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Accurate estimates of daily crop evapotranspiration (ET) are needed for efficient irrigation management,
especially in arid and semi-arid regions where crop water demand exceeds rainfall. Daily grass or alfalfa
reference ET values and crop coefficients are widely used to estimate crop water demand. Inaccurate ref-
erence ET estimates can hence have a tremendous impact on irrigation costs and the demands on U.S.
freshwater resources, particularly within the Ogallala aquifer region. ET networks calculate reference ET
using local meteorological data. With gaps in spatial coverage of existing networks and the agriculture-
based Texas High Plains ET (TXHPET) network in jeopardy due to lack of funding, there is an immediate
need for alternative sources capable of filling data gaps without high maintenance and field-based support
costs. Non-agricultural weather stations located throughout the Texas High Plains are providing publicly
accessible meteorological data. However, there are concerns that the data may not be suitable for estimat-
ing reference ET due to factors such as weather station siting, fetch requirements, data formats, parame-
ters recorded, and quality control issues. The goal of the research reported in this paper is to assess the use
of alternative data sources for reference ET computation. Towards this objective, we trained Gaussian pro-
cess models, an instance of kernel-based machine learning algorithms, on data collected from weather sta-
tions to estimate reference ET values and augment the TXHPET database. Results show that Gaussian
process models provide much greater accuracy than baseline least square regression models.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Accurate estimates of daily crop evapotranspiration (ET) are
valuable for irrigation management within arid, semi-arid, and
semi-humid regions where crop water demand exceeds rainfall.
Daily grass/alfalfa reference ET (ETo) values are widely used in con-
junction with crop coefficients (Kc) to estimate crop water
demand. Hence, the impact of inaccurate ET estimates can hardly
be overstated given the increased demands on U.S. freshwater
resources, especially within the central Great Plains underlain by
the vast but declining Ogallala groundwater aquifer. Reference ET
can be estimated using the FAO-56 (Allen et al., 1998) or the recent
ASCE Standardized Reference ET Equation (Allen et al., 2005). Areal
coverage of ET networks is not universal and there are significant
gaps in the spatial coverage. It is further complicated by high spa-
tial variation in air temperature, wind speed, wind direction and
other weather parameters due to regional effects such as atmo-
spheric circulation patterns (Buishand and Brandsma, 1997;
Knapp, 1992) and local effects such as topography (Goovaerts,
2000), land use (Li et al., 2010), elevation (Dodson and Marks,
1997) and soil properties (López-Granados et al., 2005). It is there-
fore difficult to use one predetermined weather station for deter-
mining daily reference ET for irrigation management over large
regions. A sufficiently dense network of weather stations can effec-
tively capture the spatial variability of parameters for use in com-
puting reference ET. However, funding and staffing issues are
ongoing concerns of many ET networks, making it difficult to
expand coverage through additional weather stations. Although
remote sensing based ET estimates are showing promise of
expanding areal coverage and integration capabilities, accuracy of
these methods is dependent on accuracy of input (i.e., weather
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data and/or reference ET). There is hence an immediate need for
exploring alternative data sources capable of filling data gaps with-
out high maintenance and field-based support costs. Fortunately,
there are other (non-agricultural, non-ET) weather stations and
data networks, and some of these networks make data publicly
accessible. However, there are concerns that the data may not be
appropriate for estimating reference ET due to factors such as
weather station siting, data formats, parameters recorded, and data
quality control issues.

Fig. 1 from an article by Porter et al. (2012) illustrates the sen-
sitivity of average daily grass reference ET to changes in air tem-
perature, dew temperature, wind speed and solar radiation by
1 �C, 1 �C, 1 m s�1 and 25 W m�2 respectively, using the represen-
tative Bushland ET station in the Texas High Plains. The authors
reported that grass reference ET calculations were most sensitive
to errors in wind speed and air temperature, and that sensitivity
was greater during the mid-summer growing season when greater
accuracy levels are required for irrigation scheduling. For example,
a 1 �C error in air temperature throughout the growing season in
the Texas High Plains would yield �25 mm error in the total grass
reference ET for the typical corn growing season. The cumulative
effect of this error over the irrigated corn acreage within the Texas
High Plains is approximately equivalent to the total drinking water
consumption by the City of Houston for about 22 days (Marek
et al., 2010). Erroneous selection of reference weather station
and/or wrong values of reference ET rates can thus affect the water
use efficiency and producers’ net profits, in addition to the loss of
mined water of the Ogallala aquifer. This illustrative example dem-
onstrates the need for accurate reference ET data for irrigation
scheduling and irrigation management.

Most statistical models reported in the literature on irrigation
management are based on ordinary least square regression. Popu-
lar models used in regression include: (1) linear; y ¼ c þ bx; (2)
exponential; y ¼ aebx; (3) power or logarithmic; y ¼ axb; and (4)
a quadratic polynomial; y ¼ ax2 þ bxþ c. In these models, y repre-
sents the desired output vector (e.g., reference ET values from ET
stations) and x is a vector representing input values such as rain-
fall, irrigation amount, weather parameters or reference ET esti-
mated at non-agricultural weather stations. Values of coefficients
a;b (vectors with the same dimension as x) and c are tuned on
training data such that the computed values of output are as close
as possible to the given (i.e., known ground truth) output values.
Fig. 1. Sensitivity of daily average grass reference ET to changes in air temperature,
dew point temperature, wind speed, and solar radiation by 1 �C, 1 �C, 1 m/s, and
25 W/m2 respectively, using data from Bushland ET station in the Texas High Plains
(Porter et al., 2012).
The ordinary least squares regression formulations tend to fix the
basis functions before observing the training data, and the number
of basis functions grows exponentially with the dimensions of input
space. Furthermore, the basis functions are not adaptable to data
and the associated curse of dimensionality makes a strong case
for the use of more sophisticated models (Bishop, 2008). In recent
years, numerous statistical learning algorithms are being developed
and used for inference and prediction. Examples of such methods
include artificial neural network (ANN) (ASCE Task Committee on
Applications of Artificial Neural Networks in Hydrology, 2000a,b;
Buscema and Sacco, 2000; DeRoach, 1989; Hornik et al., 1989), sup-
port vector machine (Vapnik, 1995) and Gaussian Process (GP)
models (Williams and Rasmussen, 1996). These methods provide
substantial benefits over linear (or other) regression models. For
instance, ANNs readily adapt to data and can be used to model com-
plex functions between input and output parameters. Although dif-
ferent algorithms can be used to learn ANNs based on a compromise
between computational cost and performance, the most popular
choice is the back propagation algorithm (Rumelhart et al., 1986).
However, ANN formulations can result in local minima, lead to
over-fitting, and become computationally expensive in high-
dimensional spaces. Further, it is also not easy to extract an under-
standable interpretation of the functions learned.

Support vector machines (SVMs) have a simple geometric inter-
pretation, avoid overfitting and find global solutions. They project
input features to high dimensions, resulting in sparse representa-
tions and robust decision boundaries. However, SVMs (and other
similar algorithms) require that the parametric function that mod-
els the relationship between inputs and outputs be defined in
advance—choosing an appropriate function from the infinite space
of functions may be difficult in complex problem domains. Gauss-
ian process is a non-parametric kernel-based machine learning
algorithm. GP models are well-suited for the estimation step of
our study and they capture the temporal evolution of normally-
distributed random variables that represent the patterns being
tracked. They have been successfully used for large-scale estima-
tion problems with high-dimensional features, e.g., nuclear disas-
ters, climate modeling and sensor placement for surveillance
(Higdon et al., 2003; Kennedy and O’Hagan, 2001; Krause et al.,
2008). To the best of our knowledge, only a few applications of
GP models have been found in the research field of water resources
management, including ground water transport (Marrel et al.,
2009) and hydrological modeling (Song et al., 2011).

The objective of the study reported in this paper is to identify,
evaluate and use alternative meteorological data sources for accu-
rately computing reference ET values, resulting in efficient irriga-
tion management and water resources planning. We trained GP
models to estimate reference ET values using data from non-ET
National Weather Service (NWS) stations. Although our study
focused on the Texas High Plains, the experimental methodology
can be used for estimating reference ET from non-agricultural and
non-ET weather stations elsewhere in the U.S. and the world. An
initial version of this study was reported in (Holman et al., 2013).

The remainder of the paper is organized as follows. Section 2
describes the geographic locations included in our study, while
Section 3 presents an overview of the various steps involved in
the study. Next, Gaussian processes and the underlying mathemat-
ical concepts are described in Section 4. The experimental setup
and results are discussed in Sections 5 and 6 respectively, followed
by the conclusions in Section 7.
2. Study area

This study covers a 39-county area of the Texas High Plains, as
shown in Fig. 2. Most of this region is semi-arid with highly
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Fig. 2. Locations of 15 weather stations managed by the Texas High Plains ET network and paired NWS stations in the Texas High Plains.
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variable precipitation (both temporally and spatially), averaging
400–560 mm from west to east. Most rainfall occurs in scattered
thunderstorms—some areas may receive 50–100 mm of daily pre-
cipitation while areas a short distance away may not receive any
rainfall. In 2010, the Lubbock weather station recorded a total of
672 mm of annual rainfall, while in 2011 the station only recorded
149 mm. This region is also known to have high evaporative
demand (approximately 2500 mm/year Class A pan evaporation)
due to high solar radiation, high vapor pressure deficit (VPD),
and strong regional advection. The grass reference ET data from
15 weather stations managed by the TXHPET network (Porter
et al., 2005) (Fig. 1) were used to train and evaluate GP models that
estimate reference ET values based on meteorological data from
non-ET NWS stations.
3. Materials and methods

This study was implemented in four steps: (1) identify publicly
accessible data sources and evaluate whether they provide suffi-
cient data parameters, detail and quality for use in computing daily
reference ET; (2) determine whether missing data can be estimated
using other available data, trends and associative models and cal-
culate the daily reference ET; (3) assess and validate the quality
of reference ET values determined from these data sources com-
pared with valid ET network data sources; and (4) develop and
evaluate models based on statistical learning methods to calculate
reference ET given data from non-agricultural, non-ET weather sta-
tions or networks. In the remainder of the paper, we refer to non-
agricultural, non-ET weather stations as ‘‘non-ET stations’’.

The first step involved a thorough assessment of all the weather
networks in the Texas High Plains for estimating daily reference ET.
Selection criteria include: (a) timely and real-time availability of
data to the public at no cost; (b) length and continuity of historic
records; (c) availability of measurements of parameters needed
for estimating reference ET; and (d) ability to accurately estimate
parameters that are missing or not measured. Once suitable non-
ET stations were identified, a map showing the location of these
stations was used to create a Thiessen polygon map, which (in
turn) was used to pair these stations with selected agricultural
weather stations of the TXHPET network (i.e., the ‘‘ET stations’’)
for model development and evaluation. The weather parameters
considered include: daily maximum and minimum air tempera-
tures, average dew point temperature, average wind speed, aver-
age relative humidity, barometric measure and solar radiation.

The second step involved computing missing data using equa-
tions provided in the 2005 Standardized reference ET methodology
(Allen et al., 2005). For instance, if the solar radiation values were
not measured or missing for a non-ET station, they were estimated
using the complex method equation provided below:

Rs ¼ kRs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTmax � TminÞ

p
Ra ð1Þ

where Tmax and Tmin are daily maximum and minimum air temper-
atures, Ra is extraterrestrial radiation, kRs is an empirical coefficient
for semi-arid climates, and Rs is solar radiation. Barometric pressure
is calculated using the elevation of the corresponding weather sta-
tion. If the missing data cannot be estimated (e.g. wind speed) for a
given day, then the data records for that day were removed. After
verifying the weather dataset and filling the missing data, unit con-
versions of the weather parameters were performed (as necessary)
to estimate daily reference ET using the ASCE Standardized ET equa-
tion-based Bushland Reference ET Calculator (Gowda et al., 2012).

In the third step, statistical relationships were computed
between daily reference ET estimates obtained from the ET stations
and the corresponding non-ET stations to assess feasibility of using
alternative data sources to expand (or increase data intensity
within) the coverage area of the Texas High Plains ET network.
Coefficient of determination (R2), slope and intercept of the regres-
sion line, Nash–Sutcliffe efficiency (NSE) and root mean square
error (RMSE) were used to compare the reference ET values
obtained from the ET stations and those obtained from the corre-
sponding non-ET stations. The value of R2 describes the proportion
of variability in the observed data that is explained by the
model—R2 ranges from 0 to 1, with a higher value indicating a bet-
ter goodness of fit (model explanation). For instance, R2 ¼ 1 with
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an intercept of 0 and slope of 1 indicates a perfect fit between the
observed and modeled data. The NSE is a common efficiency mea-
sure that compares variance in estimations with the measured data
variance. NSE ranges between—inf and 1—values closer to 1 are
more accurate and an NSE of 1 represents an optimal model. Neg-
ative NSE values indicate that the mean of the observations is more
accurate than the model estimation. An RMSE of 0 also indicates a
perfect fit—it is usually computed as a % of the observed mean, e.g.,
RMSE < 50% is usually considered low. The RMSE measure is appro-
priate for our study because it provides values in the same units as
the values that are to be estimated (i.e., reference ET). More infor-
mation on performance statistics can be found in Moriasi et al.
(2007).

In the fourth step, the Gaussian process models were trained and
evaluated. These models capture the relationship between the
meteorological data from non-ET stations and the corresponding
reference ET values from the ET stations. The trained models can
then be used to estimate reference ET values given new data from
the non-ET stations. For evaluating the estimation ability of GP
models, the daily reference ET database was divided into two parts.
Data corresponding to odd-numbered days of the year were used
for model development and data from even-numbered days of the
year were used for validation. Performance statistics (R2, NSE and
RMSE) were used to evaluate and compare the estimation capabil-
ities of the GP models with (baseline) linear regression (LR) models.
4. Gaussian processes

Gaussian processes are sophisticated supervised learning models
used for regression (Williams and Rasmussen, 1996) and classifica-
tion (Williams and Barber, 1998). Supervised learning approaches
infer a hypothesis function hðxÞ based on training data. Training data
consists of a set of N vectors consisting of inputs: X ¼ fx1; . . . ;xNg
and corresponding target outputs: T ¼ ft1; . . . ; tNg, to generate
input–output pairs: fðxi; tiÞ; i ¼ 1 . . . Ng. The supervised learner
uses the training data to learn a model that approximates h. To eval-
uate the learned model’s estimation ability, a testing dataset con-
sisting of previously unseen inputs and target outputs is defined:
fðx̂i; t̂iÞ; i ¼ 1 . . . Ng. The learned model processes input vectors of
the testing dataset to estimate outputs: ŷðxÞ, which are compared
with ground truth (i.e., actual) target outputs. Various statistical
error measures can hence be used to compute the accuracy of values
estimated by the learned model.

For non-linear regression problems, the unknown function yðxÞ
exists in the infinite-dimensional space of possible functions for x,
making it difficult to decide the range of possible non-linear func-
tions. Standard parametric models such as ANNs, linear regression
and polynomial regression require that yðxÞ have an explicitly
defined functional form whose parameters are defined in
advance—the values of parameters are assigned by learning
weights W. Choosing this function from the infinite space of func-
tion types and weights can be a challenge. Gaussian processes
address this issue by placing a prior PðyðxÞÞ over the space of func-
tions. GP models thus do not need an explicit parametric definition
of the function yðxÞ, i.e., they are non-parametric. Instead, (stochas-
tic) random variables define priors for each input vector. Random
functions defined over the space of inputs constitute the GP prior,
as shown in Fig. 3. During the training phase, the discrete set of
inputs are used to modify these functions to pass as close as possi-
ble to the target outputs, thus approximating the (unknown)
underlying function. Gaussian processes can be viewed as a natural
generalization of a Gaussian distribution over a finite vector space
to an infinite space of functions. Just as a Gaussian distribution is
defined by its mean vector and covariance matrix, a GP is defined
by its mean and covariance functions lðxÞ and Cðx; x0Þ:
f � GPðlðxÞ;Cðx;x0ÞÞ ð2Þ

where the function f is distributed as a Gaussian process with mean
function lðxÞ and covariance function Cðx;x0Þ. In our research, we
define the mean function as the zero function. The covariance func-
tion expresses the expected covariance of the values at each pair of
points x and x0. Given N input vectors in the training data, the
covariance function is a N � N covariance matrix K : Kij ¼ Cðxi; xjÞ.
This matrix can be used to estimate output values for new inputs.
In general, the estimated distribution is Gaussian with mean and
covariance:

ŷ ¼ kTðxÞK�1t ð3Þ
r2

ŷðxÞ ¼ Cðx;xÞ � kTðxÞK�1kðxÞ

where x is a new input vector, xð1Þ; . . . ; xðNÞ are the training data
input vectors, kðxÞ ¼ ðCðx; xð1ÞÞ; . . . ; Cðx;xðNÞÞÞT denotes the matrix
of covariances between the input and training data, K is the covari-
ance matrix for training data, and t ¼ ðtð1Þ; . . . ; tðNÞÞT . This algorithm
has OðN3Þ time complexity due to the matrix inversion in Eq. (3). GP
formulations can hence become infeasible for data with a large
number of samples. Algorithms are being developed to enable GP
formulations of domains with large datasets (Bishop, 2008). How-
ever, our experiments consist of a few thousand training samples
per weather station and the time complexity is (currently) not an
issue.

Many different options exist for selecting covariance functions
for a Gaussian process. The main requirement is that the function
should generate a non-negative definite covariance matrix for
any set of inputs ðxð1Þ; . . . ;xðnÞÞ. Graphically, the goal is to define
covariances such that points that are nearby in the input space pro-
duce similar output estimates. In the research reported in this
paper, we chose the popular radial basis function (RBF) kernels
(Musavi et al., 1992):

Cðx;x0Þ ¼ e�c�ðx�x0 Þ2 ð4Þ

The key advantage of using a non-parametric model such as GP
is that it does not require any manual parameter tuning. Instead,
the covariance function contains hyperparameters that are tuned
automatically to maximize the likelihood of training data. Eq. (4)
contains a single hyperparameter c. Assigning different values to
the hyperparameter results in different GP models. We randomly
initialize a finite set of hyperparameters over the space of possible
hyperparameter values and compute the estimation error of the
corresponding GP models on the training data. This training error
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is computed by building a GP model using the training data, and
comparing the output values estimated by the GP model for the
training data inputs with the actual outputs included in the train-
ing data. The hyperparameter value that results in the lowest error,
or equivalently the highest accuracy, is chosen for subsequent
experimental studies. Section 5 illustrates this approach to com-
pute a suitable value for the hyperparameter.

5. Experimental setup

The experiments performed for this project were implemented
using the WEKA open source machine-learning library (Hall et al.,
2009). WEKA includes Java implementations of popular machine-
learning algorithms such as GP, SVM, linear regression and multi-
layer perceptron (ANN). The library also has evaluation schemes
that can be used to compare performance of different algorithms
over different datasets. We adapted the existing implementation
of GP to fit our needs. Our application first reads in the training
data and trains different GP models corresponding to different val-
ues of the hyperparameter (c). As described in Section 4, c is
selected based on the GP model that results in the lowest RMSE
between the estimated reference ET and actual TXHPET reference
ET over the training data. This GP model is chosen for further use
as it is the most accurate model. The RMSE statistic was used
because it represents the actual difference in ET in mm. Fig. 4 illus-
trates this approach to compute the value of c for the data obtained
from the paired non-ET station and TXHPET station in Lubbock. A
linear regression (LR) model was also learned from the same train-
ing data to serve as a baseline for comparison. The estimation accu-
racy of learned GP models was then compared with the estimation
accuracy of LR models on separate test data for each non-ET sta-
tion. For instance, Fig. 4 also shows that the GP models result in
significantly lower RMSE in comparison with the LR models. It is
also possible to automatically select the best value of c by comput-
ing error measures over a separate validation set (Bishop, 2008).

To ensure accurate estimates from the learned models, the test
data must be drawn from the same space as the training data, i.e.,
the probability distributions underlying the datasets must be
equivalent. Consider the Lubbock datasets over the years 2001–
2010, and consider the data division scheme that uses data from
2001 to 2005 as the training set and data correspond to years
2006–2010 as the test set. Such a data division scheme will not
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work because the wet and dry years are typically inconsistent—
the models trained with data corresponding to dry years will result
in high errors on data corresponding to wet years. We therefore
split the data evenly across all years by using odd days for training
and even days for testing. Although such a division of data into
training set and testing set makes it difficult to run a standard
cross-validation analysis, we repeated the experiments after swap-
ping the training and test datasets. Overall, we conducted experi-
mental trials using data from 15 non-ET (i.e., NWS) weather
stations matched with the TXHPET stations determined by the Thi-
essen polygon (Fig. 2). We used data consisting of daily measure-
ments over a period of 10 years.

Experimental trials were divided into two groups based on the
inputs used to train GP models. In the first set of experiments, ref-
erence ET values were computed from non-ET station weather
parameters (see Section 3) and used as inputs to GP models—each
input is thus a single value. The corresponding GP models capture
the relationship between these reference ET values from non-ET
stations and the corresponding reference ET values from the paired
TXHPET station. In the second set of experiments, weather param-
eters from non-ET stations were used as inputs to the GP models—
each input is thus a vector of weather parameter values. The target
outputs were the TXHPET reference ET values. We hypothesized
that GP models trained in the second set of experiments would
provide more accurate estimates because they can model and
account for the uncertainty in computing reference ET from the
unreliable observations of weather parameters at non-ET stations.

For each station, the GP model was trained using training data
(half the values from the total number of years for each station)
and various values for the hyperparameter c. Once a suitable GP
model is selected for further use (as described above), error statis-
tics are computed using the reference ET estimates provided by
this trained model over the test set and the actual reference ET val-
ues from the paired TXHPET station(s). Measures used for compar-
ison include R2, NSE, and RMSE.
6. Experimental results

Fig. 5 summarizes the estimation capabilities of the linear
regression and Gaussian process models using the R2 measure.
Models that provide highly accurate estimates will result in points
that lie on (or very close to) the Y ¼ X line. Fig. 5(a) and (b) shows
results (for Lubbock non-ET and TXHPET stations) with LR models
and GP models (respectively) that used the reference ET computed
from non-ET station as inputs. Similarly, Fig. 5(c) and (d) shows
results with LR models and GP models (respectively) that used
the weather parameters recorded at the non-ET station as inputs.
We observed that the estimates were more accurate when the
weather parameters were used as inputs instead of the reference
ET computed at the non-ET stations. This observation was true
for both LR and GP models, and similar plots were obtained for
other stations included in the experimental trials. As hypothesized
in Section 5, using the weather parameters as inputs enables the
learned models to account for the uncertainty in observations of
weather parameters at the non-ET stations. In other words, the
models were able to capture the correlations in the data more
accurately. The results reported below therefore correspond to
experiments in which the weather parameter measurements at
non-ET stations were used as inputs to train and test the models.

Another key observation based on the results in Fig. 5 is that the
GP models in Fig. 5(b) and (d) result in much greater accuracy than
the corresponding LR models. Furthermore, the best performance
(i.e., most accurate estimates) were obtained using GP models
trained using the weather parameters as inputs, as shown in
Fig. 5(d) where most points are along the diagonal line. Similar
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Fig. 5. Comparison of estimation capability of GP models and LR models for the two sets of experiments using Lubbock-NWS and Lubbock TXHPET data.
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results were obtained using the data from other stations included
in the study.

Fig. 6 summarizes the results obtained on test data from 15
non-ET (NWS) weather stations, using RMSE as the performance
measure. We observe that GP models provide much lower RMSE
in comparison with the LR models. In other words, the reference
ET values estimated by GP models are much closer to the reference
ET values obtained from the corresponding TXHPET stations. This
performance improvement is statistically significant and GP mod-
els show significant promise in enabling the use of alternative data
sources for accurately computing reference ET values.

Although the improvement in the accuracy of GP models (com-
pared with the LR models) is different at different stations, the
improvement is significant in all stations considered in our study.
Stations such as Lubbock and Dalhart produced highly accurate
estimates: R2 ¼ 0:98 and 0:98 respectively and NSE ¼ 0:98 and
0:98, whereas matching the non-ET (NWS) station at Lubbock with
the Farwell (TXHPET) station obtained R2 ¼ 0:89; NSE ¼ 0:89 and
RMSE of 0:76 mm for daily reference ET values. This represents
� 29% error which is still significantly better than the LR models
that result in an RMSE of 0:84 with a relative error of 33%. Future
research could consider additional features for input (e.g., eleva-
tion) and other GIS selection methods for matching non-ET stations
with TXHPET stations. For instance, although our analysis identifies
a good correlation between the Farwell TXHPET station and the
Lubbock non-ET station based on the Thiessen polygon map,
including additional features may help identify stations that are
strongly correlated.

The GP models provide more accurate estimates of reference ET
than LR models, and this improvement in accuracy has significant
practical value. The average difference in RMSE for daily reference
ET estimates provided by GP and LR models is P0.2 mm. For a typ-
ical cropping season of about 200 days, this amounts to approxi-
mately 40 mm or 1:5 in. over the season. Although this difference



Fig. 6. Comparison of RMSE obtained with the GP models and LR models, with the results averaged over data from each of the non-ET stations used in the study. The GP
models result in much lower RMSE compared with LR models.

Table 1
Performance measures for estimates obtained from the LR models and GP models at each non-ET station used in this study. The GP models provide higher accuracy than LR
models in estimating reference ET.

NWS – TXHPET station Linear regression Gaussian process

R2 NSE RMSE (mm) R2 NSE RMSE (mm)

Amarillo – Bushland-ARS 0.90 0.89 0.80 0.95 0.95 0.60
Amarillo – Dimmit 0.90 0.88 0.80 0.92 0.92 0.68
Amarillo – Bushland-JBF 0.90 0.89 0.85 0.95 0.95 0.62
Amarillo – West Texas A&M Feedlot 0.90 0.89 0.80 0.95 0.95 0.58
Childress – Chillicothe 0.87 0.85 0.93 0.91 0.91 0.76
Childress – Wellington 0.88 0.87 0.84 0.92 0.92 0.70
Dalhart – Dalhart 0.95 0.95 0.54 0.98 0.98 0.33
Dalhart – Etter 0.92 0.90 0.74 0.95 0.94 0.59
Hutchinson – Morse 0.90 0.89 0.84 0.95 0.95 0.61
Hutchinson – Perryton 0.88 0.87 0.94 0.94 0.94 0.69
Hutchinson – White Deer 0.90 0.89 0.83 0.94 0.94 0.62
Lubbock – Farwell 0.87 0.85 0.84 0.89 0.89 0.76
Lubbock – Halfway 0.91 0.90 0.71 0.94 0.94 0.57
Lubbock – Lamesa 0.91 0.90 0.73 0.94 0.94 0.58
Lubbock – Lubbock 0.94 0.94 0.58 0.98 0.98 0.36
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may seem rather small, one acre-inch of water for all the fields of
the Texas High Plains results in approximately 24.8 billion gallons
of wasted water (Marek et al., 2010), which can be compared to the
amount of water supplied to the entire city of Houston for about
two and a half months!

Table 1 summarizes the performance of the LR models and GP
models at each non-ET station included in our study, using the per-
formance measures (R2, NSE and RMSE) described in Section 3.
With the GP models, each station’s R2 and NSE values are closer
to 1 with a lower RMSE. The results show that GP models provide
higher accuracy in estimating reference ET than LR models.
7. Conclusion

Efficient water resource management represents a pressing
need in agriculture. Accurate estimates of crop evapotranspiration
(ET) are essential for irrigation management, especially in arid and
semi-arid regions where crop water demands exceed rainfall.
Existing ET stations do not provide the required areal coverage
and also face funding challenges. This paper presented the results
of a study conducted towards our long-term goal of using data
from non-ET stations for filling data gaps in the ET networks.

In the context of data collected in the Texas High Plains, we
described the use of Gaussian process models, an instance of
sophisticated kernel-based machine learning, to estimate the daily
reference ET values based on the corresponding data obtained from
National Weather Service stations. Our experiments show that GP
models result in significantly more accurate estimates of daily ref-
erence ET values than the (popular) linear regression models. We
also observe that using the daily weather parameter measure-
ments from the non-ET stations as inputs (instead of the reference
ET computed from the these measurements) results in more accu-
rate estimates. The improvement (provided by the GP models) in
accurately estimating the daily reference ET values addresses a
critical need and has significant practical value. Errors in reference
ET estimates can translate to huge costs associated with wasteful
use of precious water resources (due to over-watering), in addition
to crop stress and even crop loss (due to under watering).

Although our study focused on the Texas High Plains, the mod-
els and experimental methodology can be adapted to regions else-
where in the world. Furthermore, Gaussian process models and
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other similar stochastic machine learning algorithms are generic
tools for classification and regression in high-dimensional input
spaces, with significant potential for addressing key open chal-
lenges in water resources management and other sub-fields of
agriculture.
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