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Implications of spatio-temporal data aggregation on
short-term traffic prediction using machine learning

algorithms
Rivindu Weerasekera, Mohan Sridharan, and Prakash Ranjitkar

Abstract—Short-term traffic prediction, which uses historical
data collected by traffic management agencies to construct
models that can reliably predict the flow of traffic at specific
locations in road networks, are a key component Intelligent
Transportation Systems. Despite being a mature field, short-term
traffic prediction still poses some open problems. For instance,
it is not clear how the data resolution effects accuracy and
responsiveness of models to non-recurring congestion, especially
when considering spatio-temporal dependencies. In this paper, we
evaluate the ability of Artifical Neural Networks, Random Forests
and Support Vector Regression algorithms to reliably model
traffic flow and their ability to be responsiveness to unexpected
events such as accidents. We also look at different feature
selection methods and examine the spatio-temporal attributes
that most influence the reliability of these models. We find that
aggregation is not necessary to achieve good performance for
multivariate spatio-temporal models. We also find that feature
selection based on Recursive Feature Elimination outperforms
linear correlation based feature selection.

I. INTRODUCTION

TRAFFIC congestion results in significant monetary losses
in countries around the world, with the cost of traffic

congestion in 2014 estimated to be $160 billion in the US
alone [Schrank et al., 2015]. A significant amount of effort has
been put into reducing congestion in cities. In many cities, it is
becoming impractical to build new roads, or to expand existing
roads, and it is becoming all the more important to make
best use of the available resources. Intelligent Transportation
Systems, Advanced Traffic Management Systems, and route
guidance systems, use real-time data of traffic flow gathered
from various sensors. In such systems, short-term traffic pre-
diction, which helps make decisions based on predictions of
traffic in the near-future, is more useful than just using the real-
time data of traffic conditions. The field of short-term traffic
prediction is not new. It is over 30 years old with early work
utilizing Box-Jenkins ARIMA methods [Ahmed and Cook,
1979]. Recent approaches still use variations of the original
ARIMA models (such as Seasonal ARIMA [Smith et al., 2002,
Williams and Hoel, 2003]), but there has been a shift towards
using machine learning algorithms to address the traffic predic-
tion challenges [Karlaftis and Vlahogianni, 2011]. Although
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such models based on machine learning algorithms have
been shown to be more reliable than the traditional ARIMA
models, there are still many open problems [Vlahogianni
et al., 2014]. These include building responsive algorithms
that are able to predict non-recurring congestion, determining
the optimum data-resolution, and identifying and modeling the
important spatio-temporal dependencies in traffic data. The
study described in this paper is a step towards addressing these
challenges. We make the following key contributions:

• Explore the effect of resolution of multivariate spatio-
temporal input data on the accuracy of the predictions
made by the models built using three machine learning
algorithms, Artificial Neural Networks, Support Vector
Regression, and Random Forests.

• Evaluate the responsiveness of these predictive models to
non-recurring congestion events. Specifically, we study
the reliability of the predictions provided by these models
in the presence of unexpected events such as accidents.

• Identify and examine the traffic attributes that most in-
fluence the performance of these models and their ability
to model the complex, spatio-temporal dependencies in
traffic data.

We illustrate these contributions using historical data of
volume and occupancy measurements on a highway in Auck-
land (New Zealand). We first motivate the need for the
proposed study by discussing related work in Section II. Next,
Section III describes the dataset and methodology used to
build and evaluate the predictive models, and Section IV
describes the machine learning algorithms used to build these
models. Section V describes the hypotheses and measures
used for experimental evaluation, and Section VI analyzes
the corresponding experimental results. Finally, Section VII
discusses the conclusions and directions for future work.

II. BACKGROUND

Many algorithms have been developed for short-term traffic
prediction, which is a complex problem influenced by a variety
of factors such as the resolution (i.e., the aggregation level) of
the input and output data, and spatio-temporal dynamics. We
review some of the related work in this section.

Although studies in the existing literature predominantly use
data aggregated over 5min and 15min intervals, some prior
studies have investigated the effect of data resolution on the
reliability of the predictions provided by the corresponding
models; the results have, however, been inconclusive. For



SUBMITTED TO THE JOURNAL OF ADVANCED TRANSPORTATION 2

instance, Park et al. [2009] investigated the effect of aggre-
gation on travel time prediction, and considered aggregation
levels from 2min to 60min in the context of an ARIMA
model. They concluded that higher levels of aggregation were
required to forecast route travel time than when forecasting
link travel times. Dougherty and Cobbett [1997] constructed
a Neural Network model for making predictions, and found
that data aggregated over 5min intervals gives better results
than data aggregated over 1min intervals. Vlahogianni and
Karlaftis [2011] looked at aggregation levels and, although
they found that temporal aggregation may distort critical traffic
flow information, they also concluded that further research was
necessary to determine the optimum aggregation level(s).

The use of high-resolution data is challenging for multiple
reasons. First, for some statistical models used for short-term
traffic state prediction, it is necessary to ensure that the input
data and the output data have the same aggregation level,
but this constraint can be relaxed when machine learning
algorithms are used to build predictive models. Second, while
research shows that the high-resolution data (as expected)
includes more accurate measurements, e.g., Martin et al.
[2003] state that inductive loops are “one of the most accu-
rate count and presence detectors”, it also makes the noise
in sensor measurements more distinct. Although data from
these inductive loops can represent individual vehicles in the
network, computational models developed to capture the flow
of vehicles between segments or links in the network need
to be robust to such noise and be able to capture spatio-
temporal dynamics in order to exploit the information encoded
in high-resolution data. Studies based on univariate time-
series methods often perform aggregation to smooth out the
variability in higher resolution data [Vlahogianni and Karlaftis,
2011], however these data smoothing techniques result in loss
of information (and sensitivity) and make it difficult for the
corresponding models to capture the spatio-temporal dynamics
of traffic flow. In the study reported in this paper, we fixed
the resolution of the output data (i.e., for the predictions
being made) and examined the effect of different input data
aggregation levels on the prediction accuracy.

There has been considerable research on analyzing the ef-
fects of spatio-temporal dynamics. For instance, Kamarianakis
and Prastacos [2003] used a Spatio-Temporal Autoregressive
Moving Average (STARIMA) model to incorporate data from
links upstream to the link of interest in their prediction model,
and Chandra and Al-Deek [2009] found that vector auto-
regressive models that incorporate data from links neighboring
the link of interest perform better than ARIMA models that
do not consider the data from the neighboring links. Yang
et al. [2015] found that a sparse selection of neighbors chosen
based on the level of correlation with the link of interest
improves performance. Min and Wynter [2011] showed that a
multivariate spatio-temporal model with templates was able
to provide very good prediction accuracy. However, these
models depend on fixed correlations matrices that are modified
infrequently. As a result it is difficult for these models to track
changes or to capture sudden (or significant) changes between
congested and free-flowing traffic conditions.

In addition to the approaches that build on the ARIMA

models [Ahmed and Cook, 1979, Kamarianakis and Prastacos,
2003, Min and Wynter, 2011, Smith et al., 2002, Williams
and Hoel, 2003], models based on machine learning and
probabilistic estimation algorithms have also been explored
because they are well-suited to model the complex spatio-
temporal relationships in data. Popular approaches include
Artificial Neural Networks (ANN) [Vlahogianni et al., 2005,
Dunne and Ghosh, 2013, Sun et al., 2012, Ban et al., 2016,
Wang et al., 2016], Support Vector Machines (SVM) [Castro-
Neto et al., 2009, Jeong et al., 2013, Asif et al., 2014,
Cheng et al., 2016, Yao et al., 2016], k-Nearest Neighbors
(kNN) [Davis and Nihan, 1991, Chang et al., 2012, Oh et al.,
2015b, Cai et al., 2016, Xia et al., 2016], Kalman Filters [Oku-
tani and Stephanedes, 1984, Xie et al., 2007, Guo et al.,
2014], Bayesian Networks [Ghosh et al., 2007, Horvitz et al.,
2005, Pascale and Nicoli, 2011], and Random Forests [Zarei
et al., 2013, Hamner, 2010]. For instance, existing work has
explored various ANN configurations. Wang et al. [2016]
developed a space-time delay neural network (STDNN) that
included 22 links in central London and showed that this
model outperforms a STARIMA model. Hodge et al. [2014]
used a binary neural network that incorporates spatio-temporal
data for traffic prediction. Vlahogianni et al. [2005] used a
neural network model optimized with genetic algorithms and
found that incorporating spatial and temporal data was helpful
for multi-step predictions. More recently, there have been
efforts to use deep neural network architectures including deep
belief networks [Huang et al., 2014, Soua et al., 2016] and
stacked auto-encoders [Lv et al., 2015].

There is no agreement in the literature regarding the number
of upstream and downstream links (neighboring any link of in-
terest) that should be considered while building the predictive
models. While some algorithms consider just one upstream
or downstream link [Xia et al., 2016, Yao et al., 2016],
others consider a variable number of upstream and downstream
links [Hodge et al., 2014]. For an extensive review of spatio-
temporal forecasting, see Ermagun and Levinson [2018]. As
noted in Vlahogianni et al. [2014], capturing spatial attributes
in traffic data from a freeway is still an open problem.

Most existing work on short-term traffic prediction focus
on typical conditions [Castro-Neto et al., 2009]. Traffic is
(on average) inherently periodic with daily or weekly patterns
and many studies exploit this periodicity in their algorithms.
However, accurate predictions are arguably more useful in
situations of non-recurring congestion such as accidents where
periodic patterns do not hold. Of the studies that do not leave
out non-recurring congestion in their input data, a common
approach is to create multiple models to deal with different
conditions. For example, Dunne and Ghosh [2011] used a
model with nonlinear pre-processing in cases of congestion.
Fusco et al. [2016] reported good performance during non-
recurring congestion with a SARMA model, while a Bayesian
Network performed better during recurring congestion. An
online-SVR based model was found to accurately predict non-
recurring congestion by Castro-Neto et al. [2009]. Pan et al.
[2013] also highlight some of the challenges in capturing mov-
ing bottlenecks and non-recurring congestion. See Vlahogianni
et al. [2014], Ermagun and Levinson [2018], Oh et al. [2015a,
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2018] for a more comprehensive overview of the existing
literature.

In this study, we explore three machine learning algo-
rithms that have demonstrated the ability to incorporate spatio-
temporal data in predictive models built for intelligent trans-
portation and other applications. Specifically, we explore:
(1) Artificial Neural Networks (ANN); (2) Support Vector
Regression (SVR); and (3) Random Forests (RF). We chose
ANN and SVR because they are the most widely used machine
learning algorithms used to build predictive models in the
literature. We chose Random Forests since it is an ensemble
learning algorithm that requires a small number of parameters
to be tuned. We would like to highlight that the aim of this
study was not to introduce new algorithms. This study makes
three key contributions. First, we examine how the predictive
accuracy of models based on these algorithms changes as a
function of the aggregation level of the input data. Second,
we explore the ability of these models to respond accurately
to non-recurring congestion conditions. Third, we identify the
attributes that most influence the predictive accuracy of these
models, to identify the important spatio-temporal dependencies
in the traffic data and establish the ability of machine learning
algorithms to model these dependencies.

III. METHODOLOGY

This section introduces the study area and data, and provides
a mathematical formulation of the short-term traffic prediction
problem (Section III-A). This is followed by a description
of the data pre-processing steps used in the proposed study
(Section III-B).

A. Study Area and Mathematical Formulation

This study was carried out in a 30km section of State
Highway 1 (SH1) in Auckland, New Zealand. We considered
data from 45 segments along SH1 from the suburb of Papakura
towards Auckland City (see Figure 1). On average there are
3 lanes of roadway in each direction and we only considered
lanes going northbound in this study. The average length of
a segment was 674m, with the length varying between 52m
and 2252m.

Traffic can be measured in different ways. The most com-
mon sensor used to collect traffic data is the Inductive Loop
Detector, which comes in different forms. Dual loop detectors,
which have two inductive loops placed a short-distance apart,
are able to accurately capture the speed of a vehicle going over
them, the volume (i.e., count of vehicles passing the detector),
and occupancy (i.e., the amount of time a vehicle was over
the detector). However, most of the loops in many cities
(including Auckland) are single loop detectors, which can
measure volume and occupancy, but can only estimate vehicle
speed as a function of these measured values and the average
effective vehicle length. Research shows that measuring speed
with a constant effective vehicle length can lead to errors of up
to 50% [Jia et al., 2001]. Using these derived speed estimates
for making decisions can lead to misleading results—we thus
did not use speed data in this study.

The fundamental diagram of traffic flow established by
traffic engineers considers the relationship between three key
traffic variables (1) flow (volume); (2) density; and (3) speed.
Since density is difficult to measure directly, occupancy is
frequently used as a substitute [Ryus et al., 2010]. Entirely
describing the current state of traffic is not possible using
only information about flow. For example, if 200 vehicles pass
over a detector during a 5min interval, this could correspond
to free-flow conditions during early mornings and evenings,
but it could also correspond to highly congested conditions
due to an accident during peak hours. Unlike many existing
studies that have only considered flow variables when making
predictions, we consider both volume and occupancy because
both of these variables provide useful information.

For all the predictive models, the input vector X(s, t) takes
the form of:

X(s, t) =

[V 1
t−T , O1

t−T , · · · , V s
t−T , Os

t−T , · · · , V S
t−T , OS

t−T ,
...

...
...

...
...

...
...

...
V 1
t−1, O1

t−1, · · · , V s
t−1, Os

t−1, · · · , V S
t−1, OS

t−1,
V 1
t , O1

t , · · · , V s
t , Os

t , · · · , V S
t , OS

t ]
(1)

where V s
t and Os

t denote volume and occupancy (respec-
tively) of segment s at time-step t, S is the total number
of segments, and T is the total number of historical time-
steps considered. The output of each such model is the
volume or occupancy aggregated over the subsequent five-
minute interval for each specific segment s of interest. The
goal of each algorithm used to build a predictive model is to
find a functional relationship between the inputs and outputs.
For instance, if traffic volume is to be predicted, the output
V s
t+5min of the models is given by:

V s
t+5min = f(X(s, t) ) (2)

The output is thus a function of the input vector. The ma-
chine learning algorithms build models that approximate this
function to predict the output for any given input.

B. Data Processing

Data from 30 days of April 2016 was collected for 45 seg-
ments (S = 45) on the motorway. In order to get segment level
data from loop detectors, individual values were aggregated
across the lanes (volume data was summed and occupancy
was averaged) for each segment and at each point in time.
We use the volume and occupancy values of all segments
in the past 20 time-steps (T = 20), resulting in an input
vector with 1800 attributes. To ensure that each segment has
data from a reasonable number of upstream and downstream
segments, predictions are only made for segments 20 − 25
on the motorway (see Figure 1). Recall that volume and
occupancy readings were reported every 30 seconds which
correspond to 86400 time-steps. A naive aggregation would
have resulted in smaller datasets of 8640 samples and 2880
samples for 5min and 15min aggregation respectively. To
minimize the imbalance in the size of the datasets, a sliding
window approach was used, resulting in a new sample being
generated every 30 seconds for all the aggregation levels. The
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Fig. 1. Study area with 45 road segments on State Highway 1 in Auckland.

final size of the input dataset, with 20 time-steps included in
each input sample, was thus 86370 samples for 30s resolution,
86190 for 5min, and 85790 for 15min aggregation. Also, to
ensure a fair comparison, the output is aggregated over the
same time period for each model for all input time resolutions,
i.e., the amount of time represented in the input depends on the
resolution of the data, whereas in the output, all models will
consider the aggregated values over the interval from when the
final input reading was taken to five minutes past this time.

The dataset was pre-processed to remove some extreme
values that were highly unlikely. First, we used winsoriza-
tion [Ghosh and Vogt, 2012] to set the upper bound of the
values in the dataset. Winsorization, a common approach for
dealing with outliers, replaces all values above and below a
certain percentile with the value of that percentile. In this
paper, we set the upper percentile to 99.97% so that all
values above this percentile are replaced by the value of this
percentile. If a standard normal distribution is assumed, this
choice of upper bound corresponds to clipping values that are
≥ 3.5 standard deviations from the mean. Figure 2 shows
Segment 23 of the data before and after winsorization. Second,
we scaled each attribute in the input data to lie ∈ [0, 1]—
this scaling was especially important for producing stable
results with Support Vector Regression and Artificial Neural
Networks. Scaling was performed using the training data, and
the corresponding scaling constants were applied to the test
data. The occupancy values always stayed between 0% and
100% in the input and output, and no additional processing
was needed to constrain the data to this range. Non-stationary
time-series data is typically transformed to stationary data
before applying time-series models. However, traffic data is

Fig. 2. Segment 23 before and after winsorization

considered to be cyclo-stationary and we model short-term
traffic prediction as a multivariate pattern recognition problem
with all data assumed to arise from the same underlying
distribution. Thus, we did not perform any transformations to
make the data stationary. Also, although the periodic nature of
traffic can be exploited to improve the prediction accuracy of
the learned models, doing so will make it difficult to reliably
and quickly identify and respond to non-recurring congestion
conditions.

Training of the models was accomplished using the first 20
days (57600 samples) of data, and the remaining 10 days of
data were used for testing. The parameters of each model were
tuned using the training dataset. Next, we briefly discuss the
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algorithms that we used to build the models for short-term
traffic prediction.

IV. MACHINE LEARNING ALGORITHMS

In this section, we describe the three machine learning
algorithms used to build the predictive models explored in
this paper: Artificial Neural Networks (Section IV-A), Sup-
port Vector Regression (Section IV-B), and Random Forests
(Section IV-C).

A. Artificial Neural Networks

Feedforward neural networks or multilayer perceptrons are
the most common Artificial Neural Network (ANN) models. A
neural network is composed of neurons arranged in layers with
each layer containing one or more neurons. Each neuron is
connected to all the neurons in its adjacent layers, and neurons
within a layer are not connected. Each neuron takes a linear
weighted sum of all its inputs x (from the layer before it) and
passes it through a nonlinear activation function σ to produce
the output y:

y = σ

(
N∑
i=1

(wi · xi)

)
(3)

Each such output y is then used as an input to the next
layer of neurons until the final (i.e., output) layer is reached.
The weights associated with each neuron may be initialized
randomly to enable each neuron to potentially learn a different
function of its inputs.

The weights wi associated with each neuron are the param-
eters defining the neural network model, and these parameters
are estimated by minimizing a loss function that measures
the difference between the output values estimated by the
network and the ground truth values included in the training
data. For regression problems, the squared error between the
estimated and ground truth output values is generally used as
the loss function. The back-propagation algorithm is then used
to calculate the gradient of this error, and to propagate this
gradient back through the network (towards the input layer)
to update the weights of each neuron by gradient descent.
Stochastic gradient descent algorithms are used widely to
update the weights, and we used a stochastic gradient-based
optimizer called Adam that is computationally efficient and
is known to scale well to larger datasets [Kingma and Ba,
2014]. All parameters of this optimizer were set to their default
values.

Although the nonlinear activation function in a neural
network has traditionally been the sigmoid function, em-
pirical results have indicated that the rectified linear unit
(ReLU) activation function improves the ability to model
complex relationships and reduces the time taken to train the
model [Krizhevsky et al., 2012]. We thus used the ReLU
activation function in a network with three hidden layers, each
with 150 neurons. We performed 400 iterations of learning
with mini-batches of data with 200 samples (each).

B. Support Vector Regression

For classification problems, a Support Vector Machine com-
putes a decision boundary that maximize the margin between
this boundary and the closest data sample. Support Vector
Regression (SVR) uses a similar approach for regression
problems—errors corresponding to estimated values within an
ε distance from the ground truth values are ignored. More
specifically, given a set of training data, the objective is to
find a function f(x) that produces at most ε deviation from
the actual target values yi for the the training data, and is as
flat as possible [Smola and Schölkopf, 2004]. For instance, a
linear function f(x) = wTx+b is flat if it has a small w—this
can be accomplished by minimizing ||w||2. Since a function
that satisfies all the required constraints C may not exist, some
slack variables (ξ, ξ∗) are introduced to allow for some errors.
We then obtain the following formulation for SVR:

minimize
{1

2
||w||2 + C

l∑
i=1

(ξ + ξ∗)
}

subject to (4)

yi − wTxi − b ≤ ε+ ξi

wTxi + b− yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0

We can also incorporate nonlinear kernel functions to extend
SVR to nonlinear problems. Popular kernels include linear
kernel and the Radial Basis Function (RBF) kernel, which
transform the input sample into a higher dimensional space
that results in better separation (for classification) or estimation
of values (for regression). We experimentally chose to use a
linear kernel for SVR because it provided better results.

C. Random Forests

Random Forest (RF) [Breiman, 2001] is an ensemble
method for building classification or regression models. En-
semble methods combine predictions from multiple models to
improve accuracy. In an RF, the ensemble is a set of decision
trees trained on B subsets of the full dataset. Each subset
is selected by a technique known as bagging or bootstrap
aggregation. If the training set is defined as input vectors
X = x1,x2,x3... and the corresponding (target) output values
Y = y1, y2, y3..., decision trees will be created as follows:

for b in 1...B do
Pick N training samples randomly with replacement; call
this subset {Xb, Yb}
Train a decision tree Θb using {Xb, Yb} where each split
in a decision tree is based on a random subset of the
attributes

end for
In other words, each subset is created by sampling from the
training samples with replacement, and used to train a decision
tree. The final prediction for a previously unseen input x̂ is
computed as the average of the predictions from each trained
decision tree:

ŷ =
1

B

B∑
i=1

Θb(x̂) (5)
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This approach ensures that individual trees are not highly
correlated because of a small number of strong predictors. RF
methods are popular because they provide some robustness
to noisy data with outliers. They are also able to focus on
attributes most useful to the regression or classification task
under consideration, and ignore attributes that are less relevant.
In our study, we used a RF with 100 trees.

V. HYPOTHESES AND MEASURES

Once the machine learning algorithms described in Sec-
tion IV are used to build models for short-term prediction
of traffic volume, we experimentally evaluate the following
hypotheses:

1) Predictive models based on machine learning algorithms
are able to disregard the amplification of noise and
variations in high-resolution data, and provide higher
accuracy than models that do not use the high-resolution
data.

2) The predictive models based on machine learning algo-
rithms are responsive to non-recurring congestion events
such as accidents, and this ability improves with the
increase in the resolution of data.

3) The predictive models are able to capture complex rela-
tionships and the spatio-temporal evolution of traffic by
assigning higher importance to volume and occupancy
attributes extracted from segments near the segment of
interest.

We experimentally evaluate these hypotheses using three mea-
sures (1) accuracy; (2) Root Mean Square Error (RMSE); and
(3) Mean Absolute Error (MAE), defined as follows:

Accuracy = 1− 1

N

N∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣ (6)

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2

MAE =
1

N

N∑
i=1

|yi − ŷi|

where ŷi is the predicted value and yi is the ground truth value
of the ith data sample.

In addition, to quantify the responsiveness to non-recurring
conditions, we computed these measures over samples that
were representative of non-recurring conditions. Specifically,
a sample (xi, yi) was considered if the difference between its
output value and the weekly seasonal mean of the predicted
variable was more than two standard deviations away from the
mean of the distribution of output values:

|yi − µ̂i| > (2 ∗ std) (7)

std =

√√√√√ N∑
i=1

(yi − µ̂i)2

N − 1

where std is the standard deviation and µ̄i is the mean of the
values of the predicted variable during the corresponding time
period for that day of the week.

VI. EXPERIMENTAL RESULTS

This section discusses the results of experimentally eval-
uating the three hypotheses listed in Section V. We sum-
marize the results in Sections VI-A, VI-B, and VI-D, and
examine the computational efficiency of the proposed models
in Section VI-C. Unlike results reported in many papers,
the predictive models we built using the machine learning
algorithms considered different traffic conditions such as peak
and off-peak traffic at different times of the week, including
weekends and public holidays. Recall that we explore different
aggregation levels ranging from 30sec to 15min for the input
data, but the output of each model is the volume or occupancy
of vehicles (at a particular point in the highway) aggregated
over a period of five minutes—see Section III-A for more
details.

A. Using high-resolution data

As stated in Section III-A, the predictive models were
constructed using the training set and evaluated on the test
set. We repeated the trials to check that the performance of
the models were stable using different random initializations.
The standard deviation across different the segments are shown
in parentheses.

The experimental results summarized in Table I show that
all three machine learning algorithms performed better with
30sec aggregation level for input data in comparison with the
5min and 15min aggregation levels. While the increase in
prediction accuracy with resolution may not be surprising, it is
important to note that the increase in resolution also amplifies
the noise and minor variations in the data.

Table I also shows results corresponding to two estab-
lished methods for volume prediction in existing literature
(ARIMA, historical average). For the ARIMA models, we
applied a square-root transformation in addition to the first
order difference and verified their stationarity. To compare
the outputs from these methods with the outputs from the
machine learning algorithms, we evaluated all models at the
same output resolution of 5min. For instance, for the 30sec
aggregation level, the 5min aggregated output value was
obtained by iterating and aggregating the output over 10 one-
step ahead predictions. Also, results for the 15min input
aggregation level were obtained by first applying the Stran-
Wei temporal dis-aggregation [Stram and Wei, 1986] to extract
5min aggregated values from the 15min aggregated data.
ARIMA(2,1,2) models were used for predicting volume at
the 5min and 15min input aggregation levels, ARIMA(2,1,1)
models were used for predicting occupancy at the 5min and
15min aggregation levels, and ARIMA(4,1,0) models were
used for the 30sec input aggregation level. We used the Box-
Jenkins method for selecting models and found the that the
models identified above provided good performance. Note that
the results in Table I include both recurring and non-recurring
congestion events; we examine the non-recurring events in
more detail in Section VI-B.

To further confirm the significance of these results, we
conducted Diebold-Mariano (DM) tests for predictive accu-
racy [Diebold and Mariano, 1994]. The DM test compares
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TABLE I
TRAFFIC VOLUME PREDICTION PERFORMANCE UNDER ALL CONDITIONS; STANDARD DEVIATION BETWEEN SEGMENTS ARE REPORTED IN PARENTHESES.

Model Input Resolution (minutes)
0.5 5 15

Accuracy RMSE MAE Accuracy RMSE MAE Accuracy RMSE MAE

ANN 0.906 (0.01) 34.5 (11.7) 23.8 (8.6) 0.889 (0.01) 44.5 (16.9) 30.1 (11.5) 0.865 (0.013) 53.6 (24.8) 37.3 (16.9)
RF 0.910 (0.007) 31.2 (11.7) 22.2 (8.5) 0.904 (0.01) 34 (11.2) 23.8 (8.5) 0.89 (0.013) 39.9 (13.3) 28.1 (9.7)
SVR 0.905 (0.01) 34.7 (12.2) 24.4 (8.8) 0.894 (0.01) 39.5 (14.5) 27.9 (10.6) 0.882 (0.007) 43.7 (16.3) 30.9 (11.9)

Historical Avg 0.806 (0.01) 79.73 (35.7) 43.5 (17.4) 0.806 (0.01) 79.73 (35.7) 43.5 (17.4) 0.806 (0.01) 79.73 (35.7) 43.5 (17.4)
ARIMA 0.839 (0.02) 54.64 (18.3) 39.1 (13.2) 0.879 (0.01) 43.8 (15.6) 30.6 (11.4) 0.881 (0.011) 44.34 (16.29) 30.11 (11.36)

TABLE II
TRAFFIC VOLUME PREDICTION PERFORMANCE UNDER NON-RECURRING CONGESTION CONDITIONS; STANDARD DEVIATION BETWEEN SEGMENTS ARE

REPORTED IN PARENTHESES.

Model Input Resolution (minutes)
0.5 5 15

Accuracy RMSE MAE Accuracy RMSE MAE Accuracy RMSE MAE

ANN 0.913 (0.008) 46.9 (16.4) 33.2 (12.1) 0.88 (0.02) 66.5 (24.4) 46 (17) 0.84 (0.03) 80.2 (29.7) 59.3 (22.8)
RF 0.900 (0.012) 50.1 (17.4) 37.4 (13.2) 0.89 (0.01) 57.3 (19.6) 42 (15) 0.86 (0.02) 66.6 (21.1) 50.9 (16)
SVR 0.892 (0.015) 56 (18.9) 41 (14.1) 0.87 (0.02) 67.2 (21.4) 50 (16) 0.85 (0.03) 76.1 (22.9) 56.4 (17)

Historical Avg 0.139 (0.08) 232.9 (109) 192 (83.6) 0.139 (0.08) 232.9 (109) 192 (83.6) 0.139 (0.08) 232.9 (109) 192 (83.6)
ARIMA 0.851 (0.02) 73.8 (20.5) 54.2 (15.5) 0.67 (0.02) 176 (157) 126 (48) 0.86 (0.02) 77.7 (30.45) 51.6 (19.7)

TABLE III
TRAFFIC OCCUPANCY PREDICTION PERFORMANCE MEASURES UNDER ALL CONDITIONS; STANDARD DEVIATION BETWEEN SEGMENTS ARE REPORTED

IN PARENTHESES.

Model Input Resolution (minutes)
0.5 5 15

Accuracy RMSE MAE Accuracy RMSE MAE Accuracy RMSE MAE

ANN 0.859 (0.019) 1.98 (0.64) 1.00 (0.37) 0.838 (0.01) 2.59 (0.74) 1.27 (0.44) 0.78 (0.027) 3.51 (0.89) 1.70 (0.57)
RF 0.872 (0.006) 1.83 (0.48) 0.90 (0.30) 0.850 (0.01) 2.17 (0.55) 1.07 (0.35) 0.796 (0.026) 2.8 (0.7) 1.43 (0.47)
SVR 0.858 (0.011) 1.88 (0.46) 0.95 (0.30) 0.829 (0.01) 2.13 (0.52) 1.12 (0.33) 0.732 (0.04) 2.54 (0.59) 1.45 (0.34)

Historical Avg 0.433 (0.02) 7.49 (4.50) 3.56 (1.02) 0.433 (0.02) 7.49 (4.50) 3.56 (1.02) 0.433 (0.02) 7.49 (4.50) 3.56 (1.02)
ARIMA 0.689 (0.037) 20.53 (4.71) 10.12 (2.65) 0.833 (0.02) 2.37 (0.70) 1.17 (0.41) 0.834 (0.015) 2.59 (0.8) 1.22 (0.43)

TABLE IV
TRAFFIC OCCUPANCY PREDICTION PERFORMANCE UNDER NON-RECURRING CONGESTION CONDITIONS; STANDARD DEVIATION BETWEEN SEGMENTS

ARE REPORTED IN PARENTHESES.

Model Input Resolution (minutes)
0.5 5 15

Accuracy RMSE MAE Accuracy RMSE MAE Accuracy RMSE MAE

ANN 0.869 (0.014) 1.93 (1.27) 0.938 (0.29) 0.837 (0.008) 2.77 (1.72) 1.316 (0.367) 0.80 (0.018) 3.503 (2.186) 1.628 (0.476)
RF 0.873 (0.005) 1.88 (1.22) 0.905 (0.271) 0.851 (0.01) 2.21 (1.42) 1.072 (0.318) 0.796 (0.02) 2.845 (1.825) 1.418 (0.43)
SVR 0.858 (0.01) 1.923 (1.20) 0.954 (0.277) 0.828 (0.009) 2.18 (1.38) 1.13 (0.28) 0.73 (0.03) 2.58 (1.601) 1.44 (0.31)

Historical Avg -1.57 (0.83) 18.0 (7.92) 16.44 (1.76) -1.57 (0.83) 18.0 (7.92) 16.44 (1.76) -1.57 (0.83) 18.0 (7.92) 16.44 (1.76)

the forecast accuracy of a pair of forecast methods. The null
hypothesis of the DM test is that the two forecasts have the
same accuracy. The null hypothesis will be rejected if the
computed DM statistic falls outside the required significance
level under a standard normal distribution. For a significance
of 99%, the null hypothesis is rejected if the DM statistic
falls outside −2.58 and 2.58. We used the mean squared error
as the error metric. Table V shows the DM test statistic for
each pair of models. Except for the 5min SVR and 15min RF
models, all other models have significantly different levels of
accuracy.

Table III, which summarizes the results of predicting oc-
cupancy, indicate similar trends. Although all three predic-
tive models based on machine learning algorithms performed
well, the model based on the Random Forest algorithm
(Section IV-C) provided the highest accuracy. The average
accuracy and MAE over different times of day for the three
different data aggregation levels, are shown in Figure 3. We
observe that, for each algorithm, the accuracy increases with
the resolution. Overall, we observe that the performance of
the predictive models based on machine learning algorithms
improves significantly with the increase in resolution despite
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TABLE V
DM TEST STATISTIC FOR EACH PAIR OF MODELS FOR PREDICTING VOLUME. CRITICAL VALUE: |2.58|

0.5min 5min 15min

ANN RF SVR ANN RF SVR ANN RF SVR

ANN - 36.88 12.69 -54.59 23.10 -19.35 -71.81 -17.20 -38.30
0.5min RF -36.88 - -27.87 -69.47 -11.95 -50.30 -94.20 -44.32 -63.09

SVR -12.69 27.87 - -65.29 14.55 -52.00 -92.40 -31.63 -62.36

ANN 54.59 69.47 65.29 - 71.18 48.64 -11.23 43.96 25.76
5min RF -23.10 11.95 -14.55 -71.18 - -50.28 -100.06 -45.49 -66.02

SVR 19.35 50.30 52.00 -48.64 50.28 - -79.88 0.49 -57.11

ANN 71.81 94.20 92.40 11.23 100.06 79.88 - 68.62 51.22
15min RF 17.20 44.32 31.63 -43.96 45.49 -0.49 -68.62 - -29.18

SVR 38.30 63.09 62.36 -25.76 66.02 57.11 -51.22 29.18 -

(a) Volume Predictions (b) Occupancy Predictions

Fig. 3. Accuracy and MAE at different times of day. Shaded areas are the 95% confidence intervals across days in the test set.

the associated amplification of noise and minor variations in
data. These results thus provide evidence in support of the
first hypothesis, i.e., that predictive models based on machine
learning algorithms are able to disregard the amplification of
noise in high-resolution data, and provide higher accuracy than
models that do not use the high-resolution data. The lower
accuracy figures during overnight hours can be explained by
the accuracy being a represented as percentage of vehicles and
the average number of vehicles overnight being significantly
lower (this is confirmed by the lower MAE values for the same
period).

B. Non-recurring congestion

Next, we evaluate the second hypothesis (see Section V)
by examining the responsiveness of the predictive models to
non-recurring congestion events. We do so by only evaluating
the trained predictive models on a subset of the test set; as
described in Section V, this subset only included points that
were significantly different from historical average values.

The results are summarized in Tables II & IV. We observe
that the models built using input data at the 30sec aggregation
level outperforms the models that use input data at 5min
and 15min aggregation levels. Among the models based on
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(a) Traffic volume during non-recurring congestion. (b) NZTA tweet during congestion.

Fig. 4. (a) Traffic volume in Segment 23 on April 21, 2016 (Thursday) compared with weekly average; and (b) tweets from NZTA accessed from [@NZTA
Akld & Nthlnd, 2015] on April 21, 2016.

(a) 30sec aggregation level.

(b) 5min aggregation level. (c) 15min aggregation level.

Fig. 5. Traffic volume predictions in response to a non-recurring congestion event, for 30sec, 5min and 15min input data aggregation levels; models using
higher-resolution data respond better.



SUBMITTED TO THE JOURNAL OF ADVANCED TRANSPORTATION 10

the machine learning algorithms, the model based on the
ANN algorithm provides marginally better performance than
that based on the RF algorithm for Volume predictions while
the converse is true for Occupancy predictions. Furthermore,
we observe that the multivariate predictive models based on
machine learning algorithms provide better performance than
the models based on historical average and ARIMA, which
are established methods for short-term traffic prediction.

To further explore the responsiveness of the different mod-
els, we examine a known (i.e., reported) breakdown along the
motorway in more detail. Figure 4(a) compares the average
volume of traffic on Segment 23 of SH1 on Thursday with
the traffic volume on a specific Thursday, April 21, 2016. The
data corresponding to this date were in the test dataset, i.e.,
they were not used to train the predictive models. Figure 4(a)
shows that there was a significant deviation from the average
traffic around 6.40am on April 21, 2016. As reported on the
social media site twitter, there was a breakdown near SH1 at
≈ 6.30am that day—see Figure 4(b). More specifically, the
Ellerslie on-ramp mentioned in the tweet is near Segment 27
of SH1, which is ≈ 4Km from Segment 23 on SH1.

Figures 5(a)-5(c) show how the predictive models are able
to accurately track the traffic volume corresponding to this
event, as a function of the three different input data aggregation
levels. For comparison, the figures also include the perfor-
mance of the ARIMA approach. We observe in Figure 5(a) that
using the high-resolution 30sec input data aggregation level
enabled the machine learning models to predict the change
in traffic volume at almost the same time-step when the non-
recurring event occurred, whereas there is a lag when the other
two aggregation levels are used. For additional examples on
how the models predicted during non-recurring congestion,
see Figure 9 in the Appendix. From these, it is possible to see
that the 30s ANN model is able to respond to non-recurring
congestion very quickly. It is also apparent that the SVR
based models as well as the courses resolution models tend to
smooth out shocks to traffic and are better at smoothing out
noise in typical congestion conditions. The RF models tend
to be in-between the ANN & SVR models and provide good
performance overall.

Figure 6 shows that a model based on the ANN algorithm
and input data at the 30s aggregation level accurately predicts
traffic volume on a public holiday. Recall that this model had
no information about the day of the week and the seasonal
mean. Overall, these results provide evidence in support of the
second hypothesis that the models based on machine learning
algorithms and high-resolution data are more responsive to
non-recurring congestion.

C. Computational Efficiency and Practical Scalability

Table VI summarizes the training time and testing time of
the proposed models, when they are built and evaluated on
an Intel Core i7 3.4GHz desktop with 8GB of RAM. The
time taken to generate a forecast was under 0.1 seconds for
all models. The training time even in the most extreme case
was under 20 minutes. Since the training process can easily
be parallelized to create models for all segments on a network

Fig. 6. Traffic volume prediction on April 25, 2016, a public holiday in New
Zealand (ANZAC day).

and this can be done in an initial offline phase, we believe
these methods can be easily implemented for forecasts over
the entire traffic network.

We did not optimize our algorithms—performance could
have been improved by using fewer training samples or tuning
the algorithms’ parameters, e.g., by using a smaller number of
trees in the Random Forest or a smaller neural network. The
different algorithms take different amounts of time for training
and testing, e.g., models based on the (linear) SVR algorithm
have the lowest training time and testing time—the nonlinear
SVR models have a much longer training time (≈ one hour
for one model) but they did not perform as well as the linear
model. The ANN-based models take longer to train but are
fast during testing, whereas the RF-based ensemble models
take longer to train and test.

Overall, we believe our methods will easy scale to even
large road networks. The re-training of the models can be
undertaken as new data comes in over several weeks or months
enabling the system to adapt to changes in the road network.

TABLE VI
TRAINING AND TESTING TIMEFOR EACH OF THE THREE PROPOSED

MODELS FOR SHORT-TERM TRAFFIC PREDICTION. ALL MODELS WILL
SCALE WELL FOR SHORT-TERM PREDICTIONS IN LARGE ROAD NETWORKS.

Average training time
for 57600 samples
(seconds)

Average prediction
time for one input
sample (milliseconds)

ANN 283.8 0.16
RF 1154 82.08
SVR 4.743 0.0223

D. Attribute Selection

Next, we evaluate the third hypothesis regarding the abil-
ity to capture complex relationships and the spatio-temporal
evolution of traffic. To do so, we first identify the attributes
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(a) 30sec aggregation level.

(b) 5min aggregation level.

(c) 15min aggregation level.

Fig. 7. Ranking of attributes in terms of their relative importance to the performance of ANN models, for three different input data aggregation levels
(Segment 23). Volume features on the left and Occupancy features on the right.

that most influence the performance of the proposed predictive
models.

One of the most common approaches for identifying in-
formative attributes is to compute the Pearson correlation
coefficient between the target variable and each of the in-
put attributes [Ermagun and Levinson, 2018]. However, the
Pearson correlation coefficient is not able to capture nonlinear
relationships that may exist between the input and output
variables. We therefore used the Recursive Feature Elimination
(RFE) approach to select the most relevant (i.e., informative)
attributes [Guyon et al., 2002, Hastie et al., 2009]. RFE works
by iteratively considering an increasingly smaller subset of
attributes, dropping (in each iteration) the attributes considered
to be the least relevant. In each iteration, we removed 10
attributes ranked lowest in terms of importance.

There are different ways to characterize the importance of
attributes in RF-based models. Since any RF is a collection

of decision trees, the gini importance of each attribute in all
decision trees can be averaged, for instance, to arrive at the
importance of the attribute. In the case of an ANN, the weights
of the first layer of an ANN-based model can provide insight
into the attributes that contributed significantly to making the
predictions. In a similar manner, the weights assigned to each
attribute of a linear SVM can be used to identify the relative
importance of the attributes Chang and Lin [2008].

Figure 7 (and Figures 10-11 in the Appendix) visualize the
relative ranking of each of the 1800 input attributes considered
by the models for traffic prediction at Segment 23—darker
shades represent the more informative attributes. For each
figure, the plot on the left visualizes the volume attributes
and the plot on the right visualizes the occupancy attributes.
In each of these plots, the columns going from left to right
along the x-axis represent the segments in spatial order along
the motorway from the south to the north. Along the y-axis,
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the first row is the most recent time-step and the top row is
the oldest time-step, e.g., for the 30sec aggregation level for
input data, row 20 corresponds to the data from 10 minutes
before the current time-step. Overall, we observed that all three
models provide higher rank to neighboring segments over a
few time steps.

A more careful examination of the results indicated that
the predictive models based on SVR and RF assign higher
importance to volume attributes than occupancy attributes
when making decisions. Also, the same set of attributes do not
contribute significantly to the performance of all three models.
For all three models, the attributes that are considered impor-
tant change when the resolution of the input data changes. For
instance, for the models based on the 30sec aggregation level
(i.e., highest resolution), the set of attributes considered to be
important for decision making mostly included values (of vol-
ume and occupancy) from nearby spatial locations and time-
steps. The number of attributes corresponding to downstream
segments that are nearby is high for the higher resolution
models, especially when predicting non-recurring congestion
events. For the models based on the 5min and 15min aggrega-
tion levels, on the other hand, the set of attributes considered to
be important also included values from more distant segments.
These results add to the current knowledge about representing
information for short-term traffic prediction. For instance,
some recent research found that having more than one time-
step of data from neighboring locations only provides minor
improvements in performance [Yang et al., 2015]. Our results,
on the other hand, indicate that volume and occupancy values
from multiple neighboring locations and time steps may be
important for accurate prediction of traffic depending on the
resolution of the input data.

To further analyze the importance of the attributes, we
considered the relative importance of different subsets of these
ranked attributes. We observed that the performance, specifi-
cally accuracy, flattens out after including ≈ 100 attributes.
Figure 13 shows the performance of the three models for
the 30sec aggregation level, as a function of the number of
attributes considered, with the attributes ordered in decreasing
order of importance.A similar result was observed for the other
two aggregation levels.

Finally, we compared the performance of the RFE approach
for ranking attributes with the more common correlation-
based approach and an approach that chose important at-
tributes randomly—we considered the performance of the
corresponding models under normal conditions and in the
presence of non-recurring congestion events. Figures 8 and 12
indicate that the RFE approach outperforms the other two
approaches for ranking attributes. In fact, in the case of non-
recurring congestion, correlation-based attribute selection is
closer in performance to the random selection of important
attributes. These results provide evidence that correlation-
based ranking of attributes is a poor choice for accurate traffic
prediction under non-recurring congestion. The results also
support the hypothesis that the predictive models based on
the machine learning algorithms capture the complex spatio-
temporal evolution of traffic by assigning higher importance
to relevant attributes.

We believe that the reason for the poor performance of
the Pearson correlation based feature selection is that the
features that are most likely to be highly correlated to the
output correspond to the closest neighbouring road segments.
However in most cases, these features give redundant infor-
mation. Segments further away may contain information about
things like queues building up or a spike in traffic that are not
necessarily correlated with the output but are quite informative
for predictions. We believe the Recursive Feature Elimination
approach is better able to capture these dependencies.

VII. CONCLUSIONS

Traffic congestion results in significant monetary losses
in countries around the world. Although short-term traffic
prediction helps make decisions based on predictions of traffic
in the near-future and is more useful than just using the
real-time data of traffic conditions, it also poses many open
problems. For instance, existing approaches still find it difficult
to (a) respond reliably and quickly to non-recurring congestion
events; (b) accurately identify and model the spatio-temporal
dependencies influencing traffic; or (c) reliably extract useful
information from high-resolution traffic data. We have ex-
plored the construction and use of predictive models based on
three established algorithms for addressing the aforementioned
problems. Specifically, we investigated the use of Artificial
Neural Network (ANN), Support Vector Regression (SVR) and
Random Forest (RF), and evaluated the predictive performance
of these models for three different aggregation levels of input
data, 30sec, 5min and 15min. For each learned model,
the output was a prediction (of volume or occupancy) over
5min period. However, the same methodology can be used to
provide predictions over 10min or 15min. Our experiments
indicate that:

• Aggregation of high resolution data to a lower resolution
is not required for accurate forecasting with machine
learning algorithms. Aggregation may actually have a
negative effect on accuracy for these multivariate models.
Our results indicate that machine learning algorithms are
able to extract useful information from high resolution
data even though this data is highly variable with noise.

• By not exploiting periodic characteristics in traffic, the
machine learning models studied here perform equally
well under both recurring and non-recurring congestion
without requiring any changes to the models. A sig-
nificant difference between recurring and non-recurring
congestion performance would have indicated that the
model was not able to capture the underlying spatio-
temporal evolution of traffic.

• We are able to visualise the importance of different input
attributes and gain an understanding of the sophisticated
spatio-temporal patterns captured by the machine learning
models. With this we are able to see that the most
recent data from neighbouring road segments have high
predictive power.

• Our results indicate that feature selection based on the
linear Pearson correlation coefficient analysis is not suit-
able for traffic forecasting models that aim to capture
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Fig. 8. Performance comparison of RFE, correlation-based and random-selection approaches for selecting important attributes; results correspond to an ANN
model for the 30sec aggregation level.

non-recurring congestion. Even though this method is
the most commonly used metric for feature selection
[Ermagun and Levinson, 2018], its performance in this
case is comparable to a random selection of features. Our
experiments show that Recursive Feature Elimination pro-
vides a better ranking of attributes for feature selection.

One limitation of our study is that the analysis was done
with a single dataset on one highway. Therefore, further
analysis is required before these findings can be generalised.

These results however open up multiple directions for
further research. First, we will encorporate these findings in
more sophisticated machine learning algorithms for short-term
traffic prediction. For instance, the complex, non-linear rela-
tionships influencing traffic flow may be modeled well using
deep network architectures, especially when high-resolution
input data is considered. Second, we will build on the indicated
ability to track non-recurring congestion events to consider
both accidents and weather conditions. This will require the
underlying algorithms to model additional variables and their
effect on traffic flow. Furthermore, we will explore network-
wide traffic predictions towards the long-term objective of
effective use of resources for smooth flow of traffic under a
wide range of circumstances.
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APPENDIX

Fig. 9. More examples of non-recurring congestion
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(a) 30sec aggregation level.

(b) 5min aggregation level.

(c) 15min aggregation level.

Fig. 10. Ranking of attributes in terms of their relative importance to the performance of SVR models, for three different input data aggregation levels
(Segment 23). Volume features on the left and Occupancy features on the right.
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(a) 30sec aggregation level.

(b) 5min aggregation level.

(c) 15min aggregation level.

Fig. 11. Ranking of attributes in terms of their relative importance to the performance of RF models, for three different input data aggregation levels (Segment
23). Volume features on the left and Occupancy features on the right.

Fig. 12. Performance comparison of RFE, correlation-based and random-selection approaches for selecting important attributes; results correspond to an SVR
model for the 30sec aggregation level.



SUBMITTED TO THE JOURNAL OF ADVANCED TRANSPORTATION 20

Fig. 13. Accuracy of each of the three models for the 30sec input data aggregation level, as a function of the number of attributes considered; attributes
ranked in decreasing order of importance using RFE approach.


