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We summarize work on an architecture that enables a
robot to provide on-demand explanations of its decisions
and beliefs in the form of descriptions comprising relations
between relevant domain objects, object attributes, robot at-
tributes, and robot actions. Such “explainability” will help
improve the underlying algorithms, establish accountability,
and support effective human-robot collaborate. For full de-
tails, please see (Mota, Sridharan, and Leonardis 2021).

State of the art robot architectures often include a com-
bination of knowledge-based reasoning methods (e.g., for
planning) and data-driven learning methods (e.g., for rec-
ognizing objects and events of interest). Providing trans-
parency is particularly challenging in such integrated robot
systems that require the robot to sense and interact with the
physical world, represent and reason with different descrip-
tions of incomplete domain knowledge and uncertainty (e.g.,
logic-based descriptions of commonsense domain knowl-
edge, probabilistic descriptions of the information from sen-
sors), and incrementally revise its knowledge of domain dy-
namics (e.g., axioms governing actions and change).

Towards achieving the desired transparency in integrated
robot systems, our architecture builds on KR tools and re-
search in cognitive systems that highlights the benefits of
coupling different representations, reasoning methods, and
learning methods. It combines the complementary strengths
of non-monotonic logical reasoning, deep learning, and in-
ductive learning to support the following capabilities:

• Make decisions based on non-monotonic logical reason-
ing and probabilistic reasoning with incomplete domain
knowledge and observations at different resolutions;

• In situations when reasoning is unable to complete the tar-
get tasks, automatically identify and use relevant informa-
tion to learn (deep network) models for these tasks;

• Automatically identify and use relevant information to
learn previously unknown axioms encoding constraints
and action preconditions and effects;

• Automatically trace the evolution of any given belief or
the non-selection of any given action at a given time by
inferring the relevant sequence of axioms and beliefs; and

• Exploit the interplay between representation, reasoning,
and learning to provide on-demand descriptions of deci-
sions and the evolution of beliefs.
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Figure 1: Architecture combines non-monotonic logical reason-
ing with commonsense domain knowledge, probabilistic reason-
ing, deep learning, and inductive learning.

These capabilities are evaluated on a simulated and a physi-
cal robot manipulating tabletop objects. The robot: (i) com-
putes and executes plans to arrange objects in desired config-
urations; and (ii) estimates occlusion of objects and stability
of object configurations. Figure 1 provides an overview of
the architecture, with a Baxter robot performing the tasks.
Components to the left of the dashed vertical line combine
non-monotonic logical reasoning and deep learning for the
chosen tasks. Components to the right of the dashed line
expand reasoning and answer questions about decisions and
beliefs before, during, or after reasoning and learning.

Our architecture uses Answer Set Prolog (ASP) (Gelfond
and Kahl 2014) to encode incomplete domain knowledge
that includes object attributes, spatial relations between ob-
jects; other domain attributes; features extracted from im-
ages of scenes in the domain; and some axioms govern-
ing domain dynamics (e.g., prioritized defaults, constraints,
causal laws). The robot performs non-monotonic logical
reasoning with this knowledge to compute plans to achieve
the desired goal and/or to complete the desired estimation
tasks (e.g., estimate object occlusion and stability), using
probabilistic reasoning when necessary. If ASP-based rea-
soning is unable to complete the desired tasks, or achieves
an incorrect outcome (when ground truth is available), it is



Figure 2: Experimental setup and example scenes: (left) Baxter robot setup; (center) Baxter’s camera view; and (right) Simulated scene.

considered to be an indication of missing or incorrect knowl-
edge; this triggers learning. For the estimation tasks, the
robot automatically identifies and uses regions of interest
(ROIs) in the relevant images to train deep networks that per-
form these tasks. For both the planning and estimation tasks,
information from the relevant ROIs are used with a decision-
tree induction algorithm to learn previously unknown ax-
ioms and revise existing axioms. The robot also parses the
human (verbal or textual) input to identify different types of
queries (e.g., descriptive, contrastive, counterfactual). It au-
tomatically traces relevant beliefs and axioms to construct
relational descriptions that are inserted in templates based
on a controlled vocabulary to respond to the queries.

Experimental results indicate the ability to: (i) make de-
cisions reliably and efficiently despite incomplete knowl-
edge and noisy sensor inputs; (ii) incrementally reduce un-
certainty in the scene by learning previously unknown con-
straints, and preconditions and effects of actions; and (iii)
construct explanations reliably and efficiently by automati-
cally identifying and reasoning with relevant knowledge.
Execution Example 1. [Plans, actions, and beliefs]
Consider the image in Figure 2(center) of the tabletop in Fig-
ure 2(left), captured by the camera on the robot’s arm. The
following interaction takes place after the robot has executed
a plan to move the red cube on the orange cube.
• Human: ”Please describe the executed plan.”

Baxter: ”I picked up the blue cube. I put the blue cube
on the table. I picked up the orange cube. I put the orange
cube on the table. I picked up the red cube. I put the red
cube on the orange cube.”

• The human may ask the robot to justify a particular action.
Human: ”Why did you pick up the blue cube at step 0?”
Baxter: ”Because I had to pick up the red cube, and it
was below the blue cube.”
This answer is also used to automatically highlight the
relevant image regions—see Figure 2(center).

• The human may ask about actions that were not consid-
ered.
Human: ”Why did you not put the orange cube on the
blue cube?”
Baxter: ”Because the blue cube is small.” This answer
is based on the single instance (in the executed plan) of
putting an orange cube on another cube or surface; it also
uses the default knowledge that a large object placed on a
small object is typically unstable.

• The robot can be asked to justify particular beliefs.
Human: ”Why did you believe that the red cube was be-
low the blue cube in the initial state?”

Baxter: ”Because I observed the red cube below the blue
cube in step zero.”

Execution Example 2. [Learning and explanation]
Even when the robot is unable to achieve the desired object
configuration or belief, our architecture enables it to answer
questions about its decisions. Consider the following inter-
action related to the simulated scene in Figure 2(right):

• Human: ”Please put the pitcher on the duck.”
This action is not executed because the robot learned ear-
lier that placing an object on an irregular surface results
in an unstable configuration.
Human: ”Why did you not put the pitcher on the duck?”.
Robot: ”Because the duck has an irregular surface.”
The relevant image region is highlighted in Fig-
ure 2(right). This example also illustrates how reasoning
with learned knowledge helps justify decisions that pre-
vent unfavorable outcomes.

In this scenario, the robot is asked to move the duck on top of
the red cube. The computed plan has six steps: pick up the
green cylinder, put it on the table, pick up the white cube, put
it on the top of the green cylinder, pick up the duck, and put
it down on the red cube. Consider the following interaction
after the robot has executed this plan:

• Human: ”Why did you not pick up the green cylinder at
step 5?”
To answer this question, the robot explores the related hy-
pothetical scenario by tracing the evolution of relevant be-
liefs. It provides the following answer:
Robot: ”Because the white cube was on green cylinder.”
The human may ask for further details:
Human: ”Why did you believe the white cube was on the
green cylinder?”
To answer this question, the robot uses the known causal
relationship between the relevant action (putdown) and
spatial relation (on).
Robot: ”Because I put the white cube on the green cylin-
der at step 4.”
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