavior of our architecture. For example, attention is
focused automatically during reasoning on the knowledge relevant to the corresponding
tasks. Also, reasoning triggers and guides learning; the robot only learns aspects of the
domain not already encoded, or encoded incorrectly, by the existing knowledge, result-
ing in a more accurate mapping between the inputs and outputs using fewer labeled
examples and attributes.

— Robustness to noise and bias The non-monotonic logical reasoning capability of our
architecture provides some robustness to noise and unintentional bias. There is noise in
the information extracted from sensor inputs and labeling by humans (to provide ground
truth) can introduce bias. We incorporated some strategies to minimize the effect of this

@ Springer

Autonomous Agents and Multi-Agent Systems (2023) 37:4 Page 37 of 41 4

noise and bias, e.g., automated the labeling process using complete domain knowledge
in a separate training phase, and considered two independent sessions to assign labels
as described in Sects. 4.1.1 and 4.1.2. Although noise and bias cannot be eliminated
completely, as long as the information from sensor inputs and the labeled provided by
humans are not consistently incorrect, our integrated architecture enables the robot to
recover from the corresponding errors over time.

— Modularity, simplicity, and automation Our architecture promotes modular-
ity and simplifies the design and evaluation of integrated robot systems, particularly
for domains in which large labeled training datasets are not available. It is easier to
understand and modify the observed behavior than with architectures based only on
data-driven learning. Also, there is smooth transfer of control and relevant knowledge
between the components of the architecture. In addition, once the designer has provided
the domain-specific information (e.g., about the robot’s sensors and structure of the
domain), planning, diagnostics, and plan execution can be automated. Furthermore, we
are able to introduce complex (action) theories without increasing the computational
effort, and to use the underlying methodology in different domains.

Our architecture opens up multiple directions for future research that build on the prom-
ising results and address the limitations of the work described in this paper.

— Scaling to more complex scenes First, we will consider more complex scenes with
many objects and clutter, e.g., complex real-world images similar to Fig. 10b from the
TOSD dataset. We will use this expanded dataset for estimating occlusion and stabil-
ity (as described in this paper), and consider additional scene understanding tasks. We
believe that our architecture will scale to such complex scenes and tasks because it rea-
sons with, and learns from, only the relevant information in the scene.

— Interpretability of data-driven methods Second, we will use the interplay between
reasoning and learning to better understand the operation of deep network models. We
have shown in other work that relational logical structures make it easier to explain
the decisions and beliefs of agents making decision automatically [45]. We will thus
attempt to learn axioms and relational descriptions that provide transparency in the
operation of different deep network architectures. Our architecture’s ability to selec-
tively train the deep networks using relevant information will simplify the exploration
of the behavior of these networks.

— Expanded learning of domain knowledge Third, we will enhance the learning capa-
bilities of our architecture to learn other kinds of axioms and knowledge. Recall that
we have only discussed the learning of state constraints in this paper. Other work in our
group has demonstrated the use of relational reinforcement learning, inductive learning,
and limited human feedback for learning different types of axioms [44, 57]. Incorporat-
ing the ability to learn different axioms will contribute to more accurate decision mak-
ing and aid in understanding the data-driven models better.

— Implementation on physical robots Fourth, we will explore the use of our architec-
ture on physical robots assisting humans. Such experiments were beyond the scope of
this paper due to the restrictions imposed by the pandemic. We believe we have the
necessary components to support execution on a physical robot. Specifically, we will
combine the work described in this paper with other work in our group on reasoning
with relevant information at different resolutions [58], as well as providing relational
descriptions as explanations of decisions and beliefs during reasoning and learn-
ing [45].

@ Springer

4 Page 38 of 41 Autonomous Agents and Multi-Agent Systems (2023) 37:4

The long-term objective of this work is to develop architectures for integrated robot sys-
tems that are able to collaborate with and effectively assist humans in complex domains,

Author Contributions TM and MS contributed to the design of the architecture and algorithms; TM imple-
mented the algorithms; TM and MS designed the experiments; TM conducted the experiments and gathered
experimental results; TM and MS analyzed the results; MS and TM wrote the paper.

Funding This work was supported in part by the Asian Office of Aerospace Research and Development
award FA2386-16-1-4071. All opinions and conclusions described in this paper are those of the authors.

Data availability The entire dataset of images is > 100MB and point cloud data is > 3GB in size. A link
to most of the data is provided with our code repository.

Declarations
Conflict of interest Not applicable.
Code availability Please see [43].

Links to own prior work Some text passages in this paper (e.g., discussion of some related work, part of the
description of some components) have been drawn from our prior work published as conference papers [41, 42].

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G., Davis, A., Dean, J.,
Devin, M. et al. (2016). TensorFlow: Large-scale machine learning on heterogeneous distributed sys-
tems. arXiv preprint arXiv:1603.04467https://arxiv.org/abs/1603.04467

2. Assaf, R., Schumann, A. (2019). Explainable deep neural networks for multivariate time series predic-
tions. In International Joint Conference on Artificial Intelligence.

3. Balai, E., Gelfond, M., Zhang, Y. (2013). Towards answer set programming with sorts. In Interna-
tional Conference on Logic Programming and Nonmonotonic Reasoning, Corunna, Spain. https://link.
springer.com/chapter/10.1007/978-3-642-40564-8_14

4. Balduccini, M., Gelfond, M. (2003). Logic programs with consistency-restoring rules. In AAAI Spring
Symposium on Logical Formalization of Commonsense Reasoning, pp 9-18

5. Battaglia, P. W., Hamrick, J. B., & Tenenbaum, J. B. (2013). Simulation as an engine of physical scene
understanding. Proceedings of the National Academy of Sciences, 110, 18327-18332. https://doi.org/
10.1073/pnas. 1306572110

6. Belz, A., Muscat, A., Aberton, M., Benjelloun, S. (2015). Describing spatial relationships between
objects in images in english and french. In Proceedings of the 2015 Workshop on Vision and Language
15 (pp. 104-113).

7. Besold, T.R., Garcez, A.d., Bader, S., Bowman, H., Domingos, P., Hitzler, P., Kiihnberger, K.U.,
Lamb, L.C., Lowd, D., Lima, PM.V., et al. (2017). Neural-symbolic learning and reasoning: A survey
and interpretation. arXiv preprint arXiv:1711.03902

8. Calli, B., Wallsman, A., Singfh, A., Srinivasa, S.S. (2015). Benchmarking in Manipulation Research.
IEEE Robotics and Automation Magazine , 36-52. https://ieeexplore.ieee.org/document/7254318

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1603.04467
https://arxiv.org/abs/1603.04467
https://link.springer.com/chapter/10.1007/978-3-642-40564-8_14
https://link.springer.com/chapter/10.1007/978-3-642-40564-8_14
https://doi.org/10.1073/pnas.1306572110
https://doi.org/10.1073/pnas.1306572110
http://arxiv.org/abs/1711.03902
https://ieeexplore.ieee.org/document/7254318

Autonomous Agents and Multi-Agent Systems (2023) 37:4 Page 39 of 41 4

10.

11.

12.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

Chai, J.Y., Gao, Q., She, L., Yang, S., Saba-Sadiya, S., Xu, G. (2018). Language to action: Towards
interactive task learning with physical agents. In International Joint Conference on Artificial Intelli-
gence (IJCAI), Stockholm, Sweden. https://www.ijcai.org/proceedings/2018/0001.pdf

Charniak, E. (1978). On the use of framed knowledge in language comprehension. Artificial Intelli-
gence, 11(3), 225-265.

Daruna, A., Gupta, M., Sridharan, M., & Chernova, S. (2021). Continual learning for knowledge graph
embeddings. [EEE Robotics and Automation Letters, 6(2), 1128-1135.

Dobnik, S., Ghanimifard, M., Kelleher, J. (2018). Exploring the functional and geometric bias of spa-
tial relations using neural language models. In Proceedings of the Combined Workshop on Spatial Lan-
guage Understanding (SpLU) and Grounded Communication for Robotics (RoboNLP), (pp. 1-11).
Elliott, D., Vries, A.P.D.(2015). Describing Images using Inferred Visual Dependency Representa-
tions. Acl (pp. 42-52).

Ellwart, T., & Kluge, A. (2019). Psychological perspectives on intentional forgetting: An overview of
concepts and literature. KI-Kiinstliche Intelligenz, 33(1), 79-84.

Erdem, E., & Patoglu, V. (2018). Applications of ASP in robotics. Kunstliche Intelligenz, 32(2-3),
143-149.

Erdem, E., Gelfond, M., & Leone, N. (2016). Applications of answer set programming. Al Magazine,
37(3), 53-68.

Fichtl, S., Kraft, D., Kriiger, N., Guerin, F. (2015). Using relational histogram features and action
labelled data to learn preconditions for means-end actions. In /EEE/RSJ International Conference on
Intelligent Robots and Systems (Workshop on Sensorimotor Contingencies for Robotics), Hamburg,
Citeseer.

Fragkiadaki, K., Agrawal, P., Levine, S., Malik, J. (2015). Learning visual predictive models of physics
for playing billiards. arXiv preprint arXiv:1511.07404https://arxiv.org/abs/1511.07404

Garcez, ASd., Lamb, L. C., & Gabbay, D. M. (2007). Connectionist modal logic: Representing modali-
ties in neural networks. Theoretical Computer Science, 371(1-2), 34-53.

Gatsoulis, Y., Alomari, M., Burbridge, C., Dondrup, C., Duckworth, P., Lightbody, P., Hanheide, M.,
Hawes, N., Hogg, D., Cohn, A. (2016). Qsrlib: a software library for online acquisition of qualitative
spatial relations from video. In International Workshop on Qualitative Reasoning at IJCAI, New York,
USA.

Gelfond, M., & Inclezan, D. (2013). Some Properties of System Descriptions of AL,. Journal of
Applied Non-Classical Logics, Special Issue on Equilibrium Logic and Answer Set Programming,
23(1-2), 105-120.

Gelfond, M., & Kahl, Y. (2014). Knowledge representation. reasoning and the design of intelligent
agents. Cambridge: Cambridge University Press.

Gil, Y. (1994). Learning by experimentation: Incremental refinement of incomplete planning domains.
In international conference on machine learning, New Brunswick, USA, (pp. 87-95). https://www.
sciencedirect.com/science/article/pii/B9781558603356500192

Gomez, R., Sridharan, M., & Riley, H. (2021). What do you really want to do? Towards a theory of
intentions for human-robot collaboration. Annals of Mathematics and Artificial Intelligence, Special
Issue on Commonsense Reasoning, 89, 179-208.

Granger, R.H.J. (1980). Adaptive understanding: Correcting erroneous inferences. PhD thesis, Yale
University. Computer Science Department.

Guillame-Bert, M., Broda, K., Garcez, A.d. (2010). First-order logic learning in artificial neural net-
works. In International Joint Conference on Neural Networks, (pp. 1-8).

Jund, P, Eitel, A., Abdo, N., Burgard, W. (2018). Optimization beyond the convolution: generalizing
spatial relations with end-to-end metric learning. In 2018 IEEE International Conference on Robotics
and Automation (ICRA). https://ieeexplore.ieee.org/abstract/document/8460220

Kingma, D.P,, Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.
6980https://arxiv.org/abs/1412.6980

Krishnaswamy, N., Friedman, S., & Pustejovsky, J. (2019). Combining deep learning and qualitative
spatial reasoning to learn complex structures from sparse examples with noise. In AAAI Conference on
Artificial Intelligence, (Vol. 33, pp. 2911-2918).

Krizhevsky, A., Sutskever, I., Hinton, G.E. (2012). Imagenet classification with deep convolutional
neural networks. In Advances in neural information processing systems, (pp. 1097-1105). https://
papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
Laird, J. E., Gluck, K., Anderson, J., Forbus, K. D., Jenkins, O. C., Lebiere, C., Salvucci, D., Scheutz,
M., Thomaz, A., Trafton, G., Wray, R. E., Mohan, S., & Kirk, J. R. (2017). Interactive task learning.
IEEE Intelligent Systems, 32(4), 6-21.

@ Springer

https://www.ijcai.org/proceedings/2018/0001.pdf
http://arxiv.org/abs/1511.07404
https://arxiv.org/abs/1511.07404
https://www.sciencedirect.com/science/article/pii/B9781558603356500192
https://www.sciencedirect.com/science/article/pii/B9781558603356500192
https://ieeexplore.ieee.org/abstract/document/8460220
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

4

Page 40 of 41 Autonomous Agents and Multi-Agent Systems (2023) 37:4

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Langley, P. (2017). Progress and challenges in research on cognitive architectures. In The Thirty-first
AAAI Conference on Artificial Intelligence, San Francisco, USA

Law, M., Russo, A., & Broda, K. (2018). The complexity and generality of learning answer set pro-
grams. Artificial Intelligence, 259, 110-146.

Law, M., Russo, A., Broda, K. (2020). The ILASP system for inductive learning of answer set pro-
gram. Association for logic programming newsletter.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11), 2278-2324.

Lerer, A., Gross, S., Fergus, R. (2016). Learning physical intuition of block towers by example. arXiv
preprint arXiv:1603.01312https://arxiv.org/abs/1603.01312

Li, W., Leonardis, A., Fritz, M. (2016). Visual stability prediction and its application to manipulation.
arXiv preprint arXiv:1609.04861https://arxiv.org/abs/1609.04861

Manhaeve, R., Dumancic, S., Kimmig, A., Demeester, T., Raedt, L.D .(2018). DeepProbLog: Neural
probabilistic logic programming. In advances in neural information processing systems

Mao, J., Gan, C., Kohli, P., Tenenbaum, J. B., Wu, J. (2019). The Neuro-symbolic concept learner:
Interpreting scenes, words, and sentences from natural supervision. In International Conference on
Learning Representations

Mees, O., Abdo, N., Mazuran, M., Burgard, W. (2017). Metric learning for generalizing spatial rela-
tions to new objects. In IEEE/RSJ international conference on intelligent robots and systems, (pp.
3175-3182).

Mota, T., Sridharan, M. (2018).Incrementally grounding expressions for spatial relations between
objects. In International Joint Conference on Artificial Intelligence, Stockholm, Sweden

Mota, T., Sridharan, M .(2019a). Commonsense reasoning and knowledge acquisition to guide deep
learning on robots. In Robotics Science and Systems, Freiburg, Germany

Mota, T., Sridharan, M. (2019b). Software related to the paper. https://github.com/tmot987/Scenes-
Understanding

Mota, T., Sridharan, M. (2020). Axiom learning and belief tracing for transparent decision making
in robotics. In AAAI Fall Symposium on Artificial Intelligence for Human-Robot Interaction: Trust
and Explainability in Artificial Intelligence for Human-Robot Interaction

Mota, T., Sridharan, M., & Leonardis, A. (2021). Integrated commonsense reasoning and deep
learning for transparent decision making in robotics. Springer Nature Computer Science, 2(242),
1-18.

Mottaghi, R., Rastegari, M., Gupta, A., Farhadi, A. (2016). "What happens if.." learning to predict
the effect of forces in images. In European Conference on Computer Vision, Springer, pp 269-285
https://link.springer.com/chapter/10.1007/978-3-319-46493-0_17

Neelakantan, A., Le, Q.V., Sutskever, 1. (2015). Neural programmer: Inducing latent programs with
gradient descent. arXiv preprint arXiv:1511.04834https://arxiv.org/pdf/1511.04834.pdf

Paul, R., Arkin, J., Aksaray, D., Roy, N., & Howard, T. M. (2018). Efficient grounding of abstract
spatial concepts for natural language interaction with robot platforms. The International Journal of
Robotics Research, 37(10), 1269-1299.

Pronobis, A., Rao, R. (2017). Learning deep generative spatial models for mobile robots. In RSS
Workshop on Spatial-Semantic Representations in Robotics, Cambridge, USA.

Purushwalkam, S., Gupta, A., Kaufman, D., Russell, B. (2019). Bounce and learn: Modeling scene
dynamics with real-world bounces. In International Conference on Learning Representations.
Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81-106.

Riley, H., & Sridharan, M. (2019). Integrating non-monotonic logical reasoning and inductive learning
with deep learning for explainable visual question answering. Frontiers in Robotics and Al, special
issue on Combining Symbolic Reasoning and Data-Driven Learning for Decision-Making, 6, 20.
Samek, W., Wiegand, T., & Muller, K. R. (2017). Explainable artificial intelligence: Understand-
ing, visualizing and interpreting deep learning models. ITU Journal: ICT discoveries: The impact
of artificial intelligence on communication networks and services, 1, 1-10.

Santoro, A., Raposo, D., Barrett, D.G., Malinowski, M., Pascanu, R., Battaglia, P., Lillicrap, T.
(2017). A simple neural network module for relational reasoning. In Advances in neural informa-
tion processing systems, (pp. 4967-4976). http://papers.nips.cc/paper/7082-a-simple-neural-netwo
rk-module-for-relational-reasoning

Shridhar, M., Hsu, D. (2017). Grounding spatio-semantic referring expressions for human-robot
interaction. In RSS Workshop on Spatial-Semantic Representations in Robotics

Simon, H. A., & Lea, G. (1974). Problem solving and rule induction: A unified view. Knowledge
and Cognition (pp. 15-26). Oxford, UK: Lawrence Eribaum.

Springer

http://arxiv.org/abs/1603.01312
https://arxiv.org/abs/1603.01312
http://arxiv.org/abs/1609.04861
https://arxiv.org/abs/1609.04861
https://github.com/tmot987/Scenes-Understanding
https://github.com/tmot987/Scenes-Understanding
https://link.springer.com/chapter/10.1007/978-3-319-46493-0_17
http://arxiv.org/abs/1511.04834
https://arxiv.org/pdf/1511.04834.pdf
http://papers.nips.cc/paper/7082-a-simple-neural-network-module-for-relational-reasoning
http://papers.nips.cc/paper/7082-a-simple-neural-network-module-for-relational-reasoning

Autonomous Agents and Multi-Agent Systems (2023) 37:4 Page 41 of 41 4

57.

58.

59.

60.

61.

62.

63.

64.
65.

66.

67.

68.

69.

70.

71.

Sridharan, M., & Meadows, B. (2018). Knowledge representation and interactive learning of
domain knowledge for human-robot collaboration. Advances in Cognitive Systems, 7, 77-96.
Sridharan, M., Gelfond, M., Zhang, S., & Wyatt, J. (2019). REBA: A refinement-based architecture
for knowledge representation and reasoning in robotics. Journal of Artificial Intelligence Research,
65, 87-180.

Stewart, R., Ermon, S. (2017). Label-free supervision of neural networks with physics and domain
knowledge. In Thirty-First AAAI Conference on Artificial Intelligence. http://phys.csail.mit.edu/
papers/16.pdf

Siinderhauf, N., Brock, O., Scheirer, W., Hadsell, R., Fox, D., Leitner, J., Upcroft, B., Abbeel, P.,
Burgard, W., Milford, M., et al. (2018). The limits and potentials of deep learning for robotics. The
International Journal of Robotics Research, 37(4-5), 405-420.

Thippur, A., Burbridge, C., Kunze, L., Alberti, M., Folkesson, J., Jensfelt, P., Hawes, N. (2015). A
Comparison of Qualitative and Metric Spatial Relation Models for Scene Understanding. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence. (Section 4):1632-1640

Ulinski, M., Coyne, B., Hirschberg, J. (2019). Spatialnet: A declarative resource for spatial rela-
tions. In proceedings of the combined workshop on spatial language understanding (splu) and
grounded communication for robotics (robonlp), (pp. 61-70)

Wagner, M., Basevi, H., Shetty, R., Li, W., Malinowski, M., Fritz, M., Leonardis, A. (2018). Answer-
ing visual What-If questions: From actions to predicted scene descriptions. In Visual Learning and
Embodied Agents in Simulation Environments (VLEASE) Workshop at ECCV, Munich, Germany
Wooldridge, M. (2009). An introduction to multiagent systems (2nd ed.). Wiley: Hoboken.

Wu, J., Yildirim, I., Lim, J.J., Freeman, B., Tenenbaum, J. (2015). Galileo: Perceiving physical
object properties by integrating a physics engine with deep learning. In Advances in neural infor-
mation processing systems, (pp. 127-135). https://papers.nips.cc/paper/5780-galileo-perceiving-
physical-object-properties-by-integrating-a-physics-engine-with-deep-learning

Ye, J., Hua, K.A. (2013). Exploiting depth camera for 3D spatial relationship interpretation. In Pro-
ceedings of the 4th ACM Multimedia Systems Conference on - MMSys (vol. 13 pp. 151-161).

Yi, K., Wu, J,, Gan, C., Torralba, A., Kohli, P., Tenenbaum, J.B. (2018). Neural-symbolic VQA: disen-
tangling reasoning from vision and language understanding. In Neural Information Processing Systems
Yi, K., Gan, C., Li, Y., Kohli, P., Wu, J., Torralba, A., Tenenbaum, J.B. (2020). CLEVRER: CoL-
lision events for video representation and reasoning. In International Conference on Learning
Representations

Zampogiannis, K., Yang, Y., Ferm, C., Aloimonos, Y. (2015). Learning the spatial semantics of manip-
ulation actions through preposition grounding. In International Conference on Robotics and Automa-
tion, (pp. 1389-1396).

Zhang, R., Wu, J., Zhang, C., Freeman, W.T., Tenenbaum, J.B. (2016). A comparative evaluation of
approximate probabilistic simulation and deep neural networks as accounts of human physical scene
understanding. arXiv preprint arXiv:1605.01138https://arxiv.org/abs/1605.01138

Ziaeetabar, F., Aksoy, E.E., Worgotter, F., Tamosiunaite, M. (2017). Semantic analysis of manipu-
lation actions using spatial relations. In International Conference on Robotics and Automation, (pp.
4612-4619)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

http://phys.csail.mit.edu/papers/16.pdf
http://phys.csail.mit.edu/papers/16.pdf
https://papers.nips.cc/paper/5780-galileo-perceiving-physical-object-properties-by-integrating-a-physics-engine-with-deep-learning
https://papers.nips.cc/paper/5780-galileo-perceiving-physical-object-properties-by-integrating-a-physics-engine-with-deep-learning
http://arxiv.org/abs/1605.01138
https://arxiv.org/abs/1605.01138

	Towards combining commonsense reasoning and knowledge acquisition to guide deep learning
	Abstract
	1 Introduction
	2 Related work
	3 Reasoning and learning architecture
	3.1 Grounding of spatial relations
	3.1.1 Qualitative spatial representation
	3.1.2 Metric spatial representation
	3.1.3 Combined QSR-MSR model

	3.2 Knowledge representation and reasoning
	3.2.1 Action language
	3.2.2 Knowledge representation and reasoning in ASP

	3.3 Attention mechanism and deep learning
	3.4 Decision tree induction and axiom merging

	4 Experimental setup and results
	4.1 Experimental setup
	4.1.1 Incremental grounding
	4.1.2 Occlusion estimation, stability estimation, learning, and planning

	4.2 Execution trace
	4.3 Experimental results

	5 Discussion and future work
	References

