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Abstract

Approaches based on deep network models are increasingly
being used for pattern recognition and decision-making tasks
in robotics and Al. These approaches are characterized by a
large labeled dataset, high computational complexity, and dif-
ficultly in understanding the internal representations and rea-
soning mechanisms. As a step towards addressing these lim-
itations, our architecture uses non-monotonic logical reason-
ing with incomplete commonsense domain knowledge, and
inductive learning of previously unknown state constraints,
to guide the construction of deep networks based on a small
number of training examples. As an illustrative example, we
consider a robot reasoning about the stability and partial oc-
clusion of object configurations in simulated images of an in-
door domain. Experimental results indicate that in compari-
son with an architecture based just on deep networks, our ar-
chitecture improves reliability, and reduces the sample com-
plexity and time complexity of training the deep networks.

1 Introduction

Consider an assistive robot! tasked with clearing away toys
that children have arranged in different configurations in dif-
ferent rooms. This task poses a challenging scene under-
standing problem. It is difficult to provide many labeled ex-
amples of different arrangements of objects. In addition, the
robot has to reason with different descriptions of uncertainty
and incomplete domain knowledge. Information about the
domain may include qualitative descriptions of common-
sense knowledge, e.g., statements such as “structures with a
larger object placed on a smaller object are typically unsta-
ble”, which hold in all but a few exceptional circumstances.
At the same time, algorithms for sensing and navigation may
represent uncertainty quantitatively, e.g., using probabilities.
Furthermore, human participants may not have the time and
expertise to interpret sensor data or provide comprehensive
feedback, and reasoning with incomplete knowledge may re-
sult in incorrect or sub-optimal outcomes.

State of the art methods for scene understanding are based
on deep (neural) networks. Although these methods provide
high accuracy for pattern recognition and decision making

"Terms “robot”, “learner”, and “agent” used interchangeably.

Figure 1: Simulated scene of toys in a room. The robot has
to reason about partial occlusion and stability of structures.

tasks in robotics and Al, they require many labeled train-
ing samples, are computationally expensive, and provide re-
sults that are not easily interpretable. Research in cogni-
tive systems indicates that many of these challenges can be
addressed by exploiting domain knowledge and the depen-
dencies between knowledge representation, reasoning and
learning. Based on this insight, the architecture described
in this paper incorporates non-monotonic logical reasoning
with incomplete commonsense domain knowledge, and in-
cremental inductive learning of constraints governing do-
main states, to guide the learning of deep network architec-
tures. As illustrative examples of scene understanding tasks,
we consider an assistive robot estimating the partial occlu-
sion of objects and the stability of object configurations.
To focus on the interplay between representation, reason-
ing, and learning, we consider simulated images of scenes,
e.g., Figure 1, and limit perceptual processing to that of 3D
point clouds extracted from the scene. We also assume that
the robot knows the grounding (i.e., meaning in the physical
world) of words such as “above” and “left_of” that describe
basic geometric relations between domain objects. We then
describe the following features of our architecture:

e Non-monotonic logical reasoning is used to perform the
estimation tasks on each input image based on the com-
monsense domain knowledge and the geometric relations
between objects extracted from the image.

e A small set of labeled examples, i.e., images with occlu-



sion and stability labels for objects and object structures,
is used to train decision trees and incrementally learn pre-
viously unknown constraints governing domain states.

e Regions of images for which non-monotonic logical rea-
soning is unable to perform the estimation tasks, are iden-
tified automatically and used to train deep network mod-
els or processed using the learned models during testing.

Experimental results show a marked improvement in accu-
racy and computational efficiency in comparison with just
using deep networks, while also providing insights about
the interplay between reasoning and learning. Section 2 dis-
cusses related work, and Section 3 describes the architec-
ture. Experimental results are discussed in Section 4 and the
conclusions are in Section 5.

2 Related Work

Scene understanding is a key problem in computer vision
and robotics; it involves the estimation of relations between
scene objects and other prediction problems. Algorithms
based on deep networks represent state of the art for many
scene understanding, computer vision and control problems.
For instance, a Convolutional Neural Network (CNN) has
been used to predict the stability of a tower of blocks [16],
and to predict the movement of an object sliding down an in-
clined surface and colliding with another object [30]. How-
ever, CNNs and other deep networks require many labeled
examples to learn the mapping from inputs to outputs Also,
they are computationally expensive, their operation is not
easily interpretable, and it is difficult to transfer knowledge
learned in one scenario or task to another [31]. In dynamic
domains in which it is difficult to obtain many labeled ex-
amples, one popular approach is to use physics engines, e.g.,
for using deep networks to predict the movement of objects
when external forces are applied [20].

Prior knowledge has been used to reduce the computa-
tional effort and the need for many labeled examples in
training deep networks [29]. An RNN augmented by arith-
metic and logic operations has been used to answer ques-
tions about the scene, but it used textual data instead of vi-
sual data [21]. Prior knowledge has also been used to encode
state constraints in the CNN loss function, reducing the ef-
fort in labeling images, but the constraints have to be en-
coded manually [28]. The structure of deep networks has
also been used to constrain learning, e.g., by using rela-
tional frameworks that consider pairs of objects and related
questions for visual question answering [24]. This approach,
however, only makes limited use of the available knowledge,
and does not revise the knowledge over time.

For scene understanding, domain knowledge often in-
cludes the grounding (i.e., interpretation in the physical
world) of spatial relations such as in, behind, and above.
Measures related to the relative position of objects have been
used to predict the successful application of actions in a new
scenario [7], and researchers have explored reasoning about
and learning spatial relations between objects [10, 17]. Deep
networks have been used to infer spatial relations between
scene objects from images and natural language expressions
for manipulation [22], navigation [23] and HRI [25].

There is much work in Al on learning domain knowledge.
Early work used a first-order logic representation and incre-
mentally refined the action operators [9]. More recent work
used inductive learning to acquire domain knowledge rep-
resented as Answer Set Prolog (ASP) programs [14], and
integrated non-monotonic logical reasoning and relational
reinforcement learning to incrementally learn domain ax-
ioms [27]. These learning approaches may be viewed as in-
stances of interactive task learning, a framework for acquir-
ing domain knowledge using labeled examples or reinforce-
ment signals obtained from domain observations, demon-
strations, or human instructions [4, 13]. These methods build
on early work on joint search through the space of hypothe-
ses and observations [26], but such methods have not been
fully explored for scene understanding.

In this paper, we assume that grounding of spatial rela-
tions is computed using our prior work [18], and explore the
complementary strengths of deep learning, non-monotonic
logical reasoning with commonsense knowledge, and incre-
mental learning of the domain’s state constraints.

3 Proposed Architecture

Figure 2 is an overview of our architecture. Inputs include
RGB-D images of scenes with different object configura-
tions, and some commonsense domain knowledge. During
training, inputs also include occlusion labels of objects and
stability labels of object structures in a small number of im-
ages. An existing method is used to ground the spatial rela-
tions between objects [18]. An object is said to be occluded
if the view of any fraction of its frontal face is hidden by
another object, and a structure is unstable if any component
object is unstable. Domain knowledge, object attributes, and
the spatial relations are encoded in an ASP? program. If
ASP-based reasoning provides the desired labels, no further
analysis of this image is performed. Otherwise, an attention
mechanism uses domain knowledge to identify the image’s
Regions of Interest (ROIs), with one or more objects in each
ROI. A CNN is trained to map each ROI to labels. The spa-
tial relations, object attributes, and labels are also used to
incrementally learn a decision tree and construct axioms de-
noting state constraints that are added to the ASP program.
During testing, the input image is either processed by ASP-
reasoning or (if that fails) the learned CNN. Individual mod-
ules are described using the following illustrative domain.

Example 1 [Robot Assistant (RA)] A simulated robot has
to estimate occlusion of objects and stability of object
structures in images with toys in different configurations.
Robot also has to rearrange objects to reduce clutter. An
object’s attributes include size (small, medium, large),
sur face (flat, irregular) and shape (cube, cylinder, duck).
The relation between objects can be (above, below, front,
behind, right, left, close). The robot can move objects to
achieve assigned goals. Domain knowledge includes axioms
governing dynamics but some axioms may be unknown, e.g.:

e Placing an object on top of an object with an irregular
surface causes instability;

>We use “ASP” and “CR-Prolog” interchangeably.



Inputs:

Grounding
. ASP
RGB-D images > of spatial >
¢ program
relations

Relations

Decision
Labels B tree
(training phase) induction

New axioms

Attention

R D Output labels
mechanism

X (occlusion, stability)
ROI images

CNN

Figure 2: Proposed architecture combines the complementary strengths of non-monotonic logical reasoning, deep learning and
decision tree induction to perform the scene understanding tasks reliably and efficiently.

e Removing all objects in front of an object causes this ob-
Jject to not be occluded.

3.1 Knowledge Representation with ASP

To represent and reason with incomplete domain knowledge,
we use ASP, a declarative language that can represent recur-
sive definitions, defaults, causal relations, and language con-
structs that occur frequently in non-mathematical domains
and are difficult to express in classical logic formalisms.
ASP supports concepts such as default negation (negation by
failure) and epistemic disjunction, e.g., unlike “-a”, which
implies that “a is believed to be false”, “not a” only im-
plies “a is not believed to be true”. Each literal can be true,
false or unknown and the robot only believes things that it is
forced to believe. ASP supports non-monotonic logical rea-
soning, i.e., adding a statement can reduce the set of inferred
consequences, aiding in the recovery from errors due to the
incomplete knowledge [8]. ASP and other similar paradigms
are often criticized for requiring considerable prior knowl-
edge, and for being unwieldy in complex domains. However,
modern ASP solvers support efficient reasoning in large, in-
complete knowledge bases, and are used by an international
research community for many applications [5, 6].

A domain description in ASP comprises a system de-
scription D and a history H. D comprises a sorted sig-
nature ¥ and axioms. ¥ comprises sorts arranged hierar-
chically; statics, i.e., domain attributes that do not change
over time; fluents, i.e., domain attributes whose values can
be changed; and actions. In the RA domain, sorts in-
clude object, robot, size, relation, sur face and step (for
temporal reasoning). Statics include object attributes such
as obj_size(object, size) and obj_sur face(obj, sur face).
Spatial relations obj _rel(relation, object, object) between
objects are fluents described in terms of their argu-
ments’ sorts, e.g., obj_rel(above, A, B) implies object
A is above object B. The last argument in these re-
lations is the reference object. Besides spatial rela-
tions, fluents describe other aspects of the domain,
e.g., in_hand(robot,object) and stable(object), while
pickup(robot, object) and putdown(robot, object) are ac-
tions. Also, predicate holds(fluent, step) implies that a
particular fluent holds true at a particular timestep.

The axioms of D govern domain dynamics and include:

holds(in_hand(robot, object), I + 1) «+ (1a)
occurs(pickup(robot, object), I)
holds(obj_rel(above, A, B),I) «+ (1b)
holds(obj_rel(below, B, A),I)
—occurs(pickup(robot, object), I) <+ (1c)

holds(in_hand(robot, object), I

where Statement 1(a) describes a causal law, (b) describes
a constraint, and (c) describes an executability condition.
The spatial relations extracted from RGB-D images are con-
verted to facts used in ASP program. The program also in-
cludes axioms that encode default knowledge, e.g., “larger
objects on smaller objects are typically unstable”.

—holds(stable(A), I) < holds(obj_rel(above, A, B), I),
size(A,large), size(B, small),
not holds(stable(A), I) 2)

Finally ‘H includes records of observations received and ac-
tions executed by the robot. To reason with the existing
knowledge, we construct CR-Prolog program II(D, H)—
please see our code repository [19]. Planning, diagnostics
and inference tasks can then be reduced to computing an-
swer sets of II, which represent beliefs of the robot associ-
ated with IT [8]. We use SPARC [2] to compute answer set(s.

3.2 Decision Tree Induction

The spatial relations identified between pairs of objects and
the attributes of objects are used to build decision trees for
classification. In the RA domain, separate decision trees
are built for estimating stability and occlusion, with the la-
bels assigned to the leaf nodes being stable/unstable or oc-
cluded/not occluded respectively. One half of the available
examples are used for training, while the other half is used
for validating the axioms extracted from learned trees. We
used an existing tree induction algorithm that computes the
entropy (and thus information gain) of a split in the tree
based on each attribute. Illustrative examples of decision
trees are shown in Figures 3 and 4.

Any branch of a decision tree in which the leaf represents
a precision higher than 95%, i.e., most examples correspond
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used to construct previously unknown axiom.

to a particular class, is used to construct axioms that are ana-
lyzed using the validation set. This process: (i) removes ax-
ioms without a minimum level of support; and (ii) merges
the discovered axioms to retain them in their most general
form. Since the number of labeled examples is small, we
reduce the effect of noise by repeating the learning and val-
idation process a number of times (e.g., 100). Axioms voted
more than a minimum number of times (e.g., 50%) are en-
coded in the ASP program and used for reasoning.
Consider the branches highlighted in gray in Figures 3
and 4, which can be translated into the following axioms:

stable(A) < —obj_rel(above, A, B) (3a)
—occluded(A) < —obj_rel(behind, A, B) (3b)
where Statement 3(a) implies that any object that is not
above another object is stable, and Statement 3(b) says that
an object is not occluded if it is not located behind another
object. More elaborate axioms are created when other object
attributes (e.g., size, surface) are considered, e.g., the branch

highlighted in gray and blue in Figure 3 is:

—stable(A) <« obj_rel(above, A, B),

obj_sur face(B, irregular)

“

which says that an object is unstable if it is located above an
object with an irregular surface. The architecture is also able
to discover axioms corresponding to default knowledge by
lowering the threshold for selecting a branch of a tree (e.g.,
to 70%), but this also introduces noisy estimates of axioms.

3.3 Attention Mechanism

The attention mechanism module is only invoked to process
an input image if ASP-based reasoning is unable to assign

labels to the objects in the image. This module then identi-
fies the regions of interest (ROIs) in the image that need to
be analyzed further. More specifically, the module first iden-
tifies axioms in the ASP program whose head corresponds
to a relation or fluent of interest. For instance, if the robot’s
task is to estimate the stability of object configurations, the
attention mechanism will identify Statement 3(a) and State-
ment 4, which define conditions under which an object is
considered to be stable or unstable (respectively). In a simi-
lar manner, Statement 3(b) will be considered when the task
is to examine the occlusion of objects. For each axiom con-
sidered to be of interest, the body of the axiom provides the
relations to be used to identify ROIs in the corresponding
image; other image regions are unlikely to provide useful
information and are thus not analyzed further. For instance,
while estimating stability in Figure 1, we should consider
the stack comprising the red cube, white cylinder and the
green ball, since they satisfy a relevant relation (above)—
the other two objects (duck and pitcher) can be disregarded.
Any image may contain multiple such ROIs, and each ROI
may have multiple objects.

3.4 Convolutional Neural Networks

The ROIs identified by the attention mechanism serve as in-
put to a deep network—we use two variants of a CNN. Re-
call that pixels of any such ROI contains information directly
relevant to the task at hand. The training dataset for the CNN
also includes labels to be assigned to objects in the ROIs.
The CNN learns the mapping between the image pixels and
labels, and assigns labels to ROIs in previously unseen test
images that ASP-based reasoning is unable to process.
CNNSs can vary in terms of the number of layers, activa-
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Figure 5: Lenet architecture.

tion functions etc, but the building blocks are convolutional
and pooling layers used in the initial or intermediate stages,
and fully-connected layers that are typically one of the fi-
nal layers. In a convolutional layer, a filter (or kernel) is
convolved with the original input or the output of the previ-
ous layer. Common pooling strategies are max-pooling and
average-pooling, which are used to reduce the dimensions
of the input data and control overfitting. One or more convo-
lutional layers are usually followed by a pooling layer. The
fully-connected layers are equivalent to feed-forward neural
networks; they often provide the target output(s). In the con-
text of images, convolutional layers extract useful attributes
to model the mapping from inputs to outputs. For instance,
the initial layers may extract lines and arches, whereas the
subsequent layers may represent complex shapes. In the par-
ticular context of estimating the stability of object configu-
rations, the CNN’s layers may represent whether a tower of
blocks is aligned, or if a tower has a small base.

In this paper, we adapted two CNN architectures: the
simple Lenet [15], initially proposed for recognizing hand-
written digits; and the widely used Alexnet [12], which pro-
vided best results on the Imagenet (benchmark) challenge
in 2012. The Lenet has two convolutional layers, each one
followed by a max-pooling layer and an activation layer.
Two fully connected layers are placed at the end. Unlike the
28 x 28 gray-scale input images and the ten-class softmax
output layer used in the original implementation for classify-
ing digits, we consider 56 x 56 RGB images as input and an
output vector representing the occlusion and stability of each
object in the image. Figure 5 is a pictorial representation
of this network—as described later, we consider ROIs with
up to five objects in the experimental studies. The Alexnet
architecture, on the other hand, contains five convolutional
layers, each followed by max-pooling and activation layers,
along with three fully connected layers at the end. In our ex-
periments, 227 x 227 RGB images were used as input and
the output classes determined the target variables estimat-
ing occlusion and stability. We have five outputs estimating
occlusion to consider ROIs with up to five objects, and one
output for stability of the scene. Due to the multi-class la-
beling problem, the sigmoid activation function was used in
both networks. We used the Adam optimizer [11] in Ten-
sorFlow [1] with a learning rate of 0.0001 for the Alexnet
network and 0.0002 for the Lenet network and the weights
were initialized randomly. The number of training iterations
varied depending on the network and the number of training
examples. For example, Lenet using 100 and 5, 000 image
samples was trained for 10,000 and 40, 000 iterations, re-

spectively, whereas the Alexnet with 100 and 5, 000 samples
was trained for 8,000 and 20,000 iterations, respectively.
The learning rate and number of iterations were chosen ex-
perimentally using validation sets. The number of epochs
was chosen as the stopping criteria, instead of the training
error, in order to allow the comparison between networks
learned with and without the attention mechanism. The code
for training the deep networks is in our repository [19].

4 Experimental Setup and Results

In this section, we describe the experimental setup and the
results of experimental evaluation of our architecture.

4.1 Experimental Setup

For experimental evaluation, we simulated a domain in
which many labeled examples are not available. We gener-
ated 6000 labeled images using a real-time physics engine
and constructed a dataset for estimating occlusion and stabil-
ity of objects. Each image had ROIs with up to five objects
of different colors, textures and shapes. The objects included
cylinders, spheres, cubes, a duck, and five household objects
from the Yale-CMU-Berkeley dataset (apple, pitcher, mus-
tard bottle, mug, and cracker box) [3]. These objects are ar-
ranged in three configurations:

o Towers: 2 — 5 objects stacked on each other;
e Spread: five objects on the flat surface (ground); and

o Intersection: 2 —4 objects stacked on each other, with the
rest (1 — 3) on the flat surface.

The vertical alignment of stacked objects is randomized to
create stable or unstable arrangements. The horizontal dis-
tance between objects is also randomized to create scenes
with complex, partial or no occlusion. Lighting, orienta-
tion, camera distance, orientation, and background, were
also randomized. The corresponding ASP program was ini-
tially missing three state constraints (each) related to stabil-
ity estimation and occlusion estimation.

A second dataset was then derived from the dataset de-
scribed above to simulate the attention mechanism. Recall
that this module extracts suitable ROIs from images in the
original dataset for which ASP-based reasoning is unable to
assign labels. Pixels in these images that are outside the ROI
are cropped off. CNNss trained using these two datasets were
compared as a function of the amount of training data and
the complexity of the networks. Occlusion was estimated for
each object (five outputs) and stability was estimated for the
structure (1 output). The experiments were designed to test
the following hypotheses:

e H1: Reasoning with commonsense domain knowledge
and the associated attention mechanism improves the ac-
curacy of deep networks.

e H2: Reasoning with commonsense domain knowledge
and the attention mechanism reduces sample complexity
and time complexity of training deep networks.

e H3: The architecture is able to incrementally learn previ-
ously unknown axioms, and use these axioms to improve
the accuracy of decision making.
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Figure 6: Accuracy of Lenet and Alexnet CNNs improves
significantly with the commonsense reasoning module and
the attention mechanism.

The performance measures were the accuracy of the labels
assigned to objects and structures in images, and the number
of samples and time taken to train the networks. Below, all
claims are statistically significant at the 95% significance
level. As the baseline for comparison, we trained and tested
the Lenet and Alexnet architectures without the common-
sense reasoning and attention mechanism modules, i.e., di-
rectly on the RGB-D input images.

4.2 Experimental Results

The first set of experiments was designed as follows, with
results summarized in Figure 6:

1. Training datasets of different sizes (100, 200, 1000, and
5000 images) were used to train the Lenet and Alexnet
networks. The remaining images were used for test-
ing. Attention mechanism and commonsense reasoning
were not used, with results summarized as “Lenet” and
“Alexnet” in Figure 6.

2. The datasets after applying the attention mechanism were
derived from the datasets in step-1, and used to train and
test the Lenet and Alexnet networks, with the results plot-
ted as “Lenet(Att)” and “Alexnet(Att)” in Figure 6.

Figure 6 indicates that our architecture improves the ac-
curacy of the Lenet and Alexnet networks for the joint esti-
mation of stability and occlusion in scenes. We notice that
training and testing the deep networks with only those im-
ages that ASP-based reasoning cannot label, enables atten-
tion to be focused on the relevant image regions, resulting in
better performance. The benefits are more pronounced when
the training dataset is smaller, but there is significant im-
provement in performance at all training dataset sizes. These
results support hypothesis HI1.

Figure 7 shows two examples of the improvement pro-
vided by the attention mechanism. In Figure 7a, both Lenet
and the Lenet(Att) networks were able to recognize the oc-
clusion of the red cube caused by the green mug, but only
Lenet(Att), which uses the attention mechanism in conjunc-
tion with commonsense reasoning, was able to estimate the
instability of the tower. In Figure 7b, both networks correctly
predicted the instability of the tower, but only Lenet(Att)

(a) (b)
Figure 7: Examples of test images for the Lenet CNN: (a)
Lenet and Lenet(Att) detected the occlusion of the red cube
by the green mug, but only Lenet(Att) correctly predicted the
tower’s instability; and (b) Lenet and Lenet(Att) predicted
the instability of the tower, but only the Lenet(Att) detected
the occlusion of the green cube by the yellow cylinder.
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Figure 8: Accuracy of Lenet with and without the attention
mechanism and commonsense reasoning module. Any de-
sired accuracy is achieved with a much smaller training set.

identified the occlusion of the green cube by the yellow can.
The classification errors are most probably because a similar
example had not been observed during training—the inabil-
ity to identify the true cause of the error is a known limita-
tion of deep architectures. The attention mechanism focuses
the attention of the network on the relevant image regions,
resulting in better classification accuracy. For this example,
the CNNs were trained with 1000 images, and the two test
scenes were not seen during training.

The second set of experiments was designed as follows,
with results summarized in Figure 8:

1. The Lenet network was trained with training datasets con-
taining between 100 — 1000 images, in step-sizes of 100.
Separate set of scenes was created for testing. The base-
line CNN used the training datasets without the common-
sense reasoning module or attention mechanism.

2. The dataset after applying the attention mechanism was

derived from these training datasets, and used to train and
test a CNN; results plotted as “Lenet(Att)” in Figure 8.

In these experiments, we only used Lenet because it was ob-
served to provide performance comparable to Alexnet with
much less computational effort.



Axioms Precision Recall
Unknown 98% 100%
(normal)
Unknown

62%
(default) 8% o

Table 1: Precision and recall for unknown axioms (normal,
default) using decision tree induction.

Figure 8 indicates that the attention mechanism supported
by commonsense reasoning achieves a desired level of ac-
curacy with much fewer training examples. For instance, the
orange dashed line in Figure 8 indicates that the baseline
Lenet needs =~ 1000 images to reach an accuracy of 77%,
whereas our architecture reduces this number to ~ 600. In
other words, the deep networks can be trained with fewer ex-
amples because the commonsense knowledge is exploited,
reducing both the computation and storage requirements.
These results support hypothesis H2.

Finally, the third set of experiments was designed as fol-
lows, with results summarized in Table 1:

1. Ten sets of 50 labeled images were created by random
selection. The axiom learning algorithm was trained with
each set three times, using thresholds of 95% and 70% as
described in Section 3.2.

2. The precision and recall for the unknown axioms (with
threshold of 95%), e.g., Statements 3(a), 3(b), and 4, are
summarized as “unknown (normal)” in Table 1.

3. The precision and recall for the unknown default state-
ments (with threshold of 70%), e.g., Statement 2, are sum-
marized as “unknown (default)” in Table 1;

Table 1 demonstrates the ability to learn previously un-
known axioms. Errors are predominantly variants of the tar-
get axioms that are not in the most generic form, i.e., they
have some irrelevant literals. The lower precision and recall
with defaults is expected because it is challenging to distin-
guish between defaults and their exceptions. Although we do
not describe it here, reasoning with commonsense knowl-
edge and decision trees also provides explanations for the
architecture’s performance.

Finally, we ran experiments with the objective of comput-
ing minimal plans to pickup and clear particular objects. The
number of plans computed when the learned axioms are in-
cluded in the ASP program is much smaller than when the
axioms are not included—the learned axioms are constraints
that eliminate irrelevant paths in the transition diagram. For
instance, the goal in one experiment was to clear the large
red box partially hidden behind the white box and the duck
in Figure 9. With all the axioms, eight plans are found (all
of which were correct); with some axioms missing, as many
as 90 plans are found, many of which were incorrect. These
results support hypothesis H3.

5 Conclusion

Deep network architectures and algorithms are providing
state of the art performance for many pattern recognition

Target

Figure 9: Illustrative image used for planning experiments
with and without the learned axioms.

tasks in robotics and Al. However, they require large train-
ing datasets and considerable computational resources, and
make it difficult to understand their operation. The archi-
tecture described in this paper draws inspiration from re-
search in cognitive systems to address these limitations. It
combines the principles of reasoning with incomplete com-
monsense domain knowledge, and decision tree induction,
with deep learning. In the context of estimating occlusion
of objects and the stability of object configurations in simu-
lated images, we observe that the proposed architecture im-
proves the accuracy and computational efficiency of the deep
network architectures. Future work will further examine the
performance of this architecture in more complex domains,
and explore the explainability of the observed performance.
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