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Abstract This paper makes two contributions towards en-
abling a robot to provide explanatory descriptions of its de-
cisions, the underlying knowledge and beliefs, and the expe-
riences that informed these beliefs. First, we present a the-
ory of explanations comprising (i) claims about represent-
ing, reasoning with, and learning domain knowledge to sup-
port the construction of explanations; (ii) three fundamental
axes to characterize explanations; and (iii) a methodology
for constructing these explanations. Second, we describe an
architecture for robots that implements this theory and sup-
ports scalability to complex domains and explanations. We
demonstrate the architecture’s capabilities in the context of
a simulated robot (a) moving target objects to desired loca-
tions or people; or (b) following recipes to bake biscuits.

Keywords Human-Robot Collaboration · Explanations ·
Non-monotonic Logical Reasoning · Probabilistic Planning

1 Motivation

Robots can collaborate more effectively with humans if they
can describe their decisions, the underlying beliefs, and the
experiences that informed these beliefs. Enabling a robot to
provide such explanatory descriptions is a challenging prob-
lem. The robot often makes decisions based on different de-
scriptions of uncertainty and incomplete domain knowledge.
For instance, a robot in a university building may know that
“books are usually in the library”, and may process sensor
inputs to infer that “the robotics book is in Prof. X’s of-
fice with 90% certainty”. While reasoning with this knowl-
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edge to compute a plan for any given goal, e.g., “move the
robotics book to the meeting room”, the robot evaluates the
available options using different performance measures, e.g.,
“corridor-1 is a shorter path to the library than corridor-2,
but it is more crowded”. While reasoning or executing ac-
tions in the domain, the robot acquires new information that
may complement or contradict existing beliefs. Also, hu-
man participants (if any) may not have the time or expertise
to provide comprehensive information or extensive supervi-
sion. Furthermore, when an explanation is solicited by a hu-
man, it must be provided in an appropriate format and level
of abstraction for it to be useful.

With the increasing use of AI and machine learning algo-
rithms in different applications, there is renewed interest in
understanding the decisions of these algorithms as a means
to improve the algorithms and promote accountability. There
is considerable work on making the decisions of an exist-
ing learned model or reasoning system more interpretable,
and on modifying an existing learning or reasoning system
to make decisions that are easier for humans to understand.
Many such approaches tend to be computationally expen-
sive, or are perceived as lacking information or containing
too many unnecessary details (Johnson, 1994b). In this pa-
per, we instead seek to formalize a holistic view of the pro-
cess of describing decisions, beliefs, and experiences during
reasoning, learning, and execution in human-robot collabo-
ration. In our formalism, the desired transparency in deci-
sion making is fully integrated with, and strongly influenced
by, the underlying knowledge representation, reasoning, and
learning methods. We make the following contributions:
1. Present a theory of explanations comprising claims about

representing, reasoning with, and learning knowledge to
support explanations; axes characterizing explanations
based on abstraction of representation, explanation speci-
ficity, and explanation verbosity; and a methodology for
constructing explanatory descriptions.
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2. Describe an architecture for robots that implements our
theory, exploits the underlying representation and rea-
soning mechanisms to identify and compute the infor-
mation relevant to the human query, and reliably and
efficiently constructs suitable explanatory descriptions
that answer the query.

We illustrate the architecture’s capabilities in the context of a
simulated robot assisting humans by (i) delivering objects to
different locations or people in an office building; or (ii) fol-
lowing recipes to bake biscuits in a kitchen. We first review
related work (Section 2). We then describe our theory of ex-
planation (Section 3) and our architecture that implements
this theory (Section 4). Section 5 explores the impact of our
theory, in conjunction with the representation and reasoning
methods, on scalable construction of explanatory descrip-
tions, followed by a discussion of future work in Section 6.

2 Related Work

Research in cognition, psychology, and linguistics influenced
some of the early work on representing and reasoning about
explanations. Friedman (1974) presented a theory of sci-
entific explanation in terms of generality, objectivity, and
connectivity, and Grice (1975) characterized cooperative re-
sponse as being valid, informative, relevant, and unambigu-
ous. Fundamental computational models have also been de-
veloped for explanation generation (de Kleer et al., 1992;
McKeown and Swartout, 1987; Reiter, 1987).

With AI and machine learning algorithms being used
in different applications, there is renewed interest in under-
standing their outcomes as a means to improve reliability
and establish accountability. Workshops and sessions have
been organized at premier conferences on topics such as
Explainable AI and Explainable Planning in the last few
years. Work in this area can be broadly categorized into two
groups (Miller, 2017). Methods in the first group modify
or map learned models or reasoning systems to make their
decisions interpretable, e.g., explaining the predictions of
any classifier by using its decisions to learn an interpretable
model (Koh and Liang, 2017; Ribeiro et al., 2016), or adding
bias in a planning system towards making decisions easier
for humans to understand (Zhang et al., 2017). Methods in
the second group present descriptive explanations of the de-
cisions made by reasoning systems, e.g., methods that ex-
plain changes in an agent’s goals (Dannenhauer et al., 2018)
or plans (Roberts et al., 2018), or allow humans to poll the
system about alternative plans (Borgo et al., 2018; Sreedha-
ran et al., 2018). Much of this research has been agnostic to
how an explanation is structured and presented (Chakraborti
et al., 2017; Winikoff et al., 2018; Borgo et al., 2018; Sreed-
haran et al., 2018), assumed complete domain knowledge
(Chakraborti et al., 2017), or has had limited instantiation
in working systems (Roberts et al., 2018; Wicaksono et al.,

2017). Our work is more similar to those in the second group
and addresses their limitations.

Human studies have been used to identify principles gov-
erning explanations (Brown and Kleeck, 1989) and present a
theory requiring explanations to be understandable, context-
specific, and justifiable (Gregor and Benbasat, 1999). Hu-
man studies have also been used to emphasize the impor-
tance of presenting information in the right way (Feiner and
McKeown, 1989). Prior work on agents describing decisions
in a simulated tactical combat domain indicates that an agent
should describe its activities, goals, rationale, and experi-
ences; and answer explanatory questions in suitable formats
based on a model of user beliefs (Johnson, 1994a).

There is limited work on the kind of recounting (of de-
cisions, underlying beliefs, and experiences that informed
these beliefs) that is the focus of our work, but explanations
have been grouped into those of outcomes at the system level
(“reasoning trace explanations”), strategies at the problem-
solving level (“strategic explanations”), and of reasons for
particular states and actions (“deep explanations”) (South-
wick, 1991). Sheh (2017) distinguishes between three ex-
planation “depths”, where model attributes and their use, or
information about model generation, are considered for gen-
erating explanations categorized as teaching, introspective
tracing, introspective informative, post-hoc, and execution.

Very few approaches systematically identify dimensions
suitable for characterizing explanations in human-robot col-
laboration. In one approach, a robot uses three axes (abstrac-
tion, specificity, locality) to verbalize its navigation expe-
rience to humans (Rosenthal et al., 2016). This work uses
methods hard-coded for traversing a building; it does not
generalize to other domains. For instance, locality determines
the subset of the route to be used to construct the explana-
tion, and specificity considers different parts of the route at
different levels. The authors derive these axes from research
on user preferences (Dey, 2009; Bohus et al., 2014; Thoma-
son et al., 2015), but these studies are too dissimilar to an
agent narrating its experiences. A recent survey of work on
explainable agents and robots indicates the need for a gen-
eral theory of explanations for human-robot collaboration
that is integrated with the underlying representation, reason-
ing and learning abilities (Anjomshoae et al., 2019).

Our prior work outlined the capabilities and systems an
agent needs to explain its decisions (Langley et al., 2017).
In this paper, we provide a holistic formalization of the pro-
cess of providing explanatory descriptions of decisions, be-
liefs, and experiences. We present a theory of explanations
for human-robot collaboration that is fully integrated with,
and strongly influenced by, the knowledge representation,
reasoning, and learning capabilities. We also describe an im-
plementation of this theory in an architecture that supports
scalable reasoning. An initial version of this work appeared
as a symposium paper (Sridharan and Meadows, 2019).
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3 Theory of Explanation

This section describes our theory of explanation comprising
the guiding principles or claims (Section 3.1), the axes char-
acterizing explanations (Section 3.2), and the methodology
for generating explanations (Section 3.3).

3.1 Guiding Principles

Based on insights gained from prior work, we have iden-
tified the following guiding principles or claims to support
explanations in human-robot collaboration:

1. Explanations should present context-specific information
relevant to the domain, task or question under consider-
ation, at an appropriate level of abstraction.

2. Explanations should be able to provide online descrip-
tions of decisions, rationale for decisions, knowledge,
beliefs, experiences that informed the beliefs, and un-
derlying strategies or models.

3. Explanation generation systems should have as few task-
specific or domain-specific components as possible.

4. Explanation generation systems should consider human
understanding and feedback to inform their choices while
constructing explanations.

5. Explanation generation systems should use knowledge
elements that support non-monotonic revision based on
immediate or delayed observations obtained from active
exploration or reactive action execution.

The implementation of these principles in an architecture in-
fluences and is influenced by how knowledge is represented,
reasoned with, and learned in the architecture. We choose to
expand our prior architecture (Section 4) because it provides
capabilities that facilitate this implementation.

3.2 Characteristic Axes

Based on these claims, we propose the use of the following
three fundamental axes to characterize explanations:

1. (Representation abstraction) This axis models the lev-
els of abstraction at which knowledge is represented for
reasoning and explanation. For instance, the robot may
use a coarse-resolution domain description in terms of
rooms and the objects (e.g., cups, books) in these rooms,
or it may use a fine-resolution description in terms of
grid cells in the rooms and object parts (e.g., cup handle,
cup base) in these grid cells.

2. (Communication specificity) This axis models what
the robot focuses on while communicating with the hu-
man. For instance, to explain the decision to traverse a
longer corridor instead of a shorter one, the robot may
provide: (i) an explanation that considers the corridors’
crowdedness; or (ii) an explanation that considers the
crowdedness of the corridors, the robot’s energy levels

and ability to move safely, and the objective of maxi-
mizing task completion and safety.

3. (Communication verbosity) This axis models the com-
prehensiveness of the response provided. For instance,
when asked to explain the plan computed to achieve a
particular goal, the robot may describe: (i) just the last
action in its plan and how it achieves the goal; (ii) all
the the actions in the plan that results in the goal being
achieved; or (iii) all the actions in the plan, along with
the preconditions and effects of each of them, to show
how the goal is achieved.

Each explanation maps to a point along each of these axes,
i.e., it maps to the three-dimensional space defined by these
axes. Varying the point along these axes changes the infor-
mation included in (and communicated by) the explanation,
and the format in which this information is communicated.

3.3 Methodology for Generating Explanations

Given an implementation of the claims and the characteris-
tic axes, we propose the following methodology to provide
explanations in response to any particular query:

1. In response to a specific question/request, parse human
input to determine what is being asked.

2. Choose a suitable position along each of the three axes
to inform how the explanation will be structured.

3. Determine what needs to be described in the explana-
tion. This may take the form of choices made, justifica-
tion for these choices, knowledge elements, beliefs, and
experiences that informed these beliefs.

4. Reason with domain knowledge to compute required in-
formation (if needed) and to identify relevant knowledge
elements. Use the decisions about the structure of the
explanation to transform these knowledge elements into
context-specific explanatory elements.

5. Construct explanations from the explanatory elements,
limiting the use of domain-specific knowledge. Construct
verbalizations of these explanations to answer user queries.

6. Use human feedback to revise the choice made in Step 2
about a suitable point along the three axes.

Following this methodology will enable the robot to provide
explanations that are relevant to the task and user under con-
sideration. In Section 4.6, we will expand on this general
methodology to provide a specific sequence of steps to be
followed to generate the desired explanations. The next sec-
tion describes an implementation of our theory in a cognitive
architecture. We will primarily use the following example
domain to illustrate the capabilities of the architecture.

Example Domain 1 [Robot Assistant (RA)]
Consider a robot that has to find and deliver objects to peo-
ple or places (study, office, workshop, kitchen) in an in-
door domain. Each place may have instances of objects such
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as book and cup. Each human has a role (e.g., engineer,
manager, sales). Objects are characterized by the attributes
size and color. Some other details of the domain include:

– The position of the robot and objects can change due to
the execution of one or more actions of the robot.

– The robot can move to a place, pick up or put an object
at a particular place, or deliver an object to a person.

– The domain may be viewed at different resolutions, e.g.,
a place can be one or four rooms or one of four cells
within each room, and the robot may move an object or
a part of the object to a particular room or grid cell.

Reasoning occurs over finite time steps with partial knowl-
edge of domain objects and the rules governing the domain
dynamics, e.g., the robot knows that objects can only be de-
livered to people in the same place as the robot; we provide
some examples of axioms later in this paper.

We will use a variant of this domain (RA∗) to explore the
impact of quantization on explanations, e.g., a room with
100 cells instead of four. We also use the following domain
based on the scenario in (Bollini et al., 2013).

Example Domain 2 [Robot Baker (RB)]
A robot baker in a kitchen has two work tables, one for
preparation and another with a toaster oven. For an item to
be baked, all ingredients (cocoa, sugar, flour, cornflakes,
and butter) are pre-measured and placed in bowls on the ta-
ble. Kitchen tools are characterized by type (bowl, tray,
oven), material (plastic, metal), size (small, medium,
large) and color (red, yellow, silver), e.g, five plastic in-
gredient bowls of various sizes and colors, a large mixing
bowl, a metal oven tray, and a toaster oven. Other details of
this domain include:

– The robot has grasping and stirring manipulators.
– The domain may be viewed at different resolutions, e.g.,

the tools may be on the work table or in one of the six
cells considered on the work table.

This domain’s encoding involves deeper sort hierarchies than
the RA domain, e.g., an object may be a mixing bowl,
which is a bowl, which is a container, which is an object,
which is a thing. Also, plans in the domain, which represent
recipes being followed, can be more varied, with many more
coarse and fine-resolution actions, e.g., to bake “Afghan bis-
cuits”, the robot has to pour, mix, scrape, preheat, re-position,
bake, etc, each of which can be represented by up to ten fine-
resolution actions.

4 Reasoning Architecture
Figure 1 shows our overall architecture. It is based on the
principle of step-wise refinement and reasons with tightly-
coupled transition diagrams at different resolutions. Depend-
ing on the domain and tasks, the robot computes and exe-
cutes plans at two resolutions, but constructs explanations at
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Representation
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Fig. 1 Architecture represents and reasons with tightly coupled transi-
tion diagrams at different resolutions. It combines the complementary
strengths of declarative programming and probabilistic reasoning.

other resolutions as needed. For ease of understanding, we
focus on two resolutions in the description below, with the
fine-resolution transition diagram defined as a refinement of
the coarse-resolution diagram; we briefly discuss extensions
to other resolutions later. For any given goal, non-monotonic
logical reasoning with commonsense domain knowledge in
the coarse resolution provides a plan of abstract actions.
Each abstract transition is implemented as a sequence of
concrete actions by automatically zooming to and reason-
ing with the relevant part of the fine-resolution diagram.
Each concrete action is executed using probabilistic models
of the uncertainty in sensing and actuation, with the rele-
vant outcomes added to the histories at the appropriate res-
olutions. Reasoning also guides the interactive learning of
previously unknown actions, action capabilities, and axioms
representing domain dynamics. The architecture combines
the complementary strengths of declarative programming,
probabilistic reasoning, and relational learning, and is viewed
as a logician and statistician working together. Subsets of
components, except the theory of explanation and its im-
plementation, are described in other papers (Gomez et al.,
2018; Sridharan et al., 2019; Sridharan and Meadows, 2018).
We summarize the components here for completeness.

4.1 Action Language

Action languages are formal models of parts of natural lan-
guage used for describing transition diagrams of dynamic
systems. Our architecture uses action language ALd (Gel-
fond and Inclezan, 2013) to describe the different transition
diagrams. ALd has a sorted signature with statics (fluents),
i.e., domain attributes whose truth values cannot (can) be
changed by actions, and actions, a set of elementary oper-
ations. Fluents can be basic, which obey inertia laws and
can be changed by actions, or defined, which do not obey
the laws of inertia and are not changed directly by actions.
A domain attribute or its negation is a literal. ALd allows
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three types of statements: causal law, state constraint, and
executability condition.

4.2 Knowledge Representation

The coarse-resolution domain description comprises a sys-
tem description Dc of transition diagram τc, which is a col-
lection of statements ofALd, and historyHc. Dc comprises
a sorted signature Σc and axioms governing domain dy-
namics. For the RA domain, Σc defines basic sorts such as
place, thing, robot, person, object, and cup, arranged hi-
erarchically, e.g., object and robot are subsorts of thing, the
sort step for temporal reasoning, and instances of sorts, e.g.,
rob1 and cup1. For theRA domain,Σc includes statics such
as next to(place, place) and obj color(object, color), flu-
ents loc(thing, place) and in hand(robot, object), and ac-
tionsmove(robot, place), give(robot, object, person), and
pickup(robot, object); exogenous actions can be included
to explain unexpected observations. Σc also includes the re-
lation holds(fluent, step) to imply that a fluent is true at a
time step. Dc for the RA domain includes axioms such as:

move(rob1, P ) causes loc(rob1, P )

loc(O,P ) if loc(rob1, P ), in hand(rob1, O)

impossible give(rob1, O, P ) if loc(rob1, L1), loc(P,L2)

that are used for reasoning. Finally, the history Hc of a dy-
namic domain is typically a record of fluents observed to be
true or false at a time step, and the occurrence of an action
at a time step. Prior work expanded this notion to represent
defaults describing the values of fluents in the initial state.
For instance,Hc of theRA domain encodes “books are usu-
ally in the library and if it not there, they are normally in the
office”, with the exception “cookbooks are in the kitchen”.
For more details, please see (Sridharan et al., 2019).

4.3 Reasoning with Knowledge

Reasoning tasks of a robot associated with a domain de-
scription include inference, planning and diagnostics. To do
so, the domain description is translated to a program in CR-
Prolog, a variant of Answer Set Prolog (ASP) that incorpo-
rates consistency restoring (CR) rules (Balduccini and Gel-
fond, 2003). We use the terms CR-Prolog and ASP inter-
changeably in this paper. ASP is based on stable model se-
mantics, and supports default negation and epistemic dis-
junction, e.g., unlike “¬a” that states a is believed to be
false, “not a” only implies a is not believed to be true.
A literal can thus be true, false or unknown. ASP repre-
sents recursive definitions and constructs difficult to express
in classical logic formalisms, and supports non-monotonic
logical reasoning. For coarse-resolution reasoning, program
Π(Dc,Hc) includes Σc and axioms of Dc, inertia axioms,
reality checks, closed world assumptions for defined fluents

and actions, and observations, actions, and defaults from
Hc. Every default also has a CR rule to let the robot as-
sume the default’s conclusion is false to restore consistency
under exceptional circumstances. An answer set of Π rep-
resents the robot’s beliefs. Algorithms for computing entail-
ment, and for planning and diagnostics, reduce these tasks to
computing answer sets of CR-Prolog programs. We compute
answer sets using the SPARC system (Balai et al., 2013).

4.4 Refinement, Zooming and Probabilistic Execution

Although reasoning with Π(Dc,Hc) provides a plan of ac-
tions for any given goal, the robot may not be able to exe-
cute some actions or to observe the values of some fluents.
For instance, a robot may not be able to directly observe if
it is located in a given room, or to pick up an object just
because it is in the same room. Actions that cannot be ex-
ecuted directly and fluents that cannot be observed directly
are considered to be abstract. To implement an abstract tran-
sition, we construct a fine-resolution system description Df

of transition diagram τf that is a refinement of Dc. Refine-
ment may be viewed as looking through a magnifying lens,
potentially discovering domain structures that were previ-
ously abstracted away (intentionally). We briefly describe
the steps below; see (Sridharan et al., 2019) for details.

We first construct a weak refinement ignoring the ability
to observe the values of fluents. Signature Σf includes (i)
elements of Σc; (ii) new sort for every sort of Σc magnified
by the increase in resolution; (iii) counterparts for each mag-
nified domain attribute (and actions with magnified sorts)
from Σc; and (iv) domain-dependent static relations that re-
late magnified objects and their counterparts. For the RA
domain, new basic sorts in Σf include:

place∗ = {c1, . . . , cm}, cup∗ = {cup1 base, cup1 handle}

where {c1, . . . , cm} are cells in places, base and handle are
components of cup, and “*” denotes fine-resolution coun-
terparts. Domain attributes and actions of Σf include those
of Σc modified to reflect the basic sorts of Σf :

loc(thing, place), loc∗(thing∗, place∗),

move(robot, place), move∗(robot, place∗)

in hand(robot, object), in hand∗(robot, cup∗)

Axioms of Df are obtained by restricting the axioms of Dc

to Σf , e.g., axioms of the RA domain include:

move∗(R,C) causes loc∗(R,C)

pickup(R,O) causes in hand(R,O)

pickup∗(R,Cp) causes in hand∗(R,Cp)

loc(O,P ) if component(C,P ), loc∗(O,C)

Next, to represent the ability to make observations, our the-
ory of observation expands Σf to include knowledge pro-
ducing actions that test the value of fluents and changes
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knowledge fluents describing observations of fluents. Ax-
ioms are added to Df to encode the test actions, using suit-
able domain-dependent defined fluents, e.g., to describe when
the robot can test the value of fluents. For each transition be-
tween coarse resolution states σ1 and σ2, we can show that
there is a path in τf between a refinement of σ1 and a refine-
ment of σ2—the proof is in (Sridharan et al., 2019).
Df does not have to be revised unless the domain changes

significantly, but reasoning with Df becomes computation-
ally unfeasible for complex domains. For any abstract transi-
tion T = 〈σ1, aH , σ2〉 ∈ τH , the robot automatically zooms
to and reasons with Df (T ), the part of Df relevant to T . To
obtain Df (T ), the robot determines the object constants of
Σc relevant to T , restrictsDc to these object constants to ob-
tain Dc(T ), computes the basic sorts of Σf (T ) as those of
Σf that are components of the basic sorts ofDc(T ), restricts
domain attributes and actions of Σf (T ) to these basic sorts,
and restricts axioms ofDf to Σf (T ). For the transition T =

〈σ1,move(rob1, kitchen), σ2〉 with loc(rob1, office) ∈ σ1
in the RA domain, Σf (T ) includes basic sorts robot =

{rob1}, place = {office, kitchen} and place∗ = {ci :

ci ∈ kitchen ∪ office}, domain attributes loc∗(rob1, C)
taking values from place∗ and loc(rob1, P ) taking values
from place, and actions move∗(rob1, ci) and suitable test
actions. Restricting the axioms ofDf toΣf (T ) removes ax-
ioms for pickup and putdown, and irrelevant constraints.
For any coarse-resolution transition T , there is a path in
Df (T ) between a refinement of σ1(T ) and a refinement of
σ2(T )—see (Sridharan et al., 2019) for details.

Our prior work constructed a partially observable Markov
decision process fromDf (T ) to implement T . Since this ap-
proach is computationally inefficient for complex domains,
we now construct and solve Π(Df (T ),Hf ) to obtain a se-
quence of concrete actions, each of which is executed by
the robot using existing algorithms (e.g., for path planning
and object recognition) that consider learned probabilistic
models of the uncertainty in sensing and actuation. High-
probability outcomes of a concrete action are elevated to
statements with certainty in Hf , and the outcomes of rea-
soning with Π(Df (T ),Hf ) are added toHc.

4.5 Interactive Learning

Reasoning with incomplete knowledge can produce incor-
rect or suboptimal outcomes. Learning previously unknown
actions and axioms may require many labeled examples,
which is difficult in robot domains. Also, humans may not
have the time and expertise to provide labeled examples or
supervision, and an action’s effects may be delayed.

Our architecture includes two schemes for interactively
acquiring labeled examples and previously unknown domain
knowledge. The first scheme enables active learning of ac-
tions and causal laws from human verbal descriptions of the
observed behavior of other robots. This scheme assumes that

(a) other robots in the domain (whose behavior can be ob-
served) have the same capabilities as the learner robot; and
(b) human description of the observed behavior focuses on
one action at a time, and it may be ambiguous but not in-
tentionally incorrect. When human input is available, the
learner receives a transcribed verbal description of an action
and extracts a relational representation of the observed ac-
tion’s consequences. Standard natural language processing
tools such as a part of speech tagger and the linked synsets
of WordNet are used to process the transcribed description
to extract sorts, attributes, and actions. The new elements
are added to the signature and used with the processed ob-
servations to construct new causal laws, incrementally gen-
eralizing over time. For instance, processing “the robot is la-
beling a big textbook” and the observation labeled(book1)
results in the new action label(robot, book) and the causal
law label(robot, book) causes labeled(book).

The second scheme enables learning of action capabil-
ities and axioms governing domain dynamics, e.g., causal
laws and executability conditions. It considers observations
obtained either by actively exploring the potential effects of
an action, or through (reactive) action execution when an ac-
tion does not have the expected outcome. This scheme first
picks a state transition to be explored further. The task of
identifying state-action combinations likely to produce the
transition of interest in the presence of immediate or delayed
rewards, is posed as a reinforcement learning (RL) problem
to mimic interaction with the domain. This basic RL formu-
lation becomes computationally unfeasible for complex do-
mains. To make learning more tractable, we use ASP-based
reasoning to automatically restrict learning to object con-
stants, domain attributes, and axioms relevant to the desired
transition. To further limit the search space and support gen-
eralization, a decision tree is learned based on the relational
representation and the examples from RL trials (i.e., states,
actions, and rewards experienced). The tree provides a pol-
icy to direct exploration in the subsequent RL trials, and
candidate axioms that are generalized over time. For more
details, see (Sridharan and Meadows, 2018).

4.6 Constructing Explanations

To construct an explanation in response to a query, the robot
uses an instantiation of the general methodology described
in Section 3.3. Existing software implementations of algo-
rithms enable the robot to determine parts of speech in text
(or transcribed verbal input), and select appropriate words
and translate their synonym sets into a controlled vocabu-
lary of domain terms (e.g., objects, actions, and relations).
Existing software is also used to construct sentences from
templates based on the controlled vocabulary, distinguish
between physical entities and mental concepts, and to so-
licit feedback from humans. Although we do not discuss it
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in this paper, we also have software that can be used to vi-
sually identify domain objects, actions, and spatial relations
when we use our architecture on physical robots. The spe-
cific steps to be followed are:

1. Parse input query to extract cues (i.e., words and phrases)
that match known templates and controlled vocabulary.
Given a particular query, e.g., “where is the huge soft-
ware manual?”, first extract the parts of speech, e.g.,
adjective:‘big’ and compound noun:‘software manual’,
and then identify matching words in the vocabulary, e.g.,
‘huge’ = ‘large’ and ‘software manual’ = ‘book’. Also
extract key words (e.g., “where”, “why”, “describe”, “de-
tail”) that help determine the kind of explanation to be
constructed (more details below).

2. Use cues from query to select a point along the represen-
tation abstraction axis, i.e., choose a suitable resolution.
Reuse resolution selected for the previous interaction, or
use a baseline resolution, unless user query indicates a
preference. For instance, if the user input contains the
phrase “Please provide a more detailed...”, it directs the
robot to select a coarser resolution.

3. Choose points along the communication specificity and
verbosity axes using cues extracted from the query. Once
again, choose a baseline point or continue with a pre-
vious selection unless the query indicates a preference,
e.g., the input phrase “Very briefly tell me...” directs the
robot to the low end of the verbosity axis.

4. Reason with domain knowledge at the appropriate reso-
lution, and with the identified cues (from query), to com-
pute answer sets (if needed), and to identify relevant lit-
erals representing knowledge elements (objects, actions,
relations). For instance, “what did you do at step 3?”
requires the action executed at that time step to be ex-
tracted from the answer set, and “why did you move to
the library at step 2?” requires the robot to compute the
answer set before and after the action’s execution, iden-
tify changes in beliefs, and to relate these changes to the
goal and query.

5. Use chosen points along the three axes, the controlled
vocabulary, and the known subject-object-predicate tem-
plates, to transform the identified elements to text de-
scriptions . For instance, pick up(rob1, book2), where
book2 is a robotics book, provides the description “the
robot picked up the robotics book”. This includes the se-
lection of attributes to use as modifiers, e.g., “a room”
or “a medium-sized, library room”, and the choice of
the reference symbol, e.g., “a library”, “the library”, or
study1 refer to the same place.

In the specific implementation whose evaluation we report
below, we considered two tightly-coupled resolutions (ab-
straction axis). Also, for each requested increase (decrease)
in the level of detail, we increased (decreased) by a factor
the number of related knowledge elements (specificity) and

the level of detail (verbosity) used to construct explanations.
These choices and the domain’s quantization influence the
ambiguity of the explanatory descriptions. High verbosity
and high specificity descriptions are unambiguous whereas
low verbosity and low specificity descriptions are confus-
ing; also, if rooms have 10 × 10 cells instead of 2 × 2, the
length of the plan and explanation increases. Our software
for reasoning and constructing explanations is available in
our repository (Meadows and Sridharan, 2018). Note that
the methodology and steps for generating explanations are
general and can be adapted to other domains, resolutions etc.

5 Execution Examples and Results

Our focus in this paper is on exploring how the interplay
between knowledge representation, reasoning, and learning
supports interactive explanation generation. The coupling
between the architecture’s components enables these capa-
bilities but makes it challenging to perform an extensive
quantitative evaluation or comparison with other architec-
tures; this is a known problem with cognitive architectures.
We have reported the scalability and reliability of knowledge
representation, reasoning, and learning with the our baseline
refinement-based architecture in other papers (Sridharan and
Meadows, 2018; Sridharan et al., 2019). In this section, we
thus first discuss execution traces that illustrate the impact
of our guiding principles on the ability to construct explana-
tions interactively (Section 5.1). We then measure the relia-
bility and computational cost of generating explanations as
a function of the complexity of the domain and the expla-
nations (Section 5.2). We aim to use insights obtained from
these traces and experiments to conduct suitable usability
studies with human subjects in the future.

5.1 Execution Traces

We use execution traces based on the three illustrative do-
mains described in Section 3.3 to examine the failure cases
that could exist in the absence of the corresponding guid-
ing principle in the theory. We hypothesize that the robot
is able to provide explanations in response to user requests
(or queries), and that the approach to provide explanations
scales to complex domains and explanations. For ease of
understanding, we omit some parts of the explanations and
show them as “[...]” in the text.

Principle #1: Explanations should present context-specific
information relevant to the domain, task or question under
consideration, at an appropriate level of abstraction.

Execution Example 1 [Example 1: RA Domain]
Consider a robot in the RA domain that has just moved a
book to the study and delivered a book from the study to the
engineer in the office.
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– Human: “Please describe the plan you executed.”
Robot: “ [...] I moved to the study. I put down a small
programming book on table1. I picked up a large robotics
book from table1. I moved to the office. I gave the large
robotics book to the engineer. I achieved the goal.”

– When asked to provide a more detailed description, the
robot revises the point along the abstraction axis; in the
current implementation, this corresponds to using the
fine-resolution description to generate an explanation.
Human: “Provide a more detailed description.”
Robot: “[...] I moved to cell c2 in the study. [...] I moved
to cell c4 in the study and put down a small program-
ming book with a hard cover on the table. I picked up
the large robotics book with a soft cover by its spine
from the table. [...] I moved to cell c2 of the study. [...]
I moved to cell c7 of the office. I gave the large robotics
book to the engineer. I achieved the goal.”

The absence of this principle would permit explanations lack-
ing in domain information, e.g., the response may be “I moved
somewhere. Then I used something to act on something”.
The robot may also provide the information at an inappro-
priate level of abstraction, e.g., the robot may respond to
“Briefly tell me what happened” with “I moved to cell c4 in
the library. I moved to cell c3 in the library. I picked up
book2. [...] I moved to cell c6 in the study [...]”.

Principle #2: Explanations should be able to provide online
descriptions of decisions, rationale for decisions, knowledge,
beliefs, experiences that informed the beliefs, and underly-
ing strategies or models.

Execution Example 2 [Example 2: RA Domain]
Consider again the robot in theRA domain that has just col-
lected a book from the study and delivered it to the engineer
in the office, as in Example 1 above.

– During planning or plan execution, the robot can explain
the need for particular actions, and explain their direct
and indirect effects.
Human: “Why did you move to cell c4 of the study?”
Robot: “I had to retrieve the large robotics book from
the table. The table is in cell c4 of the study.”

– Human: “Relationally describe the effects of moving to
cell c4 of the study.”
Robot: loc∗(rob1, cell4), loc(rob1, study).

– Human: “Why do you believe the heavy encyclopedia
is in the study?”
Robot: “At time 0, I assumed encyclopedia was in the
library. At time 4, I observed encyclopedia was in the
study. To restore consistency, I inferred encyclopedia
was in the study from time 0.”

Without the second guiding principle, the robot may be inca-
pable of providing suitable explanations for questions about

decisions (“why do you want to pick up [...]?”, “why did
you move to [...]?”), beliefs (“why do you believe [...]?”),
and related events (“what happened [...]?”, “when was book2
moved to [...]?”). Recent work explains goal changes based
on beliefs while planning with incomplete information (Dan-
nenhauer et al., 2018), but this work only presents desider-
ata without a formal framework to achieve them. Other work
proposes a formal theory and uses a belief-desire-intention
model to generate reasons that include facts, goals, action
outcomes, and failed actions, but the explanations are based
on fixed structures and complexity, and their implementation
is opaque to natural language (Winikoff et al., 2018). Also,
the desired online response in dynamic domains, which is
part of this claim, is achieved using the underlying refinement-
based framework—see Section 5.2.

Principle #3: Explanation generation systems should have
as few task-/domain-specific components as possible.

Execution Example 3 [Example 3: RB domain]
Consider a robot that has just completed baking Afghan bis-
cuits and is interacting with a human in the RB domain.

– Given the clear separation of concerns between the domain-
specific and domain-independent content, our architec-
ture can be adapted to the RB domain, although the
agent, its task, associated concepts, and the other ele-
ments of the signature differ from the RA domain.
Human: “Please describe the plan you executed.”
Robot: “ [...] I poured the cocoa in the yellow small
ingredient bowl to a red large mixing bowl. I poured
the cornflakes in a red medium ingredient bowl to the
red large mixing bowl. I mixed the contents of the red
large mixing bowl. I scraped the mixture to a metal-
lic silver medium baking tray. I picked up the metal-
lic silver medium baking tray. I moved to table2 with
the metallic silver medium baking tray in my hand. I
opened the silver toaster oven on table2. I put the metal-
lic silver medium baking tray in the silver toaster oven.
I closed the silver toaster oven. I baked the silver metal-
lic medium baking tray in the silver toaster oven for 20
minutes. I opened the silver toaster oven. I picked up
the metallic silver medium baking tray from the silver
toaster oven. I put the metallic silver medium baking tray
on table2. [...] I achieved my goal.”

The third guiding principle is supported by our architec-
ture’s representational choices, with the content being domain-
independent except when the agent interacts with the world
(i.e., for sensing or actuation). In the absence of this prin-
ciple, correct explanations may still be generated for differ-
ent domains, but a greater effort (human and computational)
and architectural changes may be required to represent and
reason in different domains. For example, the framework re-
ported by (Rosenthal et al., 2016) is designed for the specific
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task of robot navigation; narrating an agent’s behavior in a
new domain will require changes to the architecture. Wicak-
sono et al. (2017) also consider fixed questions and answers
for a tool use domain. Roberts et al. (2018) present a the-
ory of plan explanation that is not domain specific, but they
make a representational commitment to hierarchical struc-
tures and do not instantiate their theory. This claim also en-
sures that different explanations are provided in different do-
mains for principled reasons and not simply because of the
differences between the domains. For example, with our ar-
chitecture, the difference in quantization between RA and
RA∗ requires no additional programming for the explana-
tion module. Despite a marked increase in the number of
steps in the plans for these two domains, there is a signifi-
cant change in the size of explanations only when asked to
explain in a very fine resolution.

Principle #4: Explanation generation systems should con-
sider human understanding and feedback to inform their
choices while constructing explanations.

Execution Example 4 [Example 4: RB Domain]
Continue with the previous example in the RB domain.

– When asked to provide more concise and relevant in-
formation, the robot moves its operating point along the
specificity and verbosity axes.
Human: “Provide a concise and relevant description.”
Robot: “[...] I poured the cocoa in bowl5 tomixing bowl1.
I poured the cornflakes in bowl2 to mixing bowl1.
I mixed the contents of mixing bowl1. I scraped the
mixture in mixing bowl1 to baking tray1. I picked up
baking tray1. I moved to table2. I opened toaster oven1
on table2. I put baking tray1 in toaster oven1. I baked
baking tray1 in toaster oven1 for 20 minutes. I opened
toaster oven1. I picked up baking tray1. I then put
baking tray1 on table2. [...] I achieved my goal.”

– Human: “Please be more concise.”
Robot: “I preheated toaster oven1. I mixed flour, butter,
sugar, cocoa, and cornflakes inmixing bowl1. I scraped
the mixture to baking tray1. I baked baking tray1 in
toaster oven1 for 20 minutes. I put baking tray1 on
table2. I achieved my goal.”

– The robot explains the need for, and can potentially ex-
plain the likelihood of, particular actions and outcomes
during planning or execution.
Human: “Why did you move the baking tray to table2?”
Robot: “I needed to put the baking tray in the toaster
oven that is on table2.”

Human: “How likely is it that there is cocoa in the yel-
low ingredient bowl?”
Robot: “I am 95% sure there is no cocoa in the yellow
ingredient bowl”.

Systems that do not implement this claim may provide ex-
planations that do not match the need of the human user.
Without at least an implied theory of mind, the robot can as-
sume that others have made the same inferences given the
same knowledge and observations. If human feedback is ig-
nored, it would also become permissible to repeat the same
explanation (and not state things more succinctly) when asked
to “please be more concise”. Much recent work in explain-
able AI has considered the task of discerning the mental
model(s) a human is operating on (Dannenhauer et al., 2018;
Sreedharan et al., 2018).

Principle #5: Explanation generation systems should use
knowledge elements that support non-monotonic revision based
on immediate or delayed observations obtained from active
exploration or reactive action execution.

Execution Example 5 [Example 5: RB Domain]
Consider the following exchange in the RB domain about
learned actions and axioms.

– The robot can describe the learned knowledge.
Human: “What have you learned?”
Robot: “I have learned to chop an ingredient. I have
learned to spill an ingredient from a bowl.”

– Learned knowledge can be revised over time.
Human: “What have you learned about action chop?”
Robot: “It is necessary to hold a knife to perform chop.
It is necessary for the ingredient to be located in front.
The action sometimes fails if the ingredient is not butter.”

– Knowledge can be acquired from observations obtained
from active exploration (e.g., during downtime), reactive
action execution (e.g., unexpected and unexplained ob-
servation), or by observing other robots.
Human: “How did you learn that a baking tray can con-
tain ingredients?”
Robot: “I poured cocoa on a baking tray. I observed bak-
ing tray contained cocoa.
or, in a different context:
Robot: “I poured cocoa into a bowl that was on a bak-
ing tray. The observed the bowl did not contain cocoa. I
observed the baking tray contained cocoa.”

– Robot can learn from delayed action outcomes. For ex-
ample, when a dish set in an oven to be cooked is ob-
served to be burned, the robot infers the reason to be
setting the wrong temperature initially.

Our architecture learns new elements to the signature and
the axioms—see Section 4.5 and Sridharan and Meadows
(2018). Including the new knowledge during reasoning im-
proves the robot’s ability to explain past failure and its own
capabilities. If an architecture does not support this guid-
ing principle, the robot’s explanatory power is limited to
its initial knowledge. Much of the recent work in explain-
able AI focuses on plan explanation and does not support
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Domain Low Medium High
RA 0.00014 0.00025 0.0027
RA∗ 0.00041 0.0154 0.232

Table 1 Computation time for domains of different quantization for
different points in the space of explanations.

non-monotonic knowledge revision. One counterexample is
Wicaksono et al. (2017), which does involve learning action
models by selecting and actively exploring an action of in-
terest. However, the approach does not interactively adapt
explanations to user needs.

5.2 Experimental Evaluation

We evaluated the hypothesis that the ability to construct ex-
planatory descriptions scales to complex, dynamic domains.
To do so, we measured the reliability and computational cost
of generating explanations as a function of the complexity
of the domain and the explanations. The measured compu-
tational time did not include planning time or execution time
because they are relatively larger and the scalability of plan-
ning and execution with a refinement-based architecture has
been explored elsewhere (Sridharan et al., 2019).

We conducted 10000 simulated trials in the RA domain
and RA∗ domain for three points of increasing complexity
in the space of explanations: (i) “Low” (highest abstraction,
lowest specificity, lowest verbosity); (ii) “Medium” (medium
abstraction, specificity and verbosity); and (iii) “High” (low-
est abstraction, highest specificity, highest verbosity). In each
trial, we varied the initial state, goal state, and questions
posed to the robot. We also (separately) computed the de-
sired explanations by reasoning with complete knowledge
and used these as ground truth (unknown to the robot). The
trials were run on a laptop with a 2.40 GHz Intel i7 CPU.
Recall that the RA∗ domain has 25 times as many grid cells
in each room as the RA domain, resulting in many more ac-
tions, longer plans (e.g., with ≈ 40 steps), and longer expla-
nations. In both domains, a reasonably accurate explanation
was obtained in each trial—an explanation is considered to
be reasonable if it includes most of the objects and attributes
in the ground truth explanation.

Table 1 shows the average results for each quantization
and each point in the space of explanations. We observe an
increase in the time taken to compute explanations with an
increase in the level of quantization. This increase is more
pronounced as the complexity of the explanations increases,
e.g., the increase in computation time from RA to RA∗ is
more in the “High” column than with “Medium” or “Low”.
However, the time taken to compute explanations is not sig-
nificant in most experimental trials, especially when com-
pared with the planning (or execution) time. Even when asked
to provide detailed descriptions in a domain with higher quan-
tization (combination of RA∗ and “High” in Table 1), the
robot is able to do so in a reasonable amount of time. Also,
it is uncommon to be asked to provide a detailed explana-

tion under a high level of quantization. These results support
our hypothesis and indicate the applicability of our architec-
ture to generate explanations in complex, dynamic domains.
In other work, we have shown that the underlying architec-
ture for planning with incomplete commonsense knowledge
scales to more complex domains. These results thus also in-
dicate the feasibility of introducing more complex models
of cognition and learning to generate richer explanations.

6 Discussion and Future Work
In this paper, we have formalized the process of provid-
ing explanatory descriptions of decisions, beliefs, and expe-
riences in human-robot collaboration. Specifically, we de-
scribed a theory of explanations comprising (i) claims about
representing, reasoning with, and learning knowledge to sup-
port explanatory descriptions; (ii) three axes to characterize
these descriptions; and (iii) a methodology for constructing
these descriptions. We also described an implementation of
this theory that is fully integrated with, and strongly influ-
enced by, the representation, reasoning, and learning capa-
bilities of the underlying refinement-based architecture. This
architecture uses tightly-coupled transition diagrams at dif-
ferent resolutions to support non-monotonic logical reason-
ing and probabilistic reasoning with commonsense knowl-
edge and sensor inputs. We also described execution traces
and results demonstrating the impacts of our theory on the
scalable construction of explanatory descriptions.

Our work opens up multiple directions for further re-
search. First, in this paper, representation and reasoning was
limited to two resolutions for ease of explanation. However,
other experiments (not reported here) indicate that concepts
such as refinement and relevance apply to additional reso-
lutions. Future work will explore the automatic transfer of
information and control between multiple resolutions, con-
structing explanations on demand at the desired level of ab-
straction. Second, our current architecture does not provide
partial explanations, i.e., explanations of some subset of the
observations. Future work will explore providing such par-
tial explanations by limiting reasoning to, and choosing the
operating point along the three axes, based on the obser-
vations of interest. Third, we will use the insights gained
from the experiments reported in this paper to conduct stud-
ies with human subjects. These studies will evaluate the ef-
fectiveness and usability of our theory of explanations and
its implementation; the corresponding results will help re-
vise the claims, methodology, and the architecture. Finally,
the results reported in this paper were only based on exper-
iments in simulation, although the planning and diagnostics
capabilities of the refinement-based architecture have been
evaluated on physical robots. In the future, we will evalu-
ate the ability to provide explanatory descriptions on one or
more robots sensing and interacting with their surroundings
and collaborating with humans in complex domains.
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