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ABSTRACT

Robots are increasingly being used to automate different processes in domains such as
navigation, health care and reconnaissance. Real-world domains characterized by non-
determinism and unforeseen changes frequently make it difficult for robots to operate with-
out considerable domain knowledge or human feedback. At the same time, humans may
not have the time and expertise to provide accurate and elaborate domain knowledge, and it
may be difficult to obtain many labeled training samples of relevant aspects of the domain.
For widespread deployment, robots thus need the ability to incrementally and automati-
cally extract relevant domain knowledge from multimodal sensor inputs, acquiring and us-
ing human feedback when such feedback is necessary and available. This thesis describes
an algorithm for such incremental learning in the context of building models of relevant
domain objects, using visual cues extracted from images of indoor and outdoor scenes and
verbal cues extracted from limited high-level human feedback.

Our algorithm builds on an existing framework called Multiple Instance Active Learn-

ing. Multiple-instance learning (MIL) supports learning from sets (also known as bags) of
instances assigned positive and negative labels. In the context of learning a model for a spe-
cific object from images, at least one region in an image (i.e., the bag) assigned a positive
label contains the target object, while none of the regions in an image assigned a negative
label contain the object under consideration. In prior work, an object model learned from
the labeled training data was used to identify training instances that are known to contain
the corresponding object but are associated with a high uncertainty, i.e., a low probability
of containing the object. These instances were converted to labeled positive bags to simu-
late active learning and improve the learned object model. However, the ground truth label
for specific image regions is not likely to be available in new data obtained by a robot.
Existing algorithms thus do not truly support incremental learning, which is essential for
robot application domains.

To address the limitations of prior work, we introduce the concept of Bag Uncertainty.
Our algorithm applies the object models learned through MIL on previously unseen and

unlabeled images that are processed incrementally. For each learned object, these images
are assigned a probability that represents the likelihood that it contains the corresponding
object in different regions. Images with a high level of uncertainty (with regard to the pres-
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ence or absence of the learned object) are assigned a proportionately higher priority for
human feedback. Simplistic verbal queries are posed to humans to solicit the bag labels or
specific properties of the image regions. If humans do not (or cannot) provide feedback,
the algorithm continues using the learned models on subsequent images. If a human par-
ticipant does provide feedback, lexical tools are used to process the verbal feedback and
associate the new information with a specific image or regions in an image, thus generating
a labeled bag for revising the learned object model. As a result, the robot is able to operate
without human feedback as far as possible, soliciting help when it is needed and available.
We experimentally compared our algorithm with a state of the art MIL algorithm on a set
of natural scenes and object categories drawn from the benchmark IAPR TC-12 dataset.
Experimental results show that our algorithm learns better models and thus provides sig-
nificantly higher object recognition accuracy than the existing algorithm.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

The idea of interaction with robots as facile as humans requires a higher level of sophis-
tication in robots. The more robots can learn and behave like humans, the more they pace
toward independency.

Consider a spacious room with variety of known and unknown objects. When a man
walks into this room looking for a particular object he may or may not have a mental image
of the object. If he knows what the object looks like, he may or may not be able to find
it. If someone is close by, he could ask if currently observable objects with some degree
of uncertainty are the goal object. He could also simply store the knowledge in his mind
to ask later. On the other hand if he does not know what the object looks like, he needs
to build a mental image of the object initially by asking questions regarding the objects he
observe.

In order for the robot to act like humans (above), it needs to be capable of learning
from known and unknown object categories, calculate the resemblance between them and
interact with human (oracle) to make queries on uncertain objects.

1.2 Statement Of The Problem

The existing algorithms address the learning from known object categories and the re-
semblance calculation. In these methods, at least a number of objects should be discovered
from the category. What if no object from the category has been learned before? How to
build the premier mental image (in learning problems for machines it has been referred to
as a model) for the unknown object category? We address these questions in this research.

1.3 Objective Of The Thesis

In this thesis, we introduce a new concept of MI active learning, Bag Uncertainty, which
raises the learning rate for some object categories while decreasing the labeling effort. In
our approach, we increase the training set’s size with unknown objects. Therefore, the

1
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model is built upon observed and new objects of the category. Furthermore, we address
human robot interaction for labeling recently observed objects by using verbal cues.

1.4 Thesis Outline

This thesis is consisting of 6 chapters. Chapter 1 provides the motivation behind this
research. It also describes the problem and objective of this research.

Chapter 2 presents a summary of machine learning and its subcategories. It also provides
a comprehensive review of previous studies and drawbacks on Multi-Instance Learning,
active learning and verbal understanding.

Chapter 3 explains an instance of supervised learning which has been used distinctively
in our research known as MI learning.

Chapter 4 defines active learning, its objective and approaches, membership query syn-
thesis, stream-based selective sampling and pool-based sampling. It also introduces the
most common active learning framework used in our research distinguished by uncertainty
sampling.

Chapter 5 presents the applied active learning approaches utilized accompanied with the
description on MIL and verbal understanding which led to a description of our proposed
framework.

Chapter 6 presents and discusses the experimental results. The experimental assumption
and setups are given along with the dataset features. A complete comparison between
the best method introduced in previous research and BU was conducted under a similar
condition to evaluate BU.

2
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CHAPTER 2
LITERATURE REVIEW

2.1 Overview

Machine learning and its subcategories such as supervised learning, reinforcement learn-
ing and unsupervised learning are reviewed. MI learning, active learning, verbal under-
standing and their combination functionality have been investigated through a comprehen-
sive review.

2.2 Background

2.2.1 What is Machine Learning?
As the world moves forward, most applications in many fields moves toward autonomy.

Introduction to Machine Learning book [2] referred to autonomy as:

“the act of operating independent of external control”

Although human presence and feedback is usually necessary for many applications to
accomplish their tasks, machine learning helps to omit this necessity as times goes by.

Machine Learning (ML) methods promote autonomy in a more intelligent direction, such
as making predictions [2] or decisions. ML applications are utilized in many fields like
marketing, stock, weather forecasting, object recognitions. Facial recognition is a rather
complicated field in object recognition which has been utilized to accomplish many goals
including criminal identification, finding face locations on camera devices, and Facebook.

In the non-stop world, everything is dynamic, including the environment. In order to
be intelligent, a system needs to adapt itself automatically to the environment by learning,
so that the system designer need not foresee and provide solution to all possible situations.
Learning is obtained by three existing methods: Supervised Learning, Unsupervised Learn-
ing and Reinforcement Learning. We will provide more information regarding these three
subcategories in following sections.

2.2.1.1 Unsupervised Learning

In supervised learning, the aim is to learn a mapping from the input to an output whose
correct values are provided by a supervisor. In unsupervised learning, there is no such

3
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supervisor and we only have input data. The aim is to find regularities in the input. There
is a structure to the input space such that certain patterns occur more than others, and we
want to see what generally happens and what does not. In statistics, this is called density

estimation [2]. However unsupervised learning also encompasses many other techniques
that seek to summarize and explain key features of the data. Fergus et. al. [17] describes a
method to recognize and learn object categories from unlabeled and unsegmented images
using probabilistic representation of all aspects of the object such as appearance, shape and
relative scale. Fergus [17] utilizes expectation maximization (EM) algorithm for learning.
Approaches to unsupervised learning include:

• clustering (e.g., k-means, mixture models, hierarchical clustering),

• blind signal separation using feature extraction techniques for dimensionality reduction
(e.g., Principal component analysis, Independent component analysis, Non-negative
matrix factorization, Singular value decomposition) [1].

2.2.1.2 Reinforcement Learning

RL is an enormous area with variety of approach algorithms. Sutton and Barto [20]
provide a comprehensive description on this area. Basically, in RL the agent take an action
and the environment -could be human or surrounded area- gives feedback or reward in
order to encourage or prohibit the agent from repeating that action in that particular state.
Figure 2.1 shows the concept of reinforcement learning.

2.2.1.3 Supervised Learning

Supervised learning is the machine learning task of inferring a function from labeled
training data [12]. The training data consist of a set of training examples. In supervised
learning, each example is a pair consisting of an input object (typically a vector) and a
desired output value (also called the supervisory signal). A supervised learning algorithm
analyzes the training data and produces an inferred function, which can be used for map-
ping new examples. An optimal scenario will allow for algorithm to correctly determine the
class labels for unseen instances. This requires the learning algorithm to generalize from
the training data to unseen situations. Figure 2.2 shows an example of supervised learning.
One predicament of using supervised learning is its natural necessity for huge number of la-
beled samples. Providing labels for each instance is troublesome, expensive and sometimes

4
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Figure 2.1: Reinforcement Learning

inaccurate. MI learning is categorized as a supervised learning method which is discussed
primarily in Chapter 3. Classification and Regression are two basic supervised learning
problems [2]:

Classification . In classification problems there are new entries (in our case, instance im-
ages) that need to be classified into two or more suitable categories based on a previously
learned model. Figure 2.3 shows classification of different objects with respect to their ge-
ometric shapes. Objects shown in the image could also be classified regarding other aspects
such as color or size. Classifying objects in an image requires a visual classifier to divide
the images into region of interests (ROI). Gupta [8] proposes an approach for learning
visual classifiers by addressing image regions to corresponding objects and relationships
between pairs of those objects.

Regression . In supervised learning classification problems, we need to find out the resem-
blance of a new instant with the trained model for a special object class category. Inputs
are the instant’s features like colors, area, convexity and other information that could be
extracted from the instant image. The output is the probability of the instant to be classi-
fied as the object class category. Such problems that the output is a number rather than a

5
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Figure 2.2: Training images for two object categories are shown, the new instances are
evaluated using the inferred function. The optimal scenario will categorize them correctly

category are regression problems [2].
Let X denote the instant features and Y be the probability of the instant. Using training

data, a machine learning program fits a function to this data to learn Y as a function of X.

f (x) = y = ax+b

2.3 Related Work

2.3.1 Multiple-Instance Learning
A multiple-instance learning algorithm was introduced by Maron et. al [10]. MIL is

a supervised learning method which consists of two special concepts: instances and bags.
Each bag encompasses several instances and labeling takes place for bags instead of in-
stances. This method decreases the labeling effort effectively. The framework introduced
by Maron et. al [10] for MIL, called Diverse Density (DD), is a method for finding com-
monalities between the positive bags. DD is utilized in Maron’s later work [11] in order
to classify natural scenes. Another contribution of this research is the development of a

6
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Figure 2.3: Classification of objects with respect to their geometric shape.

bag generator: a mechanism which transforms an image into a set of instances. In this
approach, each training image is a bag which is divided into various sub-images; each sub-
image is described in several ways such as single blob with neighbors, single blob with

no neighbors, disjunctive blob with neighbors, etc. Diverse Density is used to find areas
in feature space that is the closest to at least one instance from every positive bag and far
from every negative bag. The algorithm searches the feature space for points with high
Diverse Density. Figure 2.4 depicts the DD concept. The intersection of the positive bags
is the positive instance in every positive bag. However, this approach only responds to the
classification of the natural scenes and no object category. Yang et. al [22] have applied
MIL to classify a broader range of images including object images. Bags are generated by
selecting some regions from the image with respect to their variances, extracting two sub-
pictures from each region and smooth and sample them in an h× h matrix which is then
treated as an h2-dimensional feature vector. Each feature vector represents an instance and
compose a bag for the image. Nevertheless, all experiments shown in this paper were based
on gray-scale images; therefore there was no proposed solution to the color representation
schemes. Zhang and Golman [23] proposed a new algorithm for MIL, called EM-DD,
which outperforms the previous methods with respect to both accuracy and computation
time. In this method, the first step (E-step) is to pick one instance from each bag which is
most likely to be the most effective in the bag’s label, called hypothesis h. In the second

7
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Figure 2.4: A multiple-instance learning algorithm: Diverse Density1

step (M-step), gradient search of the DD algorithm is applied in order to find a new h′ that
maximize DD(h). These two steps repeats until the algorithm converges.

Labeling expense could be yet lowered by applying MI active learning [3]. Settles et.
al [3] introduced another framework for MI, called MI Logistic Regression. Our research
is based on Settle’s work. We are using MILR with a new active learning method, called
BU. All the active learning methods introduced in previous work [3] depend on the initial
training set, while in our approach, queries occur on the new observed images. The new
image is added to the training set if it helps the learning.

2.3.2 Active Learning
In Supervised learning, the goal of active learning is to minimize the overall labeling for

the learner to reach a higher accuracy. There are several active learning approaches [18]
such as pool-based, membership query and stream-based selective. In MI active learning
introduced by Settles [3], pool-based active learning is applied. In pool-based active learn-
ing, the learner is trained with a small set of labeled data and selectively asks queries from a
larger pool of unlabeled data which is non-changeable or static. Druck et. al [7] utilizes ac-
tive learning to solicit labels for features instead of instances. For example water, garbage,
included are considered features and their label is utilities. Feature Active learning follows

1Figure is adopted from Maron et. al [10]

8
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Figure 2.5: Multimodal Learning Framework2

a pool-based scenario. Their algorithm may skip a query at a different cost than labeling,
since a user may not know how to label a feature.

Active learning could be applied in different algorithms in order to improve the algo-
rithms accuracy. For example, Seddiquie and Gupta [19] presents a method for active
learning to learn appearance and contextual models concurrently for multi-class classifica-
tion. In this approach, instead of selecting the question which clarifies the labels of un-
certain region, a contextual interaction model between image regions is built which solicit
labels for those regions.

2.3.3 Verbal Understanding
Swaminathan et. al [21] proposes a framework that combines visual and verbal learn-

ing, as shown in the figure 2.5. In this framework an association between visual and verbal
vocabularies are learned to supply the labels for the subsequent sensory cue. Furthermore,
feature vectors consisting of the probability distribution over visual and verbal vocabularies
lead to learn a mapping model to object category (i.e. normal, typical, suspicious). How-
ever the experiments of this research involved simple objects. The verbal interaction of our
research follows Swaminathan’s work with slight changes in vocabularies, object proper-
ties and categories. Verbal understanding as Natural language Understanding (NLU) is an

2Figure is adopted from Swaminathan et. al [21]
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obstacle for humans to verbally interact with the robot effortlessly. Cantrell [16] describes
a natural language architecture which presents novel capabilities in NLU which ease the
verbal interaction and raise the level of the robots understanding with ambiguous verbal
cues.

2.4 Summary

A comprehensive overview of related work and background work is provided. MIL
learning lowers the labeling effort as a supervised learning method and is conducted with
different frameworks. MIL and the framework presented by Settles [3] is explained in
detail in subsequent chapter. Active learning methods and approaches are introduced and
elaborated in chapter 4.

10
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CHAPTER 3
MULTIPLE-INSTANCE LEARNING

3.1 Overview

This chapter provides more detail on MIL. We describe how a model is learned and how
a new image is evaluated in accordance with the model. This section is completely adopted
from Settles et. al [3] framework that we selected for our approach.

As mentioned earlier, in supervised learning, each labeling occurs for only one instance
which makes the labeling process tedious and troublesome. Multiple-instance learning
(MIL) gives a solution to this issue.

MIL proposes a solution to the troublesome labeling. Instead of labeling only one in-

stance, labeling bags, a set of instances, has been utilized [10]. In the MIL problems
domain, instances are categorized into bags with labels for training. The presumption is
that, all the instances in the bags labeled negative are negative and at least one of the in-
stances in the bags labeled positive is positive. Negative and positive concepts in MIL for
instances and bags are shown in figure 3.1 and 3.2. In every problem domain, instances
and bags could address different concepts. For example bags could address images and in-
stances, objects in the image; or bags could address a context and instances, each paragraph
in the context [3]. Figure 3.3 shows an image and its segmented instances.

Figure 3.1: Positive bag concept depiction
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Figure 3.2: Negative bag concept depiction

In supervised learning, every problem consists of one or multiple model(s) which is/are
learned from a set of objects (an object refers to anything which could be learned). Models
are addressed with a vector of parameters, also called weights, which are set randomly
initially and improve after training. These parameters correspond to feature vectors.

Every instance in a bag is defined with a feature vector. In our research, each feature
vector consists of:

< ri,ci,< hsbi1,hsbi2,hsbi3, ...,hsbi64 >

where ri boundary/area, ci convexity and hsbi1...hsbi64 HSB color histogram divided into
64 bins.

3.2 Learning a Model

Assume label yi is positive for bag Bi consisting of n instances with respect to a special
object, the conditional probability is P(yi = 1|Bi =Bi1,Bi2, ...,Bin). Therefore, a substituted
method is to compute the conditional probability of each instance, Bi j, of Bag Bi: P(yi j =

1|Bi j), and utilize a combining function (such as softmax) to combine posterior probabilities
of the instances of the bag and conjecture the posterior probability p(yi = 1|Bi) for the
bag. Classifiers are trained using multiple Instance logistic regression [3]. MILR uses
logistic regression with parameters θ = (w,b) to conjecture conditional probabilities for
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Figure 3.3: In content-based image retrieval, images are represented as bags and instances
correspond to segmented image regions.

each instances:
pi j = P(yi j = 1|Bi j) =

1
1+ e−(w.Bi j+b)

where Bi j represents the feature vector for the jth instance in the ith bag and w is the vector
of weights affiliated with the feature vectors. Weights (model parameters) are initially
generated randomly using Gaussian distribution. To combine the instance probabilities
into bag probabilities, MILR uses the softmax function:

pi = P(yi = 1|Bi) = so f tmaxα(pi1, ..., pin) =
∑n

j=1 pi jeα pi j

∑n
j=1 eα pi j

where α is a constant greater than zero.
Since the equations above represent smooth functions of the model parameters θ , the in-

stance labels in the positive bags are not known, however the parameter values are learnable
using Limited memory Broyden Fletcher Goldfarb Shanno [14] (LBFGS) gradient-based
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optimization method and an objective function:

E(θ) =
1
2 ∑

i
(yi − pi)

2

where yi ∈ {0,1} is the known label of the bag Bi and E(θ) is the error over bags which
is tried to be minimized during the learning. The best model parameter is the one with the
lowest error [3].

3.3 Evaluation

During training, model parameters are adjusted to best match bags to the specific object
class features. Therefore, every new bag is evaluated with the adjusted model parameters to
be recognized as a positive or negative bag with respect to specific object class. Conjecture
conditional probabilities for each instances is:

pi j = P(yi j = 1|Bi j,M) =
1

1+ e−(w j.Bi j+b)

where Bi j represents the feature vector for the jth instance in the ith bag, M refers to trained
model and w is the vector of the trained model affiliated with the feature vector [3]. The
conditional probabilities of the instances are combined using Softmax to estimate the bags
posterior probability:

pi = P(yi = 1|Bi) = So f tmaxα(pi1, ..., pin) =
∑n

j=1 pi jeα pi j

∑n
j=1 eα pi j

,

The question of “how to label the test bag positive or negative” is not answered yet. We
will address this question in Chapter 5 after explaining Active learning.

3.4 Summary

As discussed in this chapter, MIL lowers the labeling effort effectively in comparison
with other supervised learning methods. We discussed parameter tuning (referred to as
weights) and bag evaluation. Another approach, called active learning, is discussed in the
next chapter which can improve the MIL toward the lower labeling and higher accuracy.
Therefore the combination of MIL and active learning is a detour towards the higher accu-
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racy.
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CHAPTER 4
ACTIVE LEARNING

4.1 Overview

Chapters 3 and 4 provide pre-knowledge for Chapter 5. This chapter describes the active
learning concept embodied in an example. A comprehensive review of the active learn-
ing and its approaches such as, membership query, stream-based selective and pool-based
sampling. Uncertainty sampling is provided as an active learning measurement.

4.2 Active Learning for Human

How do Humans Learn by Asking? Consider a curious child who ask questions about
every event around him. This child asks due to lack of experience and knowledge about that
particular subject. When the child is with his parents, he asks what he does not know or has
doubts about, and the parents try to answer him so that their child can boost his knowledge
in that particular subject. Now, consider substituting the child with a system or robot and
the parents with an oracle. An oracle refers to anything that contains all the knowledge that
we are or are not aware about. This is an informal description of Active Learning.

Active learning, also called “query learning” or “optimal experimental design” is a sub-
field of machine learning. In active learning, the learning algorithm has been given a chance
to be curious and query about the data which is being learned [18].

4.3 Approaches

Why Active Learning Is Desirable to Have in Learning Algorithms? In supervised learn-
ing methods, an algorithm is trained on hundreds (even thousands) of labeled instances.
As mentioned earlier, the process of labeling instances is not always trivial. In more so-
phisticated supervised learning tasks, such as speech recognition, information extraction,
classification and filtering, labeling is expensive and time-consuming [18]. AL systems at-
tempt to promote supervised learning by asking queries in the form of unlabeled instances
to be labeled by an oracle, so that the active learner can reach higher accuracy using as few
labeled instances as possible; in this case, the labeling expense is minimized. There are
several different approaches for AL systems to ask queries: Membership Query Synthesis,
Stream-Based selective sampling, and Pool-Based Sampling. We will provide more details
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Figure 4.1: Three main active learning approaches

on mentioned approaches in this chapter. Figure 4.1 distinguishes the three approaches.

4.3.1 Membership Query Synthesis
One of the active learning approaches is learning with membership queries. As shown in

figure 4.1, in this scenario, the learner may ask queries to label any unlabeled instances in
the input space, including queries that the learner constructs. Query Synthesis is reasonable
for many problems, but labeling instances can be awkward using human annotator as the
oracle [18].

4.3.2 Stream-Based Selective Sampling
An alternative to query synthesis is selective sampling. In this approach an unlabeled in-

stance is first sampled from the actual distribution, and then the learner can decide whether
to query its label or disregard it, thus requiring unlabeled instance acquisition to be free or
inexpensive. This approach is called stream-based or sequential active learning. Depend-
ing on the input distribution, this approach can behave like membership query learning, if
the input distribution is uniform.
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Figure 4.2: Pool-based active learning illustration

The decision whether or not to query an instance can be framed in several ways [18].
One approach is to define a region of uncertainty and query every instance that fall in that
area. The simplest version of this approach is defining a threshold; every instance which
has a higher evaluation than the specified threshold is selected to be queried. Another
approach is to use informativeness measure or query strategy and make a biased decision,
such that more informative instances have higher probability to be queried.

4.3.3 Pool-Based Sampling
The main difference between pool-base and stream-based active learning is that the for-

mer assesses the data sequentially and makes query decisions individually, whereas the
latter evaluates the entire collection before selecting the best query.

In pool-Based sampling, a presumption is that there is a small set of labeled data l and
a larger pool of unlabeled data, also called u. Queries are selectively chosen from the
unlabeled pool which is assumed to be non-changing [18]. Frequently, the queries are
selected in a greedy manner, according to an informativeness measure used to assess all the
instances in the pool [3]. Figure 4.2 depicts the pool-based active learning concept.
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All active learning approaches utilize assessing informativeness of unlabeled instances.
There has been several proposed methods of formulating the query strategies, such as Un-

certainty Sampling, Query-By-Committee, Expected Model Change, Expected Error Re-

duction, Variance Reduction, Density-Weighted Methods [18]. Since we are only using the
Uncertainty Sampling in this research, we will discuss it in the next section.

4.4 Uncertainty Sampling

The most commonly uncertainty measurement is uncertainty sampling [18]. In this
measurement, the active learner asks queries about instances with the least amount of cer-
tainty for labeling. This approach utilizes probabilistic methods to assess the uncertainty
for each instance. When evaluating uncertainty for binary classification, instances with
probability closer to 0.5 are classified as the most uncertain ones. Gini measure calculates
the uncertainty for binary classification as follows:

U = 1− (p2 +(1− p)2)

where p is the probability. For classification problems with three or more class labels, a
more general uncertainty sampling can query the instance with least confident prediction:

x∗LC = argmax
x

1−Pθ (ŷ|x)

where ŷ = argmaxy Pθ (y|x) , or the class label with the highest posterior probability under
the model θ [18].

4.5 Summary

Active learning increases accuracy by allowing the system to send queries. The query
may be asked in different manners as described in three approaches and each query may
address special need according to different measurements. This chapter discussed one of
the uncertainty measurements, uncertainty sampling. In the next chapter we will discuss a
new uncertainty measurement for MI active learning.
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CHAPTER 5
PROPOSED FRAMEWORK

5.1 Overview

The concepts elaborated in Chapter 3 and 4 are utilized in this section for the proposed
framework. The concept of Bag Uncertainty is introduced as a new uncertainty measure-
ment for our proposed MI active learning framework in section 5.2. The proposed frame-
work applies two active learning approaches, pool-based and stream-based sampling. An
overview of the proposed framework is shown in figure 5.1.

5.2 Bag Uncertainty

Every new image that is observed by the robot noted as “test image” or “test bag”, is
segmented into ROIs. Each ROI forms an instance with extracted feature vector. The test

bag’s probability of being positive is calculated using the methods introduced in chapter 3.
Subsequently, a certain threshold (will be elaborated next) is applied to decided whether to
add the bag to the training set or ignore it. In this framework, we consider the conditional
probability of every newly observed bag, regardless of their positive or negative labeling,
to simulate the actual condition in the real-world. In order to improve accuracy with active
learning (Chapter 4), we chose uncertainty sampling using Gini measure to calculate the
uncertainty for bags:

Ui = 1− (p2
i +(1− pi)

2)

where pi is the ith bag conditional probability. The Gini score is between 0 and 0.5 and
the most uncertain bag’s score is 0.5. We call the approach bag uncertainty in MI active
learning.

20



Texas Tech University, Kimia Salmani Niasar, August 2013

Figure 5.1: Proposed framework

5.3 Applied Active Learning Approaches

As mentioned earlier in Chapter 4, there are several approaches that pursue active learn-
ing. We apply a combination of stream-based and pool-based active learning in order to
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reach the best simulation.
Stream-Based. After calculating the probability and subsequent uncertainty for the en-

tered bag, a threshold is applied as an approach in stream-based active learning to either
query the bag or ignore it. The query is only possible if the oracle is available; otherwise
the bag identity and the uncertainty are stored until the oracle became available.

Pool-Based. During the absence of the oracle, queries are propagated into an unlabeled
pool of bags, thus propelling us toward pool-based active learning.

5.4 Verbal Understanding

Querying and labeling instances in a bag take place through verbal interaction. Human
feedback may involve one or more sentences with respect to a specific object. Negative
sentences label the bag and each of its instances as negative. However, in positive expres-
sions, the distinguished features of the object (such as color) are inspected to distinct the
instance as the object. The assumption is that every positive sentence contains a color and
object label. Each color label corresponds to specific RGB numbers. In order to label the
instances, the RGB histogram of each instance in the bag is extracted and the instance with
the least Euclidean distance is labeled positive for the object class.

i∗p = argmin
i

√
(Ri −Rc)2 +(Gi −Gc)2 +(Bi −Bc)2

where i is the instance, Ri,Gi,Bi are the RGB numbers of the instance i and Rc,Gc,Bc are
RGB numbers of the mentioned color in the sentence. The queried test image is added to
training set and the model is trained again. As illustrated in the figure 5.1, labeling requires
both verbal and visual cues. Visual cues are extracted from the image while verbal cues
require verbal understanding.

Given a sentence (a set of words), individual words can own several roles, such as noun

and verb. Therefore, words requisite identity tags to illuminate its role in the sentence.
Each word in a sentence is accompanied by a BIO and a Part Of Speech (POS) tag. BIO
tags are according to IOB2 convention [15]. B, I and O represents beginning, inside and
outside of the property label, 2 types of property labels are considered in our algorithm,
category (CAT) and color (COL). POS tags are extracted for each word using Stanford
Log-Linear POS Tagger [9] with Penn Treebank tag set [13], i.e., tags of the form: NN,

JJ, DT, VB. Consider:
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“There is a blue door in the image”

The sentence above is a prototype of a human feedback to label a specific instance in the
bag. Every sentence provides knowledge of a special object, which in this case, the pro-
vided knowledge is that: “the door in this image is the blue object”. Provided knowledge
may also deliver a negative content by using not or no. Figure 5.2 illustrates the POS and
BIO tags for the above sentence.

Given the verbal entries, the semantic meaning of the vocabularies is extracted using a
lexical database, called WordNet [5, 6]. WordNet is a large lexical database for nouns,
verbs, adjectives and adverbs which are grouped into sets of cognitive synonyms (synsets).
Synsets consist of all possible conceptual-semantics. WordNet’s synsets are linked to other
synsets with lexical relations i.e., synonyms, antonyms, hypernyms and hyponyms.

Color values such as red, green and blue have the same hypernym chromatic color and
thus have an is a relationship since red is a chromatic color. Color values such as black

and white have the same hypernym achromatic color and second level hypernym of some
colors such as aqua, lime and olive is chromatic color, since olive is a type of green and
green is a chromatic color. Figure 5.3 represents the is a relation in Wordnet. The similar-
ities are calculated between the given vocabularies and the vocabularies in the dictionary.
Measuring similarity between two words is not only based on their lexical similarity but
also their content.

As illustrated in Table 5.1, similarities are between 0 and 1. The dictionary, mentioned
earlier, consists of all color and object vocabularies which are most likely to be used. Each
word is represented in the following format:

word#pos#sense

where “pos” elucidate the part of speech as n for noun, a for adjective, v for verb and
“sense” refers to the word’s special semantic id.
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Figure 5.2: Part of speech and BIO tag for words in a sentence.

Figure 5.3: Hypernym relation in Wordnet

Table 5.1: An example to calculate similarities lexically.

Word red#n#1 Green#n#1 Blue#n#1 Aqua#n#1

Blue 0.3 0.3 1 0.5
Green 0.3 0.3 1 0.25
Aqua 0.25 0.5 0.25 1
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For example, when considering the word blue there may be many different semantics;
however, it is necessary that only the semantic id (which refers to the blue as a color) be
mentioned in the color’s dictionary. As shown in table 5.2, the color blue and the word blue
with semantic id 2 are not recognized as similar by Wordnet’s similarity function.

Table 5.2: An example to calculate similarities with respect to the content.

Word red#n#2 Green#n#2 Blue#n#2 Aqua#n#2
Blue 0.07 0.07 0.07 0

Green 0.07 0.07 0.07 0
Aqua 0.07 0.06 0.06 0

5.5 Summary

A new MI active learning framework is introduced. This framework utilizes verbal un-
derstanding to label newly entered images, calculates their probability of being positive and
decides to add them to the training set; therefore, it is a combination of MI, active learning
and verbal understanding. The overview of the framework is provided in the figure 5.1.
The experimental results show that this method performs better than previous methods.
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CHAPTER 6
EXPERIMENTAL SETUP AND RESULTS

6.1 Overview

This chapter provides experimental results of MI uncertainty, bag uncertainty and a com-
parison between them. We present information on the employed database and its features in
section 6.2. Section 6.3 provides the default conditions under which the experiments were
conducted. Finally, the experimental results are provided in section 6.4 and the discussion
of the results are illucidated in section 6.5.

6.2 Database

We applied IAPR TC-12 Benchmark [4], a database with approximately 20000 images
in 40 folders. Figure 6.1 shows examples of the images in the IAPR TC-12 Benchmark.
Each folder contains:

Figure 6.1: Examples of images from the SAIAPR TC-12 collection.1

• Segmentation masks. One per region: 99,535 files; one per image: 20,000 files. Each
object of reasonable size is segmented by using ISATOOL. On average, 5 objects per
image have been segmented.

1Images are obtained from http://imageclef.org/SIAPRdata
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• Annotations. One per region: 99,535 regions were manually annotated. Each seg-
mented region is assigned a label from a carefully defined vocabulary, see [4]; the
annotation vocabulary has been organized according to a conceptual hierarchy. For
annotation the annotator went through the hierarchy from top to bottom looking for
the best label for each object.

• Spatial relationships. One per image: 20,000 files. The following relationships have
been calculated for each pair of regions in every image: adjacent, disjoint, beside,
X-aligned, above, below and Y-aligned.

• Visual features. A vector of features per region: 99,535 vectors of attributes. The fol-
lowing features have been extracted from each region: area, boundary/area, width
and height of the region, average and standard deviation in x and y, convexity, aver-
age, standard deviation and skewness in both color spaces RGB and CIE-Lab.

6.3 Experimental Setup

The results are obtained using 15 folders for training and evaluating the model and ap-
proximately 4 folders for the learning set (new images are randomly selected from these
folders). We modified the visual features to help us improve the learning process. Our
visual features consist of: boundary/area, convexity, HSB color histogram divided into 64
bins and finally, the instance label. Each image has a corresponding segmented image and
each region is represented by a 67-dimensions vector.

We compare Bag Uncertainty (BU) against the best strategy introduced in previous re-
search [3] MI Uncertainty (MIU). To highlight the difference between these two methods,
incremental learning in BU occurs with a new learning set consisting of unseen images;
while in MIU, it takes place on the instances of the positive bags of the train set. The
MILR model uses α = 2.5 for the softmax function and is trained by minimizing squared
loss via L-BFGS [14].

Following the previous work [3], we evaluate our method by constructing learning
curves that plot the area under the ROC curve (AUROC) as a function of instances queried
for each object class and selection strategy. The primary point in all experiments is the
AUROC for a model trained from labeled bags in the training set and with no queries. We
average results over 10 independent repetitions for each class object category; the learner
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starts with 200 randomly drawn positive bags and 200 random negative bags. The model
is then evaluated on the rest of the unlabeled bags. The unlabeled query bags (bags in
learning set) are selected randomly from 2515 new images. The threshold 0.3 is applied
for the stream-based active learning on the queried bag. In other words, images with bag
uncertainty greater than or equal to 0.3 are queried and added to the training set.

6.4 Experimental Results

This section provides experimental proof of this research. There are 9 case studies con-
sisting of object categories and natural scenes. Both methods, BU and MIU, are compared
on each of the case studies. Plots compare the AUROC of BU and MIU after 10,20,...,50
queries and tables present the improvement from the initial point. As mentioned earlier,
BU enlarges the train set by newly seen images; therefore we expect this method to out-
perform MIU when a case study appears in different shapes or colors, e.g. door and car.
However, this expectation is not satisfied unless there is a reasonable amount of positive
bags in the learning set so that they could be seen and learned. We will discuss each of the
case studies’ results with respect to their plots and tables:

Tree: This object could be considered as a natural scene. Since almost all the trees are
green (and we are learning a model mostly by colors); consequently, as shown in figure 6.2,
BU and MIU correlate closely.

Street: Despite discussed object category tree, streets may have slightly different fea-
tures; since learning set may contain a new aspect of street which lead to a better model,
therefore, BU performs slightly better than MIU (figure 6.3).

Window and door: These object categories act similar to street only with the higher
variation in the features.
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Figure 6.2: Comparison between MIU and BU query strategies for object class tree

Table 6.1: The average AUROC improvement over 10 repetitions for object class tree.

Instance Queries MIU BU
10 0.00289 0.00534
20 0.00427 0.00604
30 0.00466 0.00558
40 0.00462 0.00513
50 0.00429 0.00639
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Figure 6.3: Comparison between MIU and BU query strategies for object class street

Table 6.2: The average AUROC improvement over 10 repetitions for object class street.

Instance Queries MIU BU
10 -0.0003 0.00156
20 -0.00042 0.00418
30 -0.00236 0.00417
40 -0.00243 0.00472
50 -0.00105 0.00483
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Figure 6.4: Comparison between MIU and BU query strategies for object class window

Table 6.3: The average AUROC improvement over 10 repetitions for object class window.

Instance Queries MIU BU
10 0.01191 0.00302
20 -0.00339 0.00729
30 -0.0117 0.00901
40 -0.01244 0.00918
50 -0.01243 0.0097
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Figure 6.5: Comparison between MIU and BU query strategies for object class door

Table 6.4: The average AUROC improvement over 10 repetitions for object class door.

Instance Queries MIU BU
10 -0.00617 0.00466
20 -0.01374 0.0056
30 -0.02172 0.0056
40 -0.02207 0.00466
50 -0.02214 0.00478
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Cloud, river and rock: These are categorized as natural scenes (tree, an instance of
natural scene, is discussed earlier). Cloud can have different features depending on the
weather which can not be captured thoroughly in the training set. BU improves the train
set by unseen features of cloud and performs better than MIU (figure 6.6). Likewise, this
condition applies to river and rock (figures 6.7 and 6.8).
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Figure 6.6: ]
Comparison between MIU and BU query strategies for object class cloud
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Table 6.5: The average AUROC improvement over 10 repetitions for object class cloud.

Instance Queries MIU BU
10 0.0001 0.00541
20 0.00131 0.00513
30 0.00143 0.00838
40 0.00106 0.01176
50 0.00119 0.01081
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Figure 6.7: Comparison between MIU and BU query strategies for object class river
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Table 6.6: The average AUROC improvement over 10 repetitions for object class river.

Instance Queries MIU BU
10 -0.00005 0.00226
20 -0.00137 0.00289
30 -0.00027 0.00344
40 -0.00083 0.00344
50 -0.00103 0.00913
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Figure 6.8: Comparison between MIU and BU query strategies for object class rock

35



Texas Tech University, Kimia Salmani Niasar, August 2013

Table 6.7: The average AUROC improvement over 10 repetitions for object class rock.

Instance Queries MIU BU
10 -0.00062 0.00223
20 0.00029 0.00603
30 0.00227 0.00751
40 0.00169 0.00743
50 0.0015 0.0073

Bottle and car: The initial dent in the BU curve may be caused from several negative
bags, since the learning set bags are assigned randomly. However, after 19 queries BU
outperforms MIU due to the BU’s characteristic in expanding the knowledge on objects
(figures 6.7 and 6.8).
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Figure 6.9: Comparison between MIU and BU query strategies for object class bottle
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Table 6.8: The average AUROC improvement over 10 repetitions for object class bottle.

Instance Queries MIU BU
10 -0.00113 -0.00097
20 -0.00134 0.00008
30 -0.00471 0.0043
40 -0.00388 0.00657
50 -0.00456 0.01009
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Figure 6.10: Comparison between MIU and BU query strategies for object class car
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Table 6.9: The average AUROC improvement over 10 repetitions for object class car.

Instance Queries MIU BU
10 -0.00269 -0.00187
20 -0.00365 -0.00409
30 -0.00418 0.00082
40 -0.0037 0.00342
50 -0.00352 0.00351

6.5 Discussion of The Results

Addition of a newly observed scene as a bag, either positive or negative, promotes the
trained model from multiple aspects. Initially, increasing the train set’s size by actual bags
which consist of several instances raises the chance of decreasing unknown scene to the
robot. Both positive and negative bags affect the learning to increase.

Although online labeling with addressed features such as color and the existence of mul-
tiple objects with the same color in the image could draw instance labeling error, it would
not affect the learning due to the MIL characteristic.

According to the tables and plots, BU outperforms the existing method known as MIU.
However BU is reliant on the number of observed negative bags. In other words, If a robot
observe negative bags and no positive bag while learning, this could drop the learning
results since there was nothing to be learned. Total results after 50 queries are depicted in
table 6.10.
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Table 6.10: The average AUROC improvement after 50 queries over the initial MI learner.
Numbers are averaged across all tasks for each object. The winning algorithm at each point
is indicated by bold font.

Instance Queries MIU BU
Cloud 0.00119 0.01081
Street -0.00105 0.00483
Rock 0.0015 0.0073
Tree 0.00429 0.00639

Window -0.01243 0.0097
Bottle -0.00456 0.01009
Door -0.02214 0.00478

House 0.01283 0.001984
Car -0.00352 0.00351

River -0.00103 0.00913
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CHAPTER 7
CONCLUSION AND FUTURE WORK

7.1 Conclusion

The previous approaches involved the background knowledge for actively learning of
objects. Furthermore, the knowledge was restricted to what was observed in the training set
in the beginning. In existing methods, the most uncertain instance is chosen to be queried
and added to the training set as an individual bag; therefore, no new aspect of an object can
be captured to improve the accuracy since there are no new image from the object involved.
We tried to address these problems in this research by following steps:

• Proposing a new uncertainty measurement called bag uncertainty which estimates
the uncertainty for unseen bags instead of uncertain instances chosen from training
set.

• Proposing a new framework applying bag uncertainty with a combination of stream-
based active learning and pool-based active learning. Stream-based active learning
selects queries from the learning set randomly and pool-based active learning selects
a query with highest uncertainty.

• Labeling occurs on new uncertain bags by verbal interaction with an oracle.

7.2 Future Work

The research described in this thesis is a step towards more natural interaction between
robots and humans who may not have the time and expertise to provide elaborate and
accurate feedback. Future work will investigate the use of knowledge representation ar-
chitectures to encode prior knowledge of the application domain and specific scenes, thus
enabling robots to make best use of human feedback when it is available and necessary.
Another direction of research is to consider natural language representations that support
efficient and incremental learning. The long-term objective is to enable human-robot inter-
action and collaboration in complex real-world application domains.
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