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This paper describes REBA, our refinement-based knowl-
edge representation and reasoning architecture for robots
that combines the complementary strengths of declarative
programming and probabilistic graphical models (Sridharan
et al. 2019). It can be viewed as a logician and a statisti-
cian communicating through a controller, as shown in Fig-
ure 1. REBA is based on tightly-coupled transition diagrams
that represent incomplete commonsense knowledge about
the domain, and the robot’s abilities and beliefs, at two lev-
els of granularity. For any given goal, non-monotonic logical
reasoning with the coarse-resolution system description and
the system’s recorded history results in a sequence of ab-
stract actions. Each such abstract action is implemented as a
sequence of concrete actions by zooming to a part of the fine-
resolution transition diagram relevant to this abstract action,
and probabilistically modeling the non-determinism in ac-
tion outcomes. REBA makes the following contributions:

1. Action language ALd (Gelfond and Inclezan 2013)
is extended to support non-Boolean fluents and non-
deterministic causal laws, and used to describe the coarse-
resolution and fine-resolution transition diagrams of any
given domain.

2. The notion of a dynamic domain’s history is extended to
include default knowledge in the initial state, and a model
of this history is defined. These definitions are used to de-
fine a notion of explanation of unexpected observations,
and to provide an algorithm for coarse-resolution plan-
ning and diagnostics. This algorithm translates domain
knowledge and history into a program of CR-Prolog (Bal-
duccini and Gelfond 2003), an extension to Answer Set
Prolog, computes answer set of this program, and extracts
a plan and an explanation (if needed) from the answer set.

3. A formal definition is provided of one transition diagram
being a weak refinement of another diagram, and a fine-
resolution diagram is defined as a weak refinement of the
domain’s coarse-resolution transition diagram.

4. A theory of observations is introduced and a formal def-
inition is provided of one transition diagram being a
strong refinement of another. An approach is provided
for combining the theory of observations with the weakly-
refined fine-resolution transition diagram to obtain a fine-
resolution transition diagram that is a strong refinement of

the coarse-resolution transition diagram. We establish the
tight coupling between the transition diagrams by proving
that any coarse-resolution transition can be implemented
as a sequence of transitions in the fine-resolution transi-
tion diagrams.

5. The randomization of the fine-resolution transition dia-
gram is defined. A methods is provided for experimen-
tally collecting statistics and computing the probabilities
of the fine-resolution action outcomes and observations.

6. A formal definition is provided for zooming to a part of the
randomized fine-resolution diagram relevant to any given
coarse-resolution (abstract) transition. This definition is
used to automate the zoom operation that is invoked to
implement each coarse-resolution transition.

7. An algorithm is provided for automatically constructing
suitable data structures for the fine-resolution probabilis-
tic implementation of any given abstract action. This al-
gorithm uses probabilistic models of the uncertainty in
sensing and actuation, and the zoomed part of the fine-
resolution transition diagram. Our implementation uses
this algorithm to automatically construct partially observ-
able Markov decision process (Kaelbling, Littman, and
Cassandra 1998) models, and uses an approximate solver
to compute a policy that is invoked repeatedly to proba-
bilistically execute a sequence of fine-resolution actions
that implements the coarse-resolution transition. The cor-
responding outcomes update the coarse-resolution history
for subsequent reasoning.

8. The final and potentially the most important contribution
is a general methodology for the design of software com-
ponents of robots that are re-taskable and robust. This de-
sign methodology is based on Dijkstra’s view of step-wise
refinement of a program’s specification.

The key advantages of REBA are:
• It substantially simplifies the design process and increases

confidence in the correctness of the robot’s behavior.
– Step-wise refinement leads to separation of concerns

and simplifies testing of the architecture’s components.
– The formal (i.e., mathematical) descriptions of the ar-

chitecture’s components, and of the flow of control and
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Figure 1: REBA can be viewed as a logician and a statistician communicating through a controller. It combines the complementary strengths
of declarative programming and probabilistic reasoning.

information between the components, helps character-
ize the robot’s behavior accurately and prove correct-
ness of the algorithms.

– The domain-independent representations of part of the
robot’s commonsense knowledge, e.g., theory of ob-
servations and strong refinement, enable reuse of these
representations on other robots and domains.

– There is a single framework for inference, planning, di-
agnostics, and for a quantifiable trade off between ac-
curacy and computational efficiency in the presence of
probabilistic models of the uncertainty in sensing and
actuation in the physical world.

• It significantly improves the computational efficiency and
reliability of planning and action execution on the robot.
– REBA supports reliable and efficient reasoning with

hierarchically-organized knowledge and beliefs at dif-
ferent resolutions. The intentional separation of non-
monotonic logical reasoning and probabilistic reason-
ing is at the heart of the representational elegance, re-
liability, and inferential efficiency provided by our ar-
chitecture in complex domains.

– The tight coupling between representation and reason-
ing at different resolutions, established by formally
defining concepts such as refinement and zooming,
supports precise reasoning while demonstrating the po-
tential to scale to complex domains by directing atten-
tion to the relevant knowledge and observations.

– Experimental results in simulation and on physical
(wheeled) robots deployed in different indoor domains
indicate the ability to reason at the sensorimotor level
and the cognitive level, in the presence of violation of

defaults, noisy observations, and unreliable actions, in
more complex domains than was possible before.
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