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Abstract

This work presents a novel framework that estimates the human motor intent from surface
electromyographic (sEMG) signals and executes the motor intent on a simulated robot,
allowing the user to adapt the kinematics and dynamics of a Degree of Freedom in static and
dynamic environments.

Adaptation of intrinsic mechanical properties of the arm and hand, during the execution
of grasping and manipulation tasks, is crucial for humans to physically interact with unpre-
dictable and dynamic environments. These properties are defined as stiffness, damping and
inertia, and determine a complex neuromuscular behaviour known as impedance. Consider
holding an umbrella and grasping the handhold more firmly to counter the action of the wind
blowing. To do this we co-contract flexor and extensor muscles spanning the elbow and the
wrist to make the arm more rigid. The action of these muscle groups opposes one another to
maintain the arm’s posture, but it also contributes to increasing limb impedance. As a result,
humans can regulate the limb’s kinematics and dynamics independently, according to the
task requirements.

Inspired by human motor control, researchers have designed biomimetic controllers
to enable such impedance behaviour on robotic systems that physically interact with the
environment. The most important and challenging requirement of such controllers is to
adapt the robot’s impedance over time, according to task and environment constraints. This
requirement is desirable in different physical human-robot interaction applications, and
crucial in motor prostheses control where the human motor intent has to be decoded and
implemented in real-time on the artificial limb. The latter is the application domain that
motivates the work presented in this thesis.

Today, none of the commercially available prostheses allow the user to simultaneously
control the kinematics and impedance of a single degree of freedom of the robotic arm.
Motor prostheses use low-density surface electromyography as a human-machine interface
to allow the user to communicate their motor intent through muscle contraction. However,
the estimation of the impedance properties from sEMG signals is not trivial, due to the
low bandwidth of sEMG signals and due to the complexity and redundancy of the human
musculoskeletal system.
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Methods that attempt to fill this gap typically use sEMG-driven muscle-tendon models
that potentially allow to predict the torque applied at the joint and the evolution of the muscle-
tendon models state, from which the stiffness and damping of the joint can be obtained.
However, none of the existing methods coherently estimates the joint impedance from these
models and uses it to implement a variable impedance controller on the robot. While the
muscle-tendon models are used to obtain the intended joint kinematics, the joint stiffness
and damping are estimated from other models, usually polynomial functions of the sEMG
signals. Moreover, the obtained joint stiffness and damping are not directly used as gains
in the control law, but these are remapped to suitable ranges to ensure control stability and
satisfy hardware requirements. As a result, multiple calibration phases are required, which
prevent a coherent implementation of the user’s motor intent on the robot and may impact
the user’s control performance.

This thesis presents an sEMG-driven framework that provides the user with 3 Degrees
of Control for a single Degree of Freedom of a simulated robot, actuated through wrist
flexion-extension. The framework includes a pair of muscle-tendon models to estimate
the motor intent from two sEMG signals in terms of reference joint motion, stiffness and
damping. Unlike previous work, the parameter values of the muscle-tendon models are
estimated such that the obtained joint stiffness and damping can be used directly to imple-
ment a variable impedance controller on the robot. This ensures that the user’s intended
dynamics, represented by the muscle-tendon models, matches that of the robot, enhancing
the framework’s transparency in implementing the user’s motor intent. As a result, the human
subject is able to simultaneously adapt the robot’s kinematics and dynamics on-the-fly.

We evaluate our framework with eight able-bodied subjects during reaching tasks per-
formed in free space, and in the presence of unexpected external perturbations that require
adaptation of the wrist impedance to ensure stable interaction with the environment. A case
study is carried out with a transradial amputee. The proposed framework is compared to
a baseline consisting of a purely data-driven method that learns a mapping from sEMG
signals to desired joint kinematics and a fixed-gains high-stiffness controller that tracks the
estimated kinematics. We investigate whether our framework, which enables kinematics as
well as stiffness and damping adaptation, provides improved performance with respect to
the baseline. We experimentally demonstrate that our approach outperforms the baseline
in terms of its ability to adapt to external perturbations, overall controllability provided to
the subject, and feedback from participants on their perceived controllability. The amputee
performed similarly to the able-bodied participants, indicating that the proposed framework
may provide improved performance for the target population of transradial amputees.
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a Normalised input activation −

ch Processed and normalised sEMG signals input to the framework −

D Damping of the MTU mapped to joint space in the proposed framework [N/rad2]

Di Damping of the muscle-tendon model i [N/m2]

DMTU Damping of MTU [N/m2]

Dm Damping of the muscle component [N/m2]
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Dt Damping of the tendon component [N/m2]

E Matrix of 8 raw sEMG signals [mV]

F i
ce Force of CE element of muscle-tendon unit i [N]

F i
de Force of DE element of muscle-tendon unit i [N]

Fi Force of muscle-tendon unit i [N]

F i
pe Force of PE element of muscle-tendon unit i [N]

F i
se Force of SE element of muscle-tendon unit i [N]

K Stiffness of the MTU mapped to joint space in the proposed framework [N/rad]

Ki Stiffness of the muscle-tendon model i [N/m]

KMTU Stiffness of MTU [N/m]

Km Stiffness of the muscle component [N/m]

Kt Stiffness of the tendon component [N/m]

lce Contractile component length [m]

lMTU Muscle-tendon unit length [m]

q Generic vector of joint angular position [rad]

q f joint position of the robot plant in the prosthesis control block of the framework [rad]

qr joint position of the simulated robot model in the detection of motor intent block of
the framework

R Jacobian of moment arms [m/rad]

r Moment arm for a muscle-tendon unit [m/rad]

s f Vector of joint state of the robot plant in the prosthesis control block of the framework

sr Vector of joint state of the simulated robot model in the detection of motor intent
block of the framework [rad]





Chapter 1

Introduction

Consider the simple task of holding an umbrella on a rainy and windy day. Forces arise
from the physical interaction between the umbrella, the human hand and any perturbation
imposed by the wind. To successfully perform this task, humans adapt intrinsic mechanical
properties of the limb, known as the stiffness, damping and inertia, to modify the overall
limb’s impedance [94, 144]. Impedance modulation is achieved by modulating the co-
activation of agonist and antagonist muscles of the upper limb. This motor control strategy
allows humans to make the physical interaction with the umbrella stable by rejecting the
perturbations imposed by the wind. As the muscles’ co-contraction is increased, the limb
becomes less and less compliant to external forces until the force imposed by the wind will
not cause any displacement to the human arm. While in this example increasing the limb
impedance is necessary to counter the wind’s action and maintain the limb’s posture, other
tasks require our limb to be compliant (i.e., have low impedance). Think about a peg-in-hole
type of task. In this case, low limb impedance is needed to reduce the interaction forces
that may arise when we insert the object in the hole. Compliance allows us to afford lower
manipulation precision and avoid damaging the object or hurting our hand.

Modulation of the impedance properties of the robot is thus a crucial aspect in prostheses
control given that the user operates in an unpredictable dynamic environment where forces
may arise from the mechanical interaction between the prosthetic limb (i.e., robot) and the
environment. Despite the efforts of industrial and academic research, enabling the user to
voluntarily adapt the impedance of the prosthesis is still an open problem.

This thesis is concerned with enabling a human subject to modulate the impedance of a
robotic system. In particular, the main objective is to develop a computational framework
that allows a human user to simultaneously control the kinematic (i.e., joint position, velocity,
and acceleration) and dynamic properties (i.e., joint stiffness and damping) of a Degree of
Freedom (DoF) of a robotic system.
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In this Chapter, we describe the driving motivation of this thesis as well as the aims and
the contributions of this work. Section 1.1 starts by briefly introducing impedance adaptation
of the limb as a crucial motor control strategy for physically interacting with dynamic and
unpredictable environments. We then explain why this control strategy is beneficial to any
manipulator, human or robotic. In particular, we discuss why allowing the user to modulate
the impedance of the robot is essential in upper-limb prostheses control. The latter is the
chosen application domain of the work presented in this thesis. We continue by providing
an overview of the state-of-the-art methods for the detection and the implementation of
the user’s motor intent for prostheses control. We conclude the section by discussing the
inherent difficulties and open problems in prostheses control and by listing the limitations
we address in this thesis. In Section 1.2, we state the research aim and questions. We then
describe the contributions and the assumptions – some of which are limitations – of this
work (Section 1.2), the research approach and evaluation methods (Section 1.3). Finally, we
provide a road map for this thesis (Section 1.4).

1.1 Motivation

Most tasks of everyday life require us to physically interact with the environment around us.
This physical interaction can involve the grasping or the manipulation of objects. Think about
carrying a cup of coffee or the previous example of holding an umbrella when it is windy
outside. We execute these tasks effortlessly even if we manipulate highly complex objects
with properties that might not be known a priori. Coffee for example contains infinite internal
DoFs, and the wind imposes unexpected perturbations on the umbrella we are holding. These
are sources of uncertainty that make the physical interaction with the environment potentially
unstable. Understanding why humans are exceptionally skilful at these tasks is an ongoing
topic of research.

There is evidence suggesting that humans are able to adapt their sensorimotor control to
learn and modulate the dynamics of their physical interaction with the environment [98, 69,
170]. In particular, experimental studies have shown that humans leverage adaptation of the
limb’s impedance to implicitly regulate the forces arising from the mechanical interaction
between the human limb and the environment while robustly performing a task. The term
impedance summarises three properties that quantify the resistance that the limb opposes
to a change in position, velocity, and acceleration [97]: stiffness, damping and inertia,
respectively. Impedance adaptation of the human limb exploits intrinsic properties of the
musculotendinous tissue, and it is mainly achieved through co-activation of agonist and
antagonist muscles spanning a joint and through neural feedback. While neural feedback
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responses are characterised by a transmission latency, muscle co-activation allows prompt
adaptation of the limb’s impedance to interaction forces [125]. Considering the example
introduced earlier, to keep the umbrella upright and counter the perturbations imposed by
the wind, we would increase muscle contractions to grasp the handle more firmly. More
specifically, we adapt the co-contraction of the agonist and antagonist muscles spanning the
wrist joint to increase the “rigidity” of the arm and hand: the forces generated by these muscle
groups oppose one another resulting in a null net torque around the joint and consequently
no wrist movement is generated. However, the increase in muscles’ co-activation contributes
to increasing the rigidity of the limb which allows us to resist external perturbations.

Any manipulator, human or robotic, needs to be capable of adapting the limb’s mechanical
impedance to robustly operate in dynamic and unpredictable environments. Especially in
physical human-robot interaction (pHRI) scenarios, controlling the mechanical impedance
of the robotic system is desirable for robustly and safely interacting with humans. This
requirement is more pronounced in prostheses control because the user and the robot are two
agents of the same system, and the human motor intent has to be replicated on the prosthesis.

While there has been considerable progress in designing upper-limb prostheses that
possess hardware compliance, none are yet capable of replicating the functions that neuro-
muscular impedance control makes possible. This is due to the difficulties in decoding
the human motor intent from the Human-Machine-Interfaces (HMIs) used to connect a
human user to the prosthetic device. There are two main reasons for this. Firstly, the most
widely used HMI is based on surface Electromyography (sEMG). Surface EMG sensors are
used to measure the electrical activity of muscles involved in certain motor functions from
which the human motor intent is decoded and executed on the prosthesis. Using sEMG was a
breakthrough in technology since it allowed to implement non-invasive and easy-to-use HMIs
for active prostheses control. However, sEMG also constitutes the technological bottleneck
in the research field of motor prostheses, since it provides noisy low-bandwidth signals
that make the problem of decoding the human motor intent highly challenging. Secondly,
the human motor control and musculoskeletal system are highly complex and redundant:
there is a non-unique association between muscle activation (recorded by the sEMG sensors)
and joint kinematics, since the same action can be performed at different levels of muscles’
co-contraction (i.e., impedance). In fact, considering the example introduced earlier, we
can modulate the muscles’ activation to increase the limb’s rigidity while maintaining the
umbrella in the same configuration. This means that limb’s kinematics does not change. The
ambiguity in associating changes in muscles’ activation to changes in joint kinematics and
dynamics is what makes the detection of the motor intent from sEMG signals challenging.
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As a result, none of the commercially available prostheses allow the user to simultaneously
control the kinematics and the impedance of a DoF.

The state of the art in prostheses control are data-driven methods that learn a direct
mapping from sEMG signal to desired kinematics (i.e., motor command) during an offline
training phase [152, 109]. These approaches are effective for simple movements in controlled
experimental settings, where the task is executed in the absence of external perturbations
and the human’s muscle activation is kept low. However, these methods do not explicitly
represent or use information about the human joint impedance in the controllers. As a
result, the control performance deteriorates in practical settings where factors such as the
physical interactions with the environment require the user to continuously adapt the muscles’
contraction to control the prosthesis. This causes the features of the sEMG signals to change
drastically from those observed during the training phase. Moreover, decoding the human
motor intent only in terms of kinematics provides a limited representation of the user’s intent
and makes it difficult for designers and users to understand the prosthesis’ operation. In
general, this category of purely data-driven methods lacks of evaluation of the methods’
robustness to changes in muscles’ co-activation, in scenarios where impedance adaptation is
required to maintain the system stability.

Methods pursued by researchers to provide simultaneous control of joint kinematics
and impedance often employ muscle-tendon models to include domain knowledge about
muscle force generation (i.e., muscle contraction dynamics). These muscle-tendon models
are sEMG-driven and allow for predicting the muscle contraction dynamics and thus provide
an estimation of the muscle-tendon model state, forces and impedance properties; from these
muscle-tendon quantities, it is possible to estimate the human motor intent as joint kinematics
and impedance. However, works found in literature use partial information from the muscle-
tendon models. Typically only the estimated muscle-tendon forces are used to compute the
net joint torque and to obtain the intended joint kinematics. Stiffness is not obtained from
the muscle-tendon models but estimated from sEMG signals using linear models or other
polynomial functions; damping is omitted or computed as a function of stiffness. Moreover,
the estimated joint stiffness and damping are not directly used as gains of the controller
implemented on the robotic system, but are tuned during a calibration stage, often separated
from the optimisation of muscle-tendon models, to satisfy the controller’s stability constraints.
This approach requires multiple calibration phases, and it creates a mismatch between the
dynamics of the muscle-tendon model and the dynamics of the robot. This may affect the
user’s control performance (i.e., controllability) and limit the transparency of the control
methods. In summary, none of the existing methods estimate the muscle impedance from the
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muscle-tendon models and use it directly to implement a joint space impedance controller on
a robotic system.

This thesis investigates the problem of improving the detection of the user motor intent
from low bandwidth sEMG signals and implementing this intent on a simulated robotic
system. The domain of application chosen for this work is upper-limb prostheses and, in
particular, the focus is on the wrist flexion-extension motor function. This is motivated
by experimental findings suggesting that wrist control is crucial for successful human-like
dexterous grasping and manipulation [148]. Manipulation tasks of daily living are achieved
by humans primarily through wrist control while ensuring a stable grasp of the object (e.g., to
open a bottle, this is grasped tightly while the wrist rotates the bottle’s cap). The wrist must be
oriented in a suitable configuration to grasp an object, and the choice of the wrist pose affects
the range of feasible grasps and the maximum grip strength that can be applied to the object.
Moreover, wrist control is fundamental to maintaining grasp stability during manipulation
tasks and adaptation of its impedance directly allows humans to modify impedance at the
interaction port with the external environment. A prosthetic device capable of independent
finger control for dexterous hand manipulation is thus unlikely to succeed in grasping and
manipulation tasks if the user is incapable of actively controlling the wrist.

1.2 Research aim and contributions

The objective of the thesis is to address the limitations discussed in the previous section. In
this regard, we propose an sEMG-driven framework that includes the user in the control loop
and provides the human subject with three Degrees of Control (DoC), i.e., the control of joint
position, stiffness, and damping, per DoF of an upper-limb prosthesis.

The research approach to design the framework ranges from models and algorithms
development to experimental design and analysis. One important objective of the framework’s
design is to gain insight into the representation of the human motor intent and the working
principles of the models being used. This is crucial to enhance the transparency of prostheses
control. To address this research problem, the following contributions are made [66]:

1. We describe a novel framework to decode the human motor intent about wrist flexion-
extension in the form of joint motion, stiffness, and damping, and implement the motor
intent on a simulated 1-DoF robot (Chapter 4). The framework can be divided into two
components which are nevertheless strictly interconnected. The first block (Section 4.3)
of the framework incorporates muscle-tendon models and maps the sEMG signals to
an estimate of the user’s motor intent in terms of kinematics (i.e., joint position) and
impedance (i.e., joint stiffness and joint damping). The inertia is assumed to be the
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natural inertia of the robot, as it will be discussed in the framework’s design. The
second block (Section 4.4) executes this motor intent through a simulated robot system
based on a variable position-based impedance controller, allowing online position
control and adaptation of the robot’s impedance. The variable impedance controller
implicitly allows the user to counter external perturbations.

The approach followed for the framework’s design is based on the concept that the
human user and the robot are two mechanically coupled systems and as a consequence,
the muscle-tendon dynamics (which represents the user’s intended dynamics) has to
match the simulated robot’s dynamics. To ensure that the intended dynamics given by
the first block matches the robotic system’s dynamics (second block), the impedance
properties estimated from the muscle-tendon models (i.e., the user’s intended dynam-
ics), unlike in prior work, are used directly to implement the dynamic behaviour of the
robotic system.

2. We provide a solution to tackle the ill-posed problem of estimating parameters of the
muscle-tendon models while ensuring that the estimated parameters’ values result in
estimates of joint stiffness and damping that enable robust tracking of the intended joint
position and adaptation of the joint impedance during online operation. In fact, different
parameters’ value may provide an estimate of the joint kinematics that matches the
reference one, but because a different dynamics may underlie the same kinematics, the
estimated stiffness and damping may provide an incorrect representation of the human
intended joint impedance. To tackle this problem the muscle-tendon unit models
are modified, and we design an optimization framework that uses the output of the
position-based impedance controller as optimization signal, since the latter is affected
by the muscle-tendon models dynamics.

The two contributions are not independent, but complement one another toward the objective
of designing a comprehensive framework.

1.3 Methods and evaluation

We conducted experimental studies with able-bodied participants and a transradial amputee
to evaluate the framework performance with respect to that of a state-of-the-art data-driven
method during online reaching tasks in a static and dynamic environment. We investigated
whether the users could exploit stiffness and damping adaptation to counter perturbations in
the form of force fields that push the simulated wrist away from a target, making impedance
adaptation necessary to maintain stability and complete the task. This constitutes the main
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research question of this thesis. We experimentally demonstrate the following properties of
the proposed framework:

• The proposed framework supports online adaptation of the simulated robot kinematics
and dynamics in response to external disturbances (Section 6.2). A deeper understand-
ing of the impedance adaptation property enabled by our approach is made possible
by the framework’s transparency. This helped to analyse how changes in the sEMG
signals due to modulation of muscles’ contraction (i.e., impedance) affected the control
performance of the methods being evaluated. This property has not been extensively
and explicitly tested in previous work.

• The framework’s performance is comparable to a state-of-the-art baseline in the absence
of perturbations and substantially better in the presence of perturbations for able-bodied
subjects (Section 6.2.1) and the amputee (Section 6.2.2).

• We show that the users’ perception of controllability is consistent with the quantitative
results regarding the framework performance (Section 5.5.1). In fact, according
to the subjects’ feedback, the proposed framework provides improved performance
compared with the baseline. The term controllability here refers to control stability,
robustness, responsiveness to fast-changing features of the sEMG signals, and to the
user’s capability of making the system stable after an external perturbation. In this
work, controllability is quantified using performance measures about the online task
performance (Section 5.5.3), and it does not have the classic meaning as in the control
system.

1.4 Thesis outline

Chapter 1 provides the context of this thesis, describes the motivation, and specifies the
research objectives and contributions of this work. The rest of the thesis is divided into the
following chapters:

Chapter 2 covers the necessary background material that allows the reader to understand
the content of this thesis. Firstly, we start with an overview of fundamental concepts
of robot control, including the description of a generic robotic structure, and classic
control methods. We then summarise key aspects of human motor control, focusing on
impedance adaptation as core human motor control strategy. We provide an overview
of the state-of-the-art technology used to interface the user to a robotic system and,
in particular, surface electromyography is discussed. Macroscopic properties of the
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muscular-tendinous system and approaches to biomechanical modeling of the muscle-
tendon complex are explained. Finally, we provide a brief overview of the human wrist
kinematics and dynamics.

Chapter 3 describes the state-of-the-art control methods implemented on commercially
available prostheses and the control methods developed in academic research. We
focus on methods designed for enabling impedance adaptation of a robotic system.
Specifically, we highlight the research gap we address in this thesis.

Chapter 4 introduces a novel sEMG-based framework for adaptive impedance control of a
DoF of a simulated robot through wrist flexion-extension. We start by providing an
overview of the framework and clearly state the framework requirements and main
assumptions. The input and output of the framework are described: the choice of
HMI is justified, and we investigate the latent space of sEMG signals recorded during
wrist movements performed at different levels of muscle co-activations; the choice
of relying on the user’s visual feedback is explained. We proceed providing an in-
depth description and mathematical formulation of each component of the framework.
We also include preliminary experimental results used to investigate the framework
architecture.

Chapter 5 introduces the experimental setup and methods used to answer the research ques-
tions of this thesis. The hypotheses we aim to support with the experimental results are
listed. The experimental work consists of an offline tracking experiment during which
the data (sEMG signals and wrist kinematics) for training the framework’s muscle-
tendon models is acquired, and an online reaching task experiment that investigates
the online control performance in the presence and absence of external perturbations.
We describe the baseline used to contrast the performance of our framework.

Chapter 6 discusses the results of the experiments described in the previous chapter. More-
over, examples of the time evolution of key variables of the proposed framework and
the baseline are discussed. These include successful and failed trials for an exemplary
able-bodied subject and the amputee.

Chapter 7 draws the conclusions of this thesis by summarising the contributions, discussing
the limitations and suggesting future research directions.

Appendix A summarises the main steps of the Simulated Annealing method, used for
optimising the muscle-tendon parameters’ values.
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Appendix B provides an overview of the information theory concepts underlying a perfor-
mance measure used in the experimental evaluation and describes the measure used to
quantify the smoothness of a motion.

Appendix C includes additional experimental results of the offline tracking experiments.
Estimated values of the muscle-tendon parameters are summarised in tables for the
able-bodied subject and the amputee. An example of force-length-velocity relationship
is shown for the elements of a trained muscle-tendon model.

Appendix D summarises the main dynamic parameters and the Denavit-Hartenberg (DH)
parameters needed to define the model of the robot used in this work.





Chapter 2

Background

Figure 2.1: Scheme of a generic sEMG-based framework for decoding the human motor
intent and controlling a robot (e.g., prosthesis). The system consists of the human user, the
robot, and the environment. A Human Machine Interface (HMI), such as low or high-density
electromyography sensors, is used to interface the user with the robot. The HMI allows
to record biological signals containing information about the user’s motor intent. These
signals are processed to estimate the user’s motor intent and provide it as motor command.
Depending on the task, interaction forces may arise from the interaction between the robot
and the environment and interfere with the execution of the desired motor command. The
user may use visual feedback on the state of the robot to adjust the input motor command
and achieve the desired behaviour.
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This chapter provides the reader with the necessary background knowledge to understand
the chapters that follow which result in the description of an electromyography-based frame-
work for enabling a human subject to independently control the kinematics and the joint
impedance of a single DoF of a simulated robot, by contraction of the main wrist flexor and
extensor. While this chapter is not meant to be an exhaustive guide on prosthesis control, it
aims to highlight key concepts to understand the motivation and scope of this thesis. The
reader is referred to additional material to deepen their understanding as desired. The topics
reviewed are illustrated in Figure 2.1 and summarised below: Section 2.1 provides an intro-
duction to the control of robotic systems. We define the structure of a generic multi-Degrees
of Freedom manipulator and introduce classic control schemes for controlling the robot in
the free space and during dynamic interactions with the external environment. Correspond-
ing equations for a single-DoF robot can be obtained as a particular case as described in
Chapter 4.4. The concepts of impedance, admittance and mechanical coupling are therefore
introduced. In Section 2.2, we present studies on human motor control suggesting that
impedance control is an essential motor control strategy for stable physical interaction with
the external environment. This is important in order to understand the motivation for this the-
sis and introduce our contribution to the literature. Building on the concepts introduced in the
previous sections, we provide in Section 2.3 an introduction to motor prostheses focusing on
upper-limb prostheses and explain how a human subject can be interfaced with these robotic
systems. Hence, we discuss the Human-Machine interfaces used for active prostheses control
focusing on electromyography. The material around muscle-tendon modelling, which lays
the ground for our framework formulation, is reviewed in Section 2.4. Finally, in Section 2.5
we discuss the role of wrist control in dexterous grasping and manipulation; we review the
kinematics and dynamics properties of the human wrist (i.e., impedance properties). While in
this thesis we focus only on the flexion-extension motion of the wrist, a global understanding
of wrist kinematics and dynamics is necessary to understand the framework design choices,
limitations and future work directions.

2.1 Fundamentals of robot control

The goal of this section is to provide the reader with theoretical background about the control
of robotic systems. To do so, basic concepts regarding the definition of the structure of a robot
manipulator, robot kinematics and dynamics are introduced. We then discuss two control
strategies that may be used to control a manipulator in the presence and absence of dynamic
interactions between the robot and the environment. In the first case, the robot is considered
an isolated physical system otherwise the robot is considered mechanically coupled with the
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Figure 2.2: Example of 3-DoFs robot manipulator with revolute joints. The variables qi and
τi indicate the angular position of DoFi and applied torque, respectively. A reference scheme
for input and output variables of direct and inverse dynamics is provided on the right. The
vectors qqq, q̇̇q̇q, q̈̈q̈q,τττ contain the joints’ position, velocity, acceleration and torque. The subscript
“d” indicates the corresponding desired variables.

environment. The time dependency is dropped in the equations of the following sections to
ease the reading.

2.1.1 Robot structure

A manipulator is an open chain of rigid bodies (links) connected by joints. One end of the
chain may be constrained to a fixed base, while the last link of the robotic chain may be
equipped with an end-effector (e.g., a gripper, a robotic hand, or a tool) needed for a specific
manipulation task. A simple robot with three links and three joints is illustrated in Figure 2.2.
Each joint can be regarded as a kinematic constraint that provides the robotic structure with
a Degree of Freedom (DoF) allowing the next link to move with respect to the previous one.
Common types of 1-DoF joints are the revolute and prismatic joints. A revolute joint provides
a 1-DoF rotational motion about a single axis, while the prismatic joint provides a 1-DoF
linear motion along a single axis. A joint can be actuated if equipped with a motor, whereas
it is underactuated if it only responds passively to externally imposed motion. More complex
mechanical properties of a joint, such as hysteresis, friction and backlash [196], are out of
our scope. In this thesis, we assume a joint is an ideal kinematic constraint between two rigid
bodies. A joint might contain sensors that acquire information about the robot joints’ position
(angular or linear for a revolute or prismatic joint, respectively) or force-torque sensors that
measure external forces and torques acting on the joints. The number of DoFs of a joint is the
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number of independent variables required to define the motion enabled by the joint. Since
the joints introduced earlier allow a single DoF motion, the terms DoF and joint are used
interchangeably. Let us formally define a manipulator of n joints (DoF) and n links. The
robot configuration at a point in time can be described by the joints’ state sss = {qqq, q̇̇q̇q, q̈̈q̈q}. The
vectors qqq, q̇̇q̇q, q̈̈q̈q ∈ Rn contain the position, velocity and acceleration of each joint, respectively.
Therefore, the vector qqq contains n independent variables that uniquely define the robot’s
configuration in the space.

2.1.2 Robot kinematics and dynamics

In Section 2.1.1, we have defined a generic n-DoF robot, described by the state matrix
sss = {qqq, q̇̇q̇q, q̈̈q̈q} of the joints’ position, velocity and accelerations recorded by sensors at the
joints. The robot state, defined by joint variables, is therefore described in the joint space.
Below, the state of the robot is defined as the position of the end-effector with respect to a
base frame (i.e., Cartesian space), by introducing the concepts of direct and inverse kinemat-
ics. Given the geometric relationship between variables in the joint space and those in the
Cartesian space, the equation of motion of the robot is introduced considering the forces and
torques acting on the robot structure. These concepts are needed to introduce in the next
sections the concept of mechanical coupling between the robot and the environment and two
classic control paradigms.

Robot kinematics describes the robot’s links motion with respect to a reference frame and
with respect to each other without considering the forces generating the motion. On the
contrary, robot dynamics studies the motion of the robot system as a function of internal
(torques at each joint) and external forces (interaction forces with the environment) acting on
the robot. Kinematics is useful to define the mapping between the joint space (i.e., the space
of the joint variables) of the robot and the so-called operational or Cartesian space (i.e. the
space of the end-effector). The Cartesian state of the robot defines the end-effector position
with respect to the robot’s base frame. The framework implemented in this thesis operates in
the joint space of the robot, therefore a detailed discussion of the robot’s kinematics is out of
our scope.

We focus instead on the robot dynamics which is concerned with defining the mapping
between the forces exerted on the robot structure and the joints’ position, velocity and
acceleration. Two instances of the dynamic relationship between motion and forces can be
identified: forward dynamics and inverse dynamics (see Figure 2.2). The dynamic model of a
robot describes the relationship between the robot state sss and the torques acting on the robot’s
joint. These torques may include the actuation torques τττ and the torques due to physical
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interaction with the external environment bbb. Given the current joint position and velocity,
and the torques τττ and bbb, the forward dynamics model predicts the state evolution of the robot.
The inverse dynamic problem instead describes the torques acting on the robot, given the
robot’s state.

To mathematically formulate the direct and inverse dynamic problems let us first derive
the dynamic equation of a n-DoF robot. For the moment, external torques u are neglected.
The dynamic equation of motion defines the relationship between the joint torques τττ ∈ Rn

and the joints’ motion sss as follows:

MMM(qqq)q̈qq+CCC(qqq,q̇qq)+ggg(qqq) = τττ +uuu (2.1)

where qqq ∈ Rn is the vector joint coordinates, τττ ∈ Rn is the vector of joint torques, MMM(q) ∈
Rn×n is the state-dependent positive definite and symmetric joint space inertia matrix,
CCC(qqq,q̇qq) ∈ Rn×n includes the Coriolis and centrifugal forces, and ggg(qqq) ∈ Rn is the torque
exerted by gravity. Equation 2.1 defines the inverse dynamics equation of a manipulator.
Two main approaches exist to obtain Equation 2.1, the Lagrange and the Newton-Euler
formulations. The description of these methods is not in our scope, see [196] for details.

Given Equation 2.1 and knowing the joint position and velocity at time t, the forward
dynamic problem can be solved. The joint acceleration q̈qq at time t when the torque τττ t is
applied to the manipulator can be computed as follows:

q̈qqt =MMM(qqqt−1)
−1(

τt−CCC(qqqt−1,q̇qqt−1)q̇qqt−1 +ggg(qqqt−1)
)

(2.2)

From the joint acceleration q̈qqt , the joint position qqqt and velocity q̇qqt can be obtained using
numerical integration methods (e.g., Runge-Kutta, Euler’s method [21]).

2.1.3 Physical interaction between the robot and the environment

In Section 2.1.2, we have introduced the concepts of direct and inverse dynamics. These
describe the robot’s motion given the forces and torques acting on the robot. In this section,
we describe in more detail the mechanical interaction between two physical systems and
introduce the concept of impedance and admittance. These concepts will lay the basis to
understand the need for controllers that take into account interaction forces, discussed in
Section 2.1.4.

Most of the manipulation tasks require the robot to physically interact with the external
environment. Classic manipulation tasks might involve the grasping and manipulation of
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Figure 2.3: A) Scheme of a generic joint space controller; B) Scheme of an impedance
controller. Both controllers aim to track a desired joint trajectory qqqd,q̇qqd,q̈qqd . However, A)
does not consider the external torques uuu in the control law.

objects. In these cases, the robot and the object (i.e., the environment) are two physical
systems mechanically coupled; the mechanical work exchanged between the robot and the
object can be defined in terms of interaction forces. In general, if the interaction forces are
negligible the robot is considered an isolated system, otherwise, the robot and environment
are treated as mechanically coupled physical systems. To ensure compatibility of the physical
interaction, the dynamic behaviour of the two physical systems must complement one another
[95]. This means that if the environment applies a force on the robot, the robot’s motion is
affected and vice versa. A physical system is defined as an admittance or as an impedance if it
can accept force (i.e., accept force, yield motion) or motion (i.e., accept motion, yield force),
respectively. Therefore, since the robot and the environment are mechanically coupled if one
behaves as an impedance, the other is an admittance, and vice versa (this is the case for linear
systems only). Classic motion control techniques based on position control, discussed below,
have been extensively applied in tasks where the robot may be considered an isolated system.
However, these methods are not sufficient to ensure the safe and successful execution of the
task if the robot physically interacts with the environment, especially if the environment is
rigid and the contact forces might reach unsafe values. To handle this problem, different
control strategies have been proposed in the literature to control the motion of the robot
while simultaneously modulating the dynamics of the physical interaction. In Section 2.1,
we describe two control schemes belonging to these two categories of control strategies: the
computed torque controller and the impedance controller.
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2.1.4 Robot control

In the previous sections, we have introduced fundamental concepts about the terminology
and mathematical description of a manipulator, and we have introduced robot kinematics
and dynamics. This section describes two control strategies, the computed torque control (or
inverse dynamics control) and the impedance control. The first controller allows to achieve
the desired robot kinematics, whereas the second controller also allows indirect control of
the dynamic interaction between the robot and the environment. In the first case, the robot is
regarded as an isolated system, while in the second case the robot is mechanically coupled
with the external environment. These two control schemes are illustrated in Figure 2.3 and
discussed below.

Computed torque control

The robot motion dynamics (Equation 2.1) is defined as a non-linear equation of a dynamic
system describing the actuation torques τττ in relation to the robot joint position, velocity and
acceleration. Given the generic n-DoF robot introduced earlier, we consider the problem of
designing a suitable torque command to control the robot’s joints with the aim of achieving
the desired motion trajectory qqqd,q̇qqd,q̈qqd . Ideally, if a perfect model of the robot dynamics was
available the equation of the inverse dynamics could be used to obtain the torque trajectory
needed to reach the target motion. However, this open-loop approach does not provide a
robust solution since a perfect model of the robot is usually unavailable due to different
factors contributing to modeling inaccuracy. Moreover, inverse dynamics does not take into
account the external torques acting on the robot. The computed torque scheme has been
proposed to provide a more robust control by including a feedback term to compensate for
potential sources of error [196]. A generic scheme of this controller implemented in the joint
space of the robot is represented in Figure 2.3-A. The control law is given by the following
equation where the new variable yyyd ∈ Rn is introduced:

yyyd = q̈qqd +KKK p(qqqd−qqq)+KKKd(q̇qqd− q̇qq) (2.3)

The second and third terms of the equation are the so-called proportional and derivative
terms. The error eee = qqqd−qqq and its derivative ėee = q̇qqd− q̇qq are weighted by the positive-definite
diagonal matrices KKK p ∈ Rn×n and KKKd ∈ Rn×n, respectively. The torque command needed
to achieve the desired motion is obtained by plugging Equation 2.3 in the robot motion
dynamics equation (Equation 2.2). This is done by imposing q̈qq = yyyd as follows:

τττ =MMM(qqq)(KKK peee+KKKdėee)+MMM(qqq)q̈qqd +CCC(qqq,q̇qq)+ggg(qqq) (2.4)
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The first term represents the feedback torque that compensates for errors in dynamics model-
ing; the remaining terms, called feedforward terms, are used to cancel out non-linearities in
the system. This can be demonstrated by plugging Equation 2.4 into Equation 2.2, which
results in the following equation:

q̈qq = q̈qqd +KKK peee+KKKdėee (2.5)

The non-linear dynamic system (Equation 2.2) has been simplified to a second-order linear
equation, where the robot is considered as a mass-spring-damper system. In summary, it is
possible to define a control law that disregards the robot dynamics, and uses optimal values
of the matrices KKK p and KKKd to bring the motion error to zero:

τττ =KKK p(qqqd−qqq)+KKKd(q̇qqd− q̇qq) =KKK peee+KKKdėee (2.6)

The role of the proportional and derivative matrices can be visualised by considering a tor-
sional spring and a damper at each joint that pull the adjacent links to achieve the desired joint
motion. The matrices KKK p and KKKd contain n independent springs, and dampers, respectively.
The proportional and derivative gain determines the convergence of the proportional and
derivative error to zero. Equation 2.6 defines the control law of a proportional-derivative
(PD) control scheme.

Impedance control

Impedance control is one of the main control schemes used to handle physical interactions
(i.e., contact forces) between the robot and the environment. This scheme was first introduced
by Neville Hogan [95] and implemented in the Cartesian space of the robot [96], given that
for manipulation tasks the end-effector primarily interacts with the environment. Consider
the simple task of following a trajectory with the robot’s end-effector. Classic motion
control schemes lead to successful trajectory tracking if the robot operates in the free space.
However, in the presence of interactions with the environment (e.g., sudden forces acting on
the end-effector due to contact with objects, or other forms of unpredictable perturbations)
successful execution of the task can not be guaranteed unless an accurate model of both the
manipulator and the environment (geometry and mechanical features) is provided and the
task is planned. In practice, while the dynamic model of the manipulator can be obtained with
sufficient precision, it is difficult to derive an accurate model of the environment. As a result
inaccuracies during task execution will give rise to interaction forces between the end-effector
and the environment until the end-effector deviates from the desired trajectory. Depending
on the amplitude of the contact forces, saturation of the robot’s actuators and breakage of
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the robot could occur. Impedance control provides a solution to this problem, allowing
position tracking and modulation of interaction forces without explicitly controlling the latter,
but by imposing a desired model of the dynamics between the robot and the environment.
This model, called impedance model, maps external forces to robot displacements, allowing
to modulate the interaction force indirectly, via motion control. The impedance model
usually consists of a set of second-order differential equations, defined as mass-spring-
damper equations (linear or non-linear), per each DoF. Consider the generalised contact force
vector FFFext =

[
FFF ,µµµ

]
∈ R6 containing the Cartesian forces FFF ∈ R3 and moments µµµ ∈ R3,

defined with respect to the Cartesian reference frame attached to the robot’s end-effector. An
impedance controller in the Cartesian space modulates the relationship between the position
of the end-effector and FFFext by defining a reference impedance model consisting of six
mass-spring-damper equations, one for each of the six DoFs. The choice of the parameters
of these equations (inertia, stiffness and damping matrices) determines the trade-off between
accurate position tracking and rejection of interaction forces FFFext . While key concepts of this
control paradigm might be more intuitive to understand when formulated in the Cartesian
space, we now derive the impedance control law in the joint space since this controller is
the base for the one utilised in the proposed framework. Recall the analogy between the
gains of the PD controller and the action of a mechanical spring and damper at the joints,
introduced with Equation 2.6. Similarly, we consider an impedance model consisting of a
set of independent mass-spring-damper equations for each DoF (i.e., joint). Let us rewrite
Equation 2.1 considering the vector of external joint torques uuu acting on the robot’s joints:

MMM(qqq)q̈qq+CCC(qqq,q̇qq)+ggg(qqq) = τττ−uuu (2.7)

To design the control law, we first linearise the system in Equation 2.7 and subsequently
impose the desired interaction dynamics using an impedance model. We assume that the
robot is equipped with force-torque sensors. The dynamic model of the robot is linearized by
plugging Equation 2.8 into Equation 2.7, as described below, to obtain Equation 2.9:

τττ =MMM(qqq)yyyd +CCC(qqq,q̇qq)+ggg(qqq) (2.8)

MMM(qqq)q̈qq+CCC(qqq,q̇qq)+ggg(qqq) =MMM(qqq)yyyd +CCC(qqq,q̇qq)+ggg(qqq)−uuu (2.9)

Notice that the acceleration in Equation 2.8 is indicated as yyyd . The new variable yyyd is defined
according to the impedance model, as described below. Let us define the impedance model
describing how the external torques uuu affect the robot’s trajectory in the joint space:

MMMd(q̈qq− q̈qqd)+DDDd(q̇qq− q̇qqd)+KKKd(qqq−qqqd) = uuu (2.10)
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where q̈qqd,q̇qqd,qqqd are the desired joint acceleration, velocity and position. The parameters
MMMd > 0, KKKd > 0, DDDd ≥ 0 ∈ Rn×n are the desired inertia, damping, and stiffness matrices.
Large MMMd can lead to slow response, KKKd allows attenuating the interaction forces, while
DDDd shapes the transient behaviour [38]. To obtain the control law, we first isolate q̈qq in
Equation 2.10 as follows:

q̈qq =MMM−1
d

(
uuu−DDDd(q̇qq− q̇qqd)−KKKd(qqq−qqqd)+MMMdq̈qqd

)
(2.11)

We then define the desired dynamic behaviour described by the impedance model onto the
robot, by imposing that the acceleration obtained in Equation 2.11 is equal to the desired
acceleration yyyd . To do this, Equation 2.11 is plugged into Equation 2.9 by imposing yyyd = q̈qq:

MMM(qqq)q̈qq =MMM(qqq)(MMM−1
d

(
uuu−DDDd(q̇qq− q̇qqd)−KKKd(qqq−qqqd)+MMMdq̈qqd

)
)−uuu (2.12)

The obtained control law may be simplified by assuming that the desired inertia matches
the natural inertia of the robot, imposing MMMd =MMM. This avoids challenges in choosing the
desired inertia and does not require the measurement of external torques. The simplified
control law of the joint-space impedance control is the following:

τττ =MMMq̈qqd−DDDd(q̇qq− q̇qqd)−KKKd(qqq−qqqd) (2.13)

Notice that the vector of external torques uuu is eliminated due to the aforementioned simplifi-
cation. The obtained control law is a pure motion control law, but the gains are chosen to
limit the contact forces and satisfy the desired dynamic behaviour [121].

Variable impedance control

Research in robotics has widely used the impedance control paradigm, introduced in the
previous section, to shape the interaction between a robot and the environment. However, the
choice of suitable impedance gains is a non-trivial problem since the mechanical interaction
between the robot and environment might change during the task due to system constraints
and environmental properties [7, 117]. For this reason, a single set of impedance parameters
might not be suitable for the successful execution of the entire task, instead, the robot should
be capable of adapting its dynamic behaviour [95]. Variable impedance control allows to
vary the impedance parameters as a function of some desired system variable (e.g., time,
robot state, etc). Based on the fixed-gains impedance model introduced in Equation 2.10, a
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variable impedance model can be mathematically formulated as follows:

MMMd(t)(q̈qq− q̈qqd)+DDDd(t)(q̇qq− q̇qqd)+KKKd(t)(qqq−qqqd) = uuu (2.14)

with the desired inertia, stiffness and damping matrices varying as a function of time. This
control method belongs to the class of adaptive controllers. Typically, machine learning
algorithms are used to compute an impedance trajectory, learn task-specific policies from
which adaptive impedance values are obtained, or variable impedance parameters are learned
from human demonstration [27, 22, 119, 99]. An in-depth review of the methods found in
the robot manipulation literature to estimate suitable impedance gains is out of the scope of
this thesis. However, the need for an impedance model with adaptive impedance gains had to
be clarified since the framework proposed in this thesis implements a variable impedance
control scheme to enable a human subject to update the impedance parameters used in the
controller.

2.2 Human neuromuscular impedance control

In Section 2.1.4 we have introduced the impedance control scheme, designed to handle
mechanical interactions between the robot and the environment. The impedance control
paradigm takes inspiration from human neuromuscular impedance control which constitute
the core of the human motor control strategy. In this thesis, we propose a framework to
decode the human motor intent in terms of joint kinematics and joint impedance, and to
implement the impedance controls strategy on a robotic system. It is therefore important to
review the mechanism used by the central nervous system (CNS) to modulate the impedance
of the limb.

Object manipulation is a common human activity that involves physical interaction be-
tween the limb and the environment. This physical interaction can be stable or unstable.
Consider the example of holding an umbrella, introduced in Chapter 1. In an ideal scenario
where the umbrella and the human limb are the only physical systems interacting (i.e., ab-
sence of unpredictable perturbations), the task of holding the umbrella can be considered
dynamically stable. Even if some properties of the object being manipulated are unknown,
such as the umbrella’s weight, humans learn how to adapt their sensorimotor control (i.e.,
mapping of neural inputs to motor outcomes) to successfully hold the umbrella. However, in
real-life scenarios, it might not be possible to predict when the wind will blow and suddenly
displace the umbrella from its upright position. In this case, and in most of the manipulation
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tasks, unpredictability is a critical feature of dynamic interactions humans need to counteract.
Understanding how the CNS controls the musculoskeletal system to achieve dexterous motion
in the presence of instabilities and unpredictable interactions with the external environment
has been – and still is – a longstanding goal of different disciplines.

Sources of instabilities arise either from the environment or from the body itself. A stable
and repeatable bias (stable dynamics) is easily managed by humans since the repeatability
property ensures that similar motor commands generate the same output. In this case, humans
incrementally and iteratively learn how to adapt their sensorimotor input to obtain the desired
motor outcome [147]. This is achieved through a neural feedback mechanism. However, in
an unpredictable environment, this type of control strategy would lead to failure. In fact,
neural feedback pathways are characterized by neural delay. Considering the upper limb, the
fastest feedback loops (i.e., spinal reflex) are reported to be approximately 25 ms [125], and
longer reaction times associated with voluntary contraction (i.e., transcortical feedbacks) can
range between 100–200 ms [96]. The effectiveness of neural feedback control is therefore
quite limited, especially for tasks involving dynamic interaction with the environment where
a prompt reaction is required. In these cases, humans leverage the adaptation of intrinsic
mechanical properties of the musculoskeletal system to complement the action of neural
feedback [94, 145, 144].

The viscous-elastic properties of the musculoskeletal system were first investigated by
Hogan in 1985, when he postulated how the CNS regulates the arm endpoint impedance to
counter external perturbations [72]. Mussa-Ivaldi, Hogan and Bizzi [153] investigated the
behaviour of the limb when operating in an unstable environment and observed that “when
the hand is displaced from an equilibrium posture by an external disturbance, a force is
generated to restore the original position”. This statement describes the impedance properties
of the limb in the Cartesian space, considering the hand as the interaction port between
the human limb and the environment. The human arm was modeled as a mass-spring-
damping system, and its mechanical interaction with the environment was formalized in
terms of mechanical impedance (i.e., inertia, damping, stiffness). The reader should recall
that inertia, damping and stiffness were introduced in Section 2.1.4 to define the impedance
model of the robot. The validity of the arm model has been supported in several studies
[78, 169, 171, 78, 120, 68, 18, 58, 203, 73, 47, 144] showing that regulation of the impedance
properties of the arm plays a fundamental role in adaptation to instabilities.

Considering the human upper-limb interacting with the environment, two main mecha-
nisms contribute to the modulation of limb impedance. Muscle co-activation is responsible
for early responses to disturbances because it is unaffected by neural delay, whereas neural
feedback mediates the response with a delay [80]. In fact, it is shown that modulation
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of the muscle impedance might be achieved also in the absence of neural feedback [96]
by simultaneous activation of two or more muscles opposing each other and spanning the
same joint. Consider a single-DoF motion, involving flexors and extensor muscles acting as
agonist-antagonist muscle groups. During isometric contractions, when flexors and extensor
muscles coactivate, their actions oppose one another, resulting in a null torque around the
joint. As a result, no joint motion is generated, whereas the muscle co-contraction contributes
to increasing the stiffness of the arm [94] which allows to stabilize the arm-environment
system and to achieve the desired motion and dynamic behaviour. During this process, the
tuning of the mechanical impedance parameters occurs. Similarly, the same joint motion
can be achieved while modulating the muscles’ co-contraction and thus the arm impedance.
Going back to our previous example, to compensate for the perturbations imposed by the
wind we typically co-contract the muscles spanning the limb’s joints to maintain the limb
posture while increasing the “rigidity” of the limb to reject unexpected perturbations. More
recent studies [28] provided experimental evidence that humans selectively modulate the net
impedance of the hand to compensate for destabilizing external perturbations. While regula-
tion of the limb impedance properties by muscle co-contraction allows humans to counter
unpredictable instabilities, this mechanism requires energy to maintain the co-contraction
and may seem inefficient. For this reason, humans optimally adapt the limb impedance and
tune it accordingly to the task’s requirements and time. The limb inertia is mainly controlled
by changing the limb posture, the damping and stiffness are highly dependent on intrinsic
properties of the muscular-tendinous tissue [73, 72] which are discussed in more detail in
Section 2.4.

The understanding of the macroscopic properties of the muscular tissue provides the
basis for the mathematical formulation of biomechanic muscle-tendon models that predict
the contraction forces generated by the muscle-tendinous tissue. These models are used in
the proposed framework to include domain knowledge about muscle contraction dynam-
ics, as summarised in Section 1. These models are driven by surface electromyographic
(sEMG) signals, which contain information about the neural content of the motor intent.
Electromyography is discussed in the next section.

2.3 Human machine interfaces for detection of human mo-
tor intent

In the previous section, we have described impedance adaptation of the human limb as a
fundamental motor control strategy to modulate the dynamics of the interaction (i.e., contact
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forces) between our limb and the environment. We have explained that modulation of the
limb impedance relies on the intrinsic mechanical properties of the muscles. These concepts
are reviewed since the proposed framework draws inspiration from their understanding. As
discussed in Section 1, this thesis presents a framework for decoding the human motor intent
from sEMG signals in terms of joint kinematics and impedance, and for enabling online
adaptive control of the impedance of a robotic system.

In this section, we describe electromyography and discuss why it is the most commonly
used type of Human Machine Interface (HMI) in clinical practice (e.g., motor prostheses
control, exoskeleton, etc) and in research. In particular, motivated by the goal of the work
discussed in this thesis, we are interested in HMIs that record biological signals containing
information about the human motor intent. We provide a brief overview of the HMIs used to
interface the human nervous and muscular systems, and we then focus on electromyography
and provide technical details on the Myoband device, which is part of the experimental setup
of this thesis.

2.3.1 How is a human subject interfaced with a motor prosthesis?

A HMI comprises the technology and software needed for a human subject to interact with a
machine. Considering the scope of this thesis, we constrain our review to HMIs that provide
insight into human neuromuscular control and allow to record biosignals from which the
human motor intent can be extracted and used to control a robotic system (i.e., any robot
manipulator, prosthesis, other rehabilitation devices). In this regard, different HMIs exists:
electroencephalography (EEG) [129, 104], electrocorticography (ECoG) [118, 39, 124],
electromyography (EMG) [63, 60] and direct cortical control through multi-electrode arrays.
These HMIs have been widely used in the rehabilitation field for interfacing patients with
robotics devices used to substitute, augment or assist motor functions. The advantages and
disadvantages of these HMIs range from signal extraction to signal-to-noise ratio (SNR),
invasiveness of signal recording, and signal deterioration over time. EEG and EMG are
the two HMIs mostly explored in literature and used in clinical applications. Using EEG
requires the user to wear a grid of sensors which record the electrical activity of the brain
transmitted through the skull. Some of the drawbacks of EEG are the low SNR, the low
spatial resolution compared to ECoG [4, 104], and the discomfort in using the sensors.
EMG records the electrical potential generated by the muscles when these contract as a
result of neural excitation or electrical stimulation [213]. There are different types of EMG
technologies depending on the type of sensors, their size and the measuring site. We can
distinguish two main categories: implanted myoelectric sensors (IMES) and surface EMG
(sEMG). IMES uses sensors directly implanted in the muscular tissue. The high spatial
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Figure 2.4: Figure adapted from [49]. A simple scheme of the physiological generation of
sEMG signals contrasted to the sEMG signal recorded by an sEMG sensor. The summation of
the motor unit action potential from the muscle fibers results in a motor unit action potential.
The electrode placed on the skin overlaying the muscle belly records the superimposition of
the action potentials of the motor units resulting in the observed sEMG signal. This signal is
affected by sources of noise.

resolution of this technology allows targeting muscle fibers of superficial and deeper muscles
[168, 85]. However, IMES are highly invasive and difficult to deploy in clinical and research
settings. On the contrary, surface electromyography, because of its non-invasiveness and
ease of use, is the most widely used type of HMI to interface with the human neuromuscular
system. Surface EMG uses electrodes placed on the skin overlying a muscle to record the
electrical potential generated by the muscle’s contraction. While sEMG does not interface
directly with the nervous system, sEMG signals contain the neural information underlying
muscle electrical activity: there is a one-to-one correspondence between the neural events
(i.e., axon potential discharges) and the events recorded in the sEMG signals (i.e., action
potentials) [59, 60]. Changes in neuromuscular control and muscular activity result in
changes in the sEMG signals. Surface EMG signals can thus be processed to estimate
the user’s motor intention about the joint spanned by the targeted muscles. In the field of
motor prostheses, which is the domain application of this thesis, surface EMG has been
considered the viable way for continuously interfacing with a human subject and it is used
in most of the commercially available prostheses due to its non-invasiveness and ease of
use. However, surface EMG has different limitations due to the type of technology used (i.e.,
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electrodes placed on the skin). An sEMG signal is the result of the superimposition of the
electrical activity of the muscle fibers underneath the sensor. This means that surface EMG
makes it difficult to target specific muscles, and the sEMG signals might be contaminated
by the activity of adjacent muscles. Due to the measuring setup, and depending on the
size of the electrodes, sEMG is prone to technical difficulties (e.g., sensor slippage, sensor
misalignment, muscle cross-talk [59, 61]) that make the problem of decoding the motor
intent highly challenging.

In Section 2.3.2 the physiology underpinning the generation of sEMG signals is discussed
more in detail; specific technical issues such as that of crosstalk are discussed.

2.3.2 Surface electromyography (sEMG)

In Section 2.3 we overviewed the main types of HMIs used to detect the motor intent of a
human subject. Among the HMIs, we have introduced surface electromyography as a non-
invasive way to interface with the neuromuscular system. Below, surface EMG is discussed
more in detail since it is the HMI used in this work.

The central nervous system (CNS) conveys commands to the effector muscles through
the recruitment and firing of spinal motor neurons (neuronal cells) innervating the target
muscles [88]. The motor unit, constituted by the motor neuron plus the muscle fibers it
innervates, generates an electrical field called motor unit action potential (Figure 2.4). As a
result, when a muscle fiber is excited by a neural drive it starts conducting electricity. Surface
electromyography uses electrodes overlying the muscle of interest to measure its electrical
activity [50]. The recorded sEMG signal is a superimposition of the measurable potentials
generated by the active motor units. The number of active motor units and their firing rate
determines the shape and magnitude of the recorded sEMG signal. In particular, the signal
appears positive and negative due to the summation of motor units activity and due to the
random firing rate of the motor neurons. Figure 2.4 provides an illustration of these concepts.
The sEMG signals contain information on the neural drive to the muscles and therefore
provide the biosignals from which the central motor control strategy can be inferred using
suitable processing methods and detection of intention algorithms.

Different sources of noise might affect the measured signals such as motion artefacts
during dynamic experiments, electrical interference from adjacent muscles or equipment,
electrode positioning, and skin impedance [48]. Specifically, the layers of tissue between
the signal source and the measuring site result in temporal and spatial filtering of the signals
[62, 136]. This effect is known as volume conduction. Moreover, classic sEMG sensors do
not allow high spatial resolution due to the sensor size. This means that this setup does not
allow to record the activity of the single motor unit, but provides the global activity of the
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muscle. This leads to another technical issue known as crosstalk: the signal recorded over a
muscle might be contaminated by a nearby muscle depending on the muscles’ arrangement
and sensors’ placement. Finally, the random nature of the firing rates introduces low-
frequency noise and loss of information. As a result, the recorded sEMG signal differs from
the physiological myogram constituted by the superimposition of the action potential of the
motor units [48] and requires filtering steps before the signal can be used. Below we describe
the device used to record the muscle activity within the experimental work of this thesis and
we outline the signal processing procedure.

Myoband

The Myoband developed by Thalmic Lab is the HMI used in this thesis. The device is an
array of 8 classic low-density sEMG sensors and a nine-axis Inertial Measurement Unit
(IMU). It has a working frequency of 200 Hz and data are transferred via Bluetooth. The
raw sEMG signals were bandpass-filtered (20 – 500 Hz) and full-wave rectified before the
root-mean-square temporal features were extracted (moving window of length 160 ms and
step size 40 ms). Notice that the cut-off frequencies of the filters are specific for this device,
in relation to the working frequency and considering the muscles and motions performed
according to the experimental protocol discussed in Section 5.3.1. The root-mean-square
temporal feature approximates the power of the sEMG signal which provides an estimate
of the strength of the neural drive to the muscle [49]. Further processing steps such as
sEMG signal normalization according to the maximum voluntary contraction are described
in Section 4.3.1.

2.4 Fundamentals of musculoskeletal modeling

Skeletal muscles are the biological actuators of our skeletal system. Muscular tissue is able
to contract (i.e., to shorten) while producing a pulling force that, transmitted by the tendon
to the bone, may generate movement of the body’s segments. Fundamental studies on the
biomechanical modeling of the muscular tissue properties date back to 1938 when A. V.
Hill [90] proposed the first structure of the well-established phenomenological Hill’s model.
This model, together with the work led by H. Huxley [101], has laid the foundations of
the current understanding of how muscles generate force when activated by a neural input,
and how this process can be formalised mathematically. Hill’s and Huxley’s models have
opposite approaches in muscle-tendon modeling [214]: Huxley’s model aims at representing
the mechanism of the muscle contraction dynamics with great accuracy, at a microscopic
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level; the Hill’s model is phenomenological in nature, meaning that it aims to explain macro-
scopic properties of the muscle’s contraction dynamics. As a result, Huxley’s approach led
to complex and computationally expensive models that require in-depth knowledge of neuro-
chemistry, and physiology underlying muscle contraction. On the contrary, Hill based models
propose a compromise between the representation accuracy of macroscopic biomechanical
behaviour and model simplicity which led to greater transparency and applicability of these
models.

In this thesis, we are interested in Hill’s approach. This is motivated by the aforemen-
tioned characteristics of Hill’s approach which are in line with the motivations of this work
and the principles followed to design the framework presented in this thesis (Section 1.2).

In Section 2.4 we discuss the basic macroscopic properties of the muscular-tendinous
tissue (i.e., force-length and force-velocity relationships) and provide the reader with a
“microscopic” explanation of a described behaviour only when it aids the understanding.
Based on these macroscopic properties the classic Hill’s model is described (Section 2.4.2):
the concept of muscle-tendon unit (MTU) is introduced, as well as the modeling of the
activation dynamics and contraction dynamics processes. Mechanical properties of the
musculotendinous tissue highly depend on the extrinsic arrangement of fibers and tendons on
the skeleton. We, therefore, describe its geometrical arrangement on a generic body segment
and introduce the concept of moment arm which constitute a basic operator to transform
variables from the muscle space to the joint space (e.g., muscle force is related to joint torque,
muscle change in length to joint angular displacement). Finally, in Section 2.4.4 we define
the muscle impedance, joint impedance and Cartesian impedance of the upper-limb.

At the end of this section, the reader is provided with the background knowledge required
to derive the mathematical formulation of Hill’s muscle-tendon models and to understand the
muscle-tendon model used in the proposed framework.

2.4.1 Macroscopic properties of the muscular-tendinous tissue

Skeletal muscles have a hierarchic structure, as shown in Figure 2.5. A muscle is constituted
by fascicles, a fascicle is composed of muscle fibers, each fiber is made of myofibrils and
finally, each myofibril contains thousands of sarcomeres connected in series. The sarcomeres
are constituted by two main proteins called actin and myosin. Current knowledge on muscle
contraction at a microscopic level is based on Hugh Huxley’s “Sliding filament theory”
[103, 102]. The action potential generated by motor units triggers the formation of actin-
myosin cross-bridges, which determine the contraction of the sarcomere and allows the
voluntary contraction behaviour of muscles as we know it.
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Figure 2.5: Scheme of the structure of a skeletal muscle. Figure from [20].

Collagenous connective tissue links the muscular fibers together and to the bones. Part of
the connective tissue surrounding groups of fascicles and the whole muscle constitute the
aponeurosis which is contiguous to the tendon and because of its location considered the
inner part of the tendon. The tendon attaches to the bone and transmits the contracting force
of the muscle to the bone generating motion. The force generated by a muscle can be active
or passive. The active force is generated by the contractile elements within the muscular
tissue in response to a neural activation and requires energy expenditure. Contractility is
therefore the property of contracting in response to input stimuli. The force generated by
the muscle and tendon is dependent on the muscle’s and tendon’s length. This property is
referred to as elasticity. However, the connective tissue found in muscles and in tendons is
passive (i.e., non-contractile) and it possesses a force-length relationship that differs from the
active elasticity of the muscle’s fibers. We refer to the force-length property of connective
tissue as passive elasticity.

Below, we describe the macroscopic properties of the muscle tissue’s contraction dy-
namics, which together with the activation dynamics describes the overall dynamics of the
musculotendinous system. Recall that in Section 2.3.2 we have explained the basic physio-
logical principles and events characterising the process from neural inputs to the generation
of muscle activations. This is the activation dynamic process. The contraction dynamics
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Figure 2.6: Figure from [223]. The muscle force as a function of its length is shown in A and
B for two input activations of 1 and 0.5, respectively. In this figure FM is the isometric force
at the muscle length lM, FM

0 is the maximum isometric force reached at lM = lM
0 . The force-

length contribution given by the contractile component and the passive component are shown.
The total force is the sum of the active and passive contribution. The experimental curve
of the force-velocity relationship for contractile tissue is shown in C and D for maximum
activation and 50% of the maximum activation, respectively.

describes the generation of muscular force on the basis of macroscopic properties of the
musculotendinous tissue, given the muscle activation. An understanding of the main features
of the contraction dynamics will allow us to introduce the mechanical Hill’s model described
in the following sections.

Muscle contraction dynamics

The contraction dynamics describes the process from muscle activation to the generation of
muscle force. This process is characterised by two fundamental properties: the force-length
(elasticity) and the force-velocity (viscosity) relationships. For contractile elements, the
force-length and force-velocity properties depend on the input activation. We discuss below
the force-length-velocity properties of the muscular tissue and of the tendon.
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Muscle: force-length relationship The total tension-length relationship of the skeletal
muscles determines the steady-state force generated by active and passive tissue components
when the muscle is held isometric (i.e., constant length) against a specific load. Structural
changes to the myofibrils at the level of the sarcomere are the basis of the observed active
force-length relationship [79]. The active force-length relationship is a function of the input
neural activation, the length of the muscle fibers and the maximum isometric force that
can be generated by the muscle. Assuming a constant magnitude of the input activation
and recording the maximum force reached by the muscle when contracting isometrically at
different lengths, the force-length characteristic curve is obtained (an example for constant
normalised maximum activation, and 50% of maximum normalised activation in Figure 2.6-
A, B). The peak of the curve is the maximum isometric contraction and the corresponding
muscle length is called optimal length (indicated as lM

0 in Figure 2.6-A, B). The region where
the active muscle force is generated is nominally in the range [0.5lM

0 , 1.5lM
0 ] [223]. For

different magnitudes of input activation, a family of curves with the same properties but
different maximum isometric contractions is obtained. The connective tissue surrounding the
contractile elements contributes to the force-length relationship. The passive tension-length
relationship is obtained when the muscle is stretched in the absence of activation stimuli
above the optimal length. For lengths smaller than the optimal length the passive component
is in a slack state and does not provide any tension. in Figure 2.6-A,B the passive component
of the force-length curve can be observed.

Muscle: force-velocity relationship While the force-length relationship describes the
steady-state properties of the musculotendinous tissue, the force-velocity relationship de-
scribes the dynamic behaviour of the muscle. The force generated by a muscle is dependent
on its contraction velocity: the slower the muscle shortens the greater the force it generates,
and vice versa.

Experimentally derived curves of the force-velocity relationship can be obtained by
measuring the force generated by the muscle at different shortening and lengthening velocities
or during isotonic experiments where the muscle contracts subject to constant tension. The
force-velocity curve can then be fitted to the collected force data. Today, there is still
disagreement on the shape of this force-velocity curve. The first experimental curve of
the force-velocity relationship was reported by Hills [90] for concentric contractions. The
relationship was represented as a hyperbolic curve, suggesting that when the fiber shortens
the force decreases in a hyperbolic fashion until a null force is reached at the maximum
shortening velocity. The length at which shortening terminates corresponds to the length
at which the force can be sustained at steady-state. This behaviour has been explained by
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different factors [42] related to the kinetics of cross-bridges. Although a hyperbola may
provide a good fit to concentric data, it was suggested that a double hyperbola provided better
approximation in high-force and low-velocity regions [55]. Subsequent studies showed that
the hyperbolic model proposed by Hill was not suitable to describe eccentric contractions
[111] and isovelocity acitivities [222]. The model was extended to include the description
of the relationship for eccentric contractions [111]: when the muscle undergoes an isotonic
contraction (i.e, constant tension) the force increases for low lengthening velocities, then it
increases and plateaus as the velocity increases further (1.5 isometric force). The observed
force-velocity behaviour may be due to the stretching of cross-bridges [214, 56]: as velocity
increases the cross-bridges are stretched to the maximum sustainable values after which they
detach limiting the muscle force during lengthening.

An experimental curve of the force-velocity relationship can be observed in Figure 2.6-
C,D. Notice that the force-velocity relationship is shown in the figure for a specific muscle
length and input activation. At optimal fiber length, the muscular tissue cannot sustain
any force when reaching the maximum velocity, independently of the input activation.
There is no consensus on the dependence of the velocity axis intercept on muscle length or
activation [223]. However, for modeling purposes, it is often assumed to be independent
since it does not substantially affect the functionality of the models [216]. Other modeling
assumptions are that the relationship scales with length and activation, it does not have any
discontinuity on the force axis intercept, and the force-velocity relationship is unaffected by
the previous states of the muscles [223]. Experimental studies do not show consensus on
these or the opposite assumptions, however, these do not seem to affect the functionality of
the models. Isometric contractions lie along the zero-velocity axis of the graph. While we
have provided an overview of the current understanding of the force-velocity relationship,
the reader is referred to [8] for an exhaustive review of relevant studies investigating the
shape of the force-velocity relationship, based on data collected from muscle specimens and
during in vivo experiments.

Tendon dynamics

The force generated by the muscle affects the tendon. The tendon generates a force only if
extended over the slack length (i.e., relaxed state). Considering the tendon force as a function
of its length (Figure 2.7), the curve strain-length is characterised by an initial concave area
called “toe region” where the tendon force has low magnitude; to continue elongating the
tendon within the toe region a higher force is needed to produce the same change in tendon
length meaning that the tendon stiffness increases. Beyond the “toe region” (about 2–4% of
strain) the force increases linearly up to tendon breakage if it is stretched beyond the failure
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Figure 2.7: Example of the strain-length curve for the tendon. Image taken from [223].

point (usually after 10% strain) [138, 223]. The tendon stiffness is therefore initially low,
it then increases non-linearly (within the toe region) and finally increases linearly (linear
region). Tendon stiffness increases with tendon thickness and generally decreases with tendon
length, long tendons are therefore more compliant. The tendon is characterised by hysteresis,
meaning that when the tendon undergoes relaxation it follows a different force-strain path
than it does during elongation. In this case, the force generated is slightly lower due to
dissipative effects. The energy loss is typically less than 10% indicating that the elastic
properties dominate over the dissipative ones.

2.4.2 Hill’s mechanical muscle-tendon model

Initial efforts in modeling the mechanical behaviour of the muscle tissue used models
composed of passive elements such as springs and damping elements [215]. Maxwell’s
model uses both elements attached in series; the Voight model uses the elements in parallel,
and Kelvin’s model modifies Voight’s model by adding a spring in series to the damper
element. While these models allowed to study of the response of the muscle tissue under
compressive and tensile loads, they could not reproduce active muscle contraction. In 1938,
Hill proposed a model that combined the passive properties of the Kelvin model by adding
in parallel to the damper an active element called contractile element [90]. Joint effort in
muscle-tendon modeling [133, 25, 211, 224] has led to the definition of a model capable of
predicting the contraction dynamics of the musculotendinous tissue. The model structure
and parameters identification and estimation were conducted during controlled input-output
in vivo experiments where the muscle load, length and stimulation were provided as input
and the joint motion was the measured output. It is important to clarify that from here on we
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Figure 2.8: A) Generic Hill’s type muscle-tendon model [24] made of muscle and tendon
elements. The contractile (CE) and a parallel (PE) element compose the muscle; the tendon
is modeled as a serial element (SE). The MTU, driven by the input activation a generates the
indicated output forces. The muscle line of action with respect to the tendon depends on the
pennation angle θ . B) Arrangement of MTU on the links connecting a joint q. The MTU
force F generates a torque τ at the joint that depends on the moment arm r.

refer to the muscular or tendinous tissue as a whole, due to homogeneity in structure (i.e.,
tissue composition), and function. Therefore, we describe a lumped model, which contains
lumped elements and parameters that describe the collective contraction dynamics of the
sub-elements of the muscular tissue.

According to Hill’s approach, when the tendon stretches it affects the length and velocity
of the muscle contraction and so the muscle is modeled in series to the tendons. The muscles
and the tendon elements constitute a muscle-tendon unit (MTU) as shown in Figure 2.8-A.
The classic Hill’s type MTU of length lMTU is composed of a muscle of length lce in series
to a tendon of length lse [24]. The muscle is made of a contractile element (CE) in parallel
to an elastic element (PE) which models the connective tissue. As discussed in Section 2.4,
the CE element is characterised by a force-length and a force-velocity relationship, and it is
driven by an input activation a. When activated, the contractile element generates a force Fce

as a function of the current muscle length lce, contraction velocity l̇ce and muscle activation
input a. PE is a purely passive element, and it produces a resistive force Fpe when stretched
beyond its slack length. The tendon is modeled as a non-linear spring (SE), and it is added
in series to the muscle. The angle between the lines of action of the tendon and that of the
muscle fibre is called pennation angle θ (Figure 2.8-A), and although for some muscles it is
negligible, for others it is substantial [25]. The force generated by the CE and PE elements
affects the force generated by SE, and vice versa. The system at equilibrium is described by



2.4 Fundamentals of musculoskeletal modeling 35

Figure 2.9: Scheme of the musculoskeletal system. The neural input n(t) at time t is trans-
formed into muscle activation a(t) by the activation dynamics process. The muscle activation
drives the contraction dynamics to generate the output force F(t), given the current state of
the muscle-tendon model. The muscle-tendon model state sMTU = {lce, lMTU , l̇ce, l̇MTU} is
constituted by the length of the CE component, the length of the MTU, and by the corre-
sponding contraction velocities. The MTU force F(t) is transformed from the MTU space to
the joint space of the rigid body. Finally, the torque τ(t) is applied and the correspondent
angular displacement is measured. The state of the muscle-tendon model is then updated.

the following non-linear dynamic equation:

F =
[
Fce(lce, l̇ce,a)+Fpe(lce)

]
cosθ = Fse(lce, lMTC) (2.15)

Given the input activation a and the initial state of the muscle-tendon (lce, lmtu, l̇ce, l̇mtu) the
MTU generates as output the muscle-tendon force F .

The biomechanical properties of the muscle and tendon have been studied extensively
during controlled in-vivo experiments. Based on the macroscopic properties described in
Section 2.4, in this section, we provide insight into the fundamental mechanical properties
of the skeletal muscle and tendon and derive the mathematical formulation of the active
and passive elements of the MTU introduced in Figure 2.8-A. Researchers have explored
different derivation of the MTU model, varying the arrangement of the elements composing
its structure [214]. The muscle-tendon model used to derive the mathematical formulation of
the contraction dynamics is the basis for the MTU structure used in the framework described
in Chapter 4.

Below, we provide an overview of the steps to actuate a joint using an sEMG-driven
musculoskeletal model. A scheme of the main components of the pipeline is provided in
Figure 2.9. Firstly, the muscle-tendon dynamics is described by mathematically formulating
the activation dynamic and contraction dynamic processes. As a result of the muscle-tendon
dynamics the MTU force F is obtained based on the input activation and the previous state of
the MTU. We then consider the geometrical aspects to define the transformation of variables
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from the muscle-tendon space to the joint space, which will allow us to obtain the joint
torque. Derivation of the forces generated as a result of the contraction dynamics is needed
to then obtain the mathematical formulation of the muscle-tendon stiffness and damping,
described in Section 2.4.4. The following sections focus on concepts that are fundamental
for the understanding of the next chapters and it is by no means an extensive review of the
work done in muscle-tendon modeling. The interested reader who wants to deepen their
understanding is referred to additional material [25, 214].

Model of activation dynamics

The contraction dynamics of an MTU is driven by an input activation a(t). This activation is
the output of the activation dynamics process that transforms the neural excitation n(t) into
muscle activation a(t). According to [223], the raw sEMG signals recorded from a target
muscle represent the neural excitation n(t), and it is suitable to drive a MTU. The activation
dynamics process can be regarded as the rectification and filtering of the raw sEMG signal
when the cut-off frequencies of the filters being used are those characterising the excitation
(i.e., time for building up activation) and relaxation (i.e., deactivation time) process that
drives the muscle activation. This excitation-relaxation process has been modeled using linear
and non-linear first-order dynamic systems [223, 222, 216]. In the first case, the activation
dynamics is characterised by a single time constant, whereas two time constants are used
in the non-linear model, one associated with the excitation process and one associated with
the deactivation time. The time constant of the excitation process is lower than the time
constant during relaxation. This implies that the isometric force rises faster during excitation
than relaxation, as it will be discussed in the next sections. In [87], a second-order model
is used. The time constants are determined based on knowledge of the target muscles or
estimated during a calibration procedure. The obtained activation signal is then normalised
according to the maximum voluntary contraction, as required by the MTU design [24].
The normalised and processed sEMG signal is then transformed to keep into account the
non-linear relationship between sEMG amplitude and force generation. In [173], it is shown
that the isometric sEMG signal does not necessarily linearly relate to the muscle force. As
the stimuli frequency increases, the MTU output force will increase up to a steady state value,
where no further force can be produced by the muscles. To account for this non-linearity the
normalised muscle activation is transformed using the following equation:

a(t) =
eAn(t)−1

eA−1
(2.16)
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where A is a non-linearity factor varying in the range [−3, 0]. When A = 0 the relationship
is linear, whereas the relationship is highly exponential when A = −3. the value of A is
typically estimated during a calibration process.

Model of Contraction dynamics

The output of the activation dynamic process, described in the previous section, is the input
to the contraction dynamics, described below. The contraction dynamics provides the force
generated by the MTU given the MTU state sMTU and an input activation a (Figure 2.9).
The muscle force depends on the muscle state, and it is characterised by a force-length and
force-velocity relationship discussed in Section 2.4. The force generated by the muscle is
therefore represented by the following fundamental equation [90]:

F = Ff lFf vFmaxa (2.17)

where Ff l is the normalised active force-length relation, Ff v is the normalised force-velocity
relation, Fmax is the maximum isometric force (i.e., force-length relationship), and a is the
activation in the range [0, 1] which scales the maximum isometric force. Considering the
Hill’s type MTU introduced earlier (Figure 2.8-A), the force F in Equation 2.17 is given by
the sum of the forces generated by CE and PE (Equation 2.15) which is equal to the force
generated by the serial element. The forces generated by CE, PE and SE are derived below.

CE element The force generated by the CE element is based on the force-velocity relation-
ship introduced by Hill to describe the heat associated with muscle contraction [90]. This
formulation has then been rewritten to include the force-length relationship [24] as follows:

Fce = Ff l(lce)
Fmaxbhill−ahill l̇ce

bhill + l̇ce
(2.18)

where Fmax is the maximum isometric force, ahill is a thermal constant related to the cross-
section of the muscle, and bhill defines the rate of energy dissipated. However, Equation 2.18
was derived only for shortening velocities, and it has been subsequently extended to account
for eccentric forces [205].

PE element The passive tissue force-length relationship has been approximated by viscous-
elastic models that may consist of a non-linear spring and a damper. However, the damper is
usually neglected or assumed to be linear [214]. The passive force depends on the muscle
fiber length. It is null for lce shorter than the optimal fiber length and increases exponentially
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Figure 2.10: Figure from [223]. Normalised tendon force as a function of the normalised
tendon strain.

thereafter according to the following equation:

Fpe = fp( ¯lce)Fmax (2.19)

where ¯lce is the normalised CE length with respect to the optimal length and with fp(l)
derived as follows [24]:

fp( ¯lce) =
e10( ¯lce−1)

e5 (2.20)

SE element Because the tendon is arranged in series to the muscle, the force generated by
the muscles affects the tendon. The tendon is modeled as a non-linear spring that generates
a force Fse only if extended over the slack length lse0. Notice that Fse is not activation
dependent as the tendon is a passive element. The force Fse is a function of the normalise
strain εT = lse−lse0

lse0
. Given the strain, the normalised force generated by the tendon F̄se is

described by the following system of equations [24]:

F̄se =


0 , εT ≤ 0

1480.3(εT )2 , 0 < εT < 0.0127

37.5εT −0.2375 , εT >= 0.0127

(2.21)

The numerical values defining the toe region and the linear region are based on [223]. In the
same study, based on the experimental observation that the tendon thickness is dependent on
muscle strength the final tendon force is computed as follows:

Fse = F̄seFmax (2.22)
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In Figure 2.10, an example of force-length curve for the tendon is shown. In this plot, the
force produced by the tendon decreases abruptly at εT = 0.10 before breaking.

Pennation angle: geometrical arrangement between muscle and tendon

The geometrical arrangement of the fibers and the connective tissue plays an important
role in determining muscle force and the muscle-tendon biomechanical behaviour [75].
Generally, muscle fibers are arranged in parallel arrays, forming an angle (called pennation
angle) between the line of pull of the muscle and the one of the tendon. The pennation
increases as the length of the muscle fibers shorten. The greater the pennation angle the
less force a muscle fiber contributes along the line of action [130]. Fibers can be arranged
in a more complex geometrical configuration to create multipennate muscles with fibers
orientated in different planes. In Figure 2.8-A the pennation angle θ is shown. Muscle-tendon
length and the pennation are linked by an additional modeling constraint that determines
the dimensionality of the muscle-tendon model [52]. Hill based models are typically one-
dimensional models since the muscle thickness (i.e., the sine of the muscle-tendon length
considering the pennation angle) is assumed constant [188]. Typically, the pennation angle
with constant thickness is computed as follows:

θ = sin−1(
loptθo

lce
) (2.23)

where θo is the pennation angle at optimal length lopt .

2.4.3 Geometric relation between muscle-tendon space and joint space

Biomechanically, the action of a muscle spanning a joint is defined as agonist if the joint
acceleration is in the same direction as the acceleration imposed by the muscle [223]. A
muscle is an antagonist if its action opposes the joint movement. Considering a single-joint
motion such as flexion of the wrist, a wrist flexor muscle (e.g., Flexor Carpi Radialis) acts as
an agonist, while a wrist extensor muscle (e.g., Extensor Carpi Radialis) acts as an antagonist,
thus defining an agonist-antagonist pair. In the simple case of single joint motion, where
the elbow is assumed to not move and to not affect the state of the wrist flexor and extensor
muscles, the terms agonist and antagonist and flexor and extensor refer to the same muscle
groups. In the rest of the thesis, we use the terms flexor and extensor to indicate these
muscles or muscle-tendon units acting as flexor and extensor during isometric contractions
or when no joint motion is specified. When a joint is spanned by multiple muscles (and
correspondent tendons), these can be divided into groups of agonist and antagonist muscles
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with respect to a joint motion. Muscles within the same group are synergistic since they
produce torque that causes the same rotation about the joint. Consider m muscles-tendons
acting on a single joint and generating m forces (F1...,F i, ...,Fm). The torque generated by
muscle-tendon i is defined as the product between the F i and the correspondent moment arm.
By convention, agonist muscles have a positive moment arm for a given movement, while a
negative moment arm indicates the function of an antagonist muscle [162]. For simplicity,
consider the arrangement of the muscle-tendon unit on the links in a straight line connecting
the origin and the insertion point of the muscular-tendinous system (Figure 2.8)-B. The
length of the muscle-tendon unit may be determined as a function of the links’ configuration,
which depends on the joint position q. The moment arm r is the perpendicular distance from
the line of action of the force F generated by the MTU to the centre of the joint rotation and
it can be mathematically formalised given the muscle-tendon length lMTU and q using the
method proposed in [10]:

r(q) =−∂ lMTU(q)
∂q

(2.24)

Considering m muscles spanning n joints, the generic matrix of the moment arms R ∈ Rm×n,
called muscle-space Jacobian, is defined as follows:

R =


∂ l1

MTU (q1)
∂q1 ...

∂ l1
MTU (qn)

∂qn
∂ l2

MTU (q1)
∂q1 ...

∂ l2
MTU (qn
∂qn

... ... ...
∂ lm

MTU (q1)
∂q1 ...

∂ lm
MTU (qn)

∂qn

 (2.25)

These equations can be used to transform variables of the muscle-tendon space into cor-
responding variables in the joint space. The torque generated by applying the m forces is
computed as follows:

τ = FR (2.26)

As stated above, the negative sign introduced in the moment arm definition, implies that a
muscle induces positive work during shortening. In this thesis, we consider the case of a
single-DoF actuation, modelled by the action of two MTU, with muscle elements acting as a
flexor and extensor muscles. These muscle models receive as input the electromyographic
activity of the Flexor Carpi Radialis and Extensor Carpi Ulnaris as detailed in Chapter 4,
which triggers the contraction dynamics.
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2.4.4 Muscle-tendon impedance

In Section 2.1.4 we have defined impedance as a dynamic operator that describes the forces
generated by a rigid body under imposed motion. Adaptation of limb impedance is introduced
in Section 2.2 as a crucial human motor control strategy to modulate the physical interaction
between the human limb and the environment. We first clarify the following terminology
which defines the impedance in three different spaces, the muscle-tendon space, the joint
space and the Cartesian space (i.e., end-effector or limb end-point space):

• Muscle-tendon impedance is the resistance opposed by the active and passive compo-
nents of the MTU to shortening or elongation.

• Joint impedance of a revolute joint quantifies the amount of torque needed to displace
the joint. Given the muscle-tendon impedance, the Jacobian matrix of the moment arms
R (Equation 2.25) can be used to transform the impedance from the muscle-tendon
space to the joint space.

• End-point limb impedance is the impedance in the Cartesian space of the robot.
The upper-limb can be considered a kinematic structure constituted of the shoulder,
elbow and wrist joint, and the upper-arm, forearm and hand links. If we compare this
kinematic structure to the generic one introduced in Section 2.1.2 the human hand
corresponds to the robot end-effector.

In each of the cases listed above, impedance quantifies the resistance to imposed motion, and
it can be summarised by the following dynamic properties: stiffness, damping, and inertia.
These properties depend on intrinsic and extrinsic properties of the musculoskeletal system
(Section 2.4). In this work, we assume that the muscle-tendon mass is lumped to that of
the robot’s link, and we focus on the stiffness and damping properties. Moreover, based
on the distinction between active and passive force, introduced in the previous section, we
distinguish between active and passive impedance if it characterises the contractile element
(CE) or the passive ones (PE, SE).

Below we will define the stiffness and damping of the muscle and of the tendon. We
then compute the overall impedance of the muscle-tendon unit and derive the equations to
transform these quantities from the muscle space to the joint space. Impedance properties of
the muscular-tendinous tissue are due to the co-contraction of agonist and antagonist muscles,
but also to reflex feedback. In Section 2.2 we explained that the coactivation of agonist and
antagonist muscles is the main strategy used by the CNS to modulate the impedance since
neural feedback is affected by transmission latency. For this reason, the latter is considered
beyond the scope of this thesis and not described in detail.
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Muscle stiffness and damping

The dependence of the muscle force on the muscle length is referred to as spring-like
behaviour. A distinction must be made between passive and active spring behaviour. The
spring-like behaviour of muscles is often confused with the classic definition of passive
stiffness (the ratio of the change in force to the change in length). However, the force-length
relationship typical of muscles is also dependent on the neural input. Moreover, impedance
is a nonlinear effect, and can not be described by a linear model, such as the one of a
classic passive spring. Considering the fundamental force-length relationship introduced
in Section 2.4, when the muscle fibers are stretched within 3% of their length, the force
initially increases, but the stiffness remains relatively constant [209]. This stiffness is called
short range stiffness and was found to approximate well the stiffness during isometric
conditions [172]. However, when a muscle fiber is stretched at low velocities beyond the
short-range stiffness, the stiffness is found to be higher than the stiffness in the isometric
state. As shortening velocity increases, muscle stiffness decreases. When shortening stops,
the stiffness is found to increase again. The short-range stiffness estimator is found to not be
appropriate for estimating the muscle stiffness during dynamic movements [182].

Both muscular and tendinous tissues are characterised by viscous properties associated
with energy dissipation. Viscosity is an active property as it depends on the neural input. A
system that possesses this property is “damped”, and the damping depends on the velocity. In
general, damping is defined as a change in force to resist a change in velocity. An increase in
lengthening velocity near zero produces a positive change in velocity and force resulting in a
positive damping. When the muscle shortens, the change in velocity is negative, and the force
decreases, leading again to a positive damping value. Muscle damping is characterised by
high values near zero velocity, and lowest values at high shortening or lengthening velocities
[114]. Since muscle force is dependent on the input activation, the impedance of a muscle
increases with the activation level. Therefore, synergistic activating agonist and antagonist
muscles allows modulation of the stiffness and damping of the muscle and joints.

Tendon stiffness and damping

In Section 2.4 we have described the stiffness of the tendon based on its force-length curve.
The stiffness of the tendon increases with thickness, while longer tendons are more compliant
[138]. When the tendon is stretched and then returns to its rest length, there is energy loss due
to hysteresis. However, the elastic properties dominate over the dissipative ones. Compared
to tendons, muscles have a much greater hysteresis due to the high dependence of force on
velocity [214].
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Total muscle-tendon stiffness and damping

Given two springs in series and two springs in parallel, their equivalent total stiffness is
known to be equal to the sum of their inverse, and to the sum of the stiffnesses, respectively.
Consider the muscle-tendon unit introduced in Figure 2.8 and assume for simplicity that the
pennation angle is null. Because the muscle and the tendon are arranged in series, the overall
stiffness of the muscle-tendon unit can be computed as follows given the muscle stiffness Km

and the tendon stiffness Kt :

KMTU =
KmKt

Km +Kt
(2.27)

From this equation, it follows that the total stiffness is lower than the muscle or tendon
stiffness alone. Similarly, the damping of the muscle-tendon unit is defined as follows:

DMTU =
DmDt

Dm +Dt
(2.28)

where Dm and Dt are the muscle and tendon damping, respectively.

Joint impedance

Joint stiffness and damping are related to the corresponding muscle quantities by the moment
arm. While torque is proportional to the moment arm, stiffness and viscosity are proportional
to the square of the moment arm. Consider a muscle-tendon unit generating a torque τ that
causes the displacement of the joint q. The joint stiffness is derived as follows [94]:

KJ =
dτ

dq
=

d(r(q)F)

d
( lMTU

r(q)

) = r(q)2 dF
dlMTU

= r(q)2KMTU (2.29)

Where τ and r(q) are the torque and moment arm, which in turn depend on the joint position
q. F is the force generated by the MTU of length lMTU . The same derivation can be written
to obtain the joint damping definition:

DJ =
dτ

dq̇
=

d(r(q)F)

d
( l̇MTU

r(q)

) = r(q)2 dF
dl̇MTU

= r(q)2DMTU (2.30)

Consider now two muscle-tendon units spanning the joint q acting as flexor and extensor
muscles. The action of the two muscles opposes one another at the joint level, generating
torques in opposite directions, while the stiffness and damping contribution is summed at the
joint level. As a result, there are different combinations of torques that can generate the same
net torque but different joint impedance. This is a crucial aspect of the neural musculoskeletal
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system, that due to its high redundancy allows humans to independently control the joint
kinematics and the impedance. Consider now m muscle-tendon units acting on n joints. The
Jacobian of the moment arms (Equation 2.25) can be used to define the mapping of stiffness
and damping from muscle-tendon space to the joint space as follows [214]:

KJ = RT KMTU R+
∂RT

∂q
FT

MTU (2.31)

where F and q are vectors of dimensions m and n. The second term of the joint stiffness
considers the dependency of R on q, and describes the contribution to joint stiffness given by
the change in moment arms. The joint damping is described as follows:

DJ = RT DMTU R (2.32)

Both joint stiffness and damping matrices may include direct terms and cross-coupling terms
(i.e., off-diagonal terms) depending on R. While direct terms relate changes in the stiffness
and damping at a given joint to the angular deflection at specific joint, cross-coupling terms
relate changes in stiffness and damping of a joint to angular displacements of another joint.

2.5 The human wrist

In this thesis, we describe a surface EMG-driven framework that allows a human subject to
control the kinematics and the impedance of a DoF of a robotic system, through contraction
of muscles involved in wrist flexion-extension. The sEMG signals of relevant muscles are
the input to the framework and drive muscle-tendon models used to actuate the DoF. For this
reason, the kinematic and dynamic properties of the human wrist joint are reviewed.

The human wrist joint plays a crucial role in successful grasping and manipulation of
objects since it allows suitable orientation of the hand to execute the grasp and maintains the
interaction with the object stable. In this section, we describe the kinematic properties of
the wrist joint and define a model of its kinematics (Section 2.5.1). The dynamic properties
of the wrist are then reviewed. This includes a summary of the main muscles involved in
wrist motion (Section 2.5.2) and a description of the impedance properties of the wrist joint
(Section 2.5.3).

2.5.1 Wrist kinematics

The wrist joint allows the hand to assume any orientation, in the joint limits, with respect to
the forearm. More specifically, the human wrist kinematics involves a complex in-plane and
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Figure 2.11: A) X-ray scan of a human hand plus wrist, showing the bones proximal to the
wrist joint. The image is based on [122]. B) Scheme of the location of the main muscles of
the forearm. Image taken from [141].

out-of-plane motion of the carpal bones (Figure 2.11-A) relative to the bones proximal to the
wrist (forearm) [217]. Moreover, the carpal bones rotate and translate with respect to each
other. This complex motion can be approximated and simplified as the combination of three
motions of the hand with respect to the forearm: wrist flexion-extension, wrist ulnar-radial
deviation and wrist pronation supination. In Section 2.1.2 we have introduced the concepts of
rigid bodies, joints and kinematic chains. Let us define the wrist as a kinematic chain of two
rigid links (i.e., the hand and the forearm) and three joints (i.e., flexion-extension, ulnar-radio
deviation, pronation-supination). We assume that the amount of translation occurring at
the wrist can be neglected without loss of global wrist functionality [112]. Now that we
have identified the components of the kinematic chain, how are these articulated? Studies
on the combined motion of the wrist biomechanics [155] show that the wrist possesses
a kinematic hierarchy, meaning that the flexion-extension rotation carries the ulnar-radial
deviation motion; and both motions are carried by the wrist pronation-supination. These
kinematic constraints are well represented by the universal joint, obtained as a combination
of revolute joints with non-intersecting axes. The wrist orientation can be represented as
the angular displacements around the rotation axes fixed at the wrist, which rotates with the
hand. This definition is in accordance with that of the Euler angles [53].
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Figure 2.12: A) Scheme of the flexion-extension and ulnar-radial deviation DoFs. B) The
wrist kinematics is represented as a combination of revolute joints with axes perpendicular to
each other (i.e., universal joint).

Wrist motion coupling

Studies show that wrist flexion-extension and ulnar-radial deviation exhibit a coupling [128].
To understand this statement, consider the trajectory of wrist flexion-extension on a Cartesian
space with axes corresponding to the joint positions of flexion-extension and ulnar-radial
deviation, as shown in Figure 2.13. The path has a non-zero curvature, showing that the
wrist deviates while doing flexion-extension on the side of the ulnar or radial deviation.
The deviation depends on the direction and velocity of motion and researchers [35] have
hypothesised it is due to the impedance properties of the wrist, which we will examine next.

2.5.2 Muscles spanning the wrist

The wrist joint is crossed by 24 muscles. For each degree of freedom of the wrist, we can
group the muscles into agonists and antagonists with respect to wrist flexion and extension.
The main muscles involved in wrist flexion are the flexor carpi radialis (FCR) and ulnaris
(FCU), assisted by the flexors of the fingers and thumb and palmaris longus, and abductor
pollicis longus [149]. The extension motion of the wrist is given by the extensor carpi
radialis longus and brevis (ECR), and the extensor carpi ulnaris (ECU) with assistance from
the extensors of the fingers and thumb. The radial deviation is produced by the pollicis
longus, FCR, ECR longus and brevis. The ulnar deviation is produced by the simultaneous
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Figure 2.13: Image adapted from [35], showing the paths obtained while a human subject
performs fast wrist rotations. The joint paths are represented on a Cartesian plane with axes
corresponding to the joint position of the flexion-extension and ulnar-radial deviation DoFs.

contraction of the ECU and FCU. The main muscles involved in the wrist motion are
represented in Figure 2.11-B. The neuromuscular system determines the impedance of the
wrist (Section 2.2), which is constrained and affected by wrist kinematics. While reaching
movements are mainly dominated by inertial effects, wrist rotation is mainly dominated by
stiffness [35].

2.5.3 Wrist impedance

Impedance modulation is due to various factors, including intrinsic muscle mechanisms and
spinal reflex pathways (Section 2.2), and it is constrained by the kinematics of the joint,
and by coupling effects. This means that the impedance of flexion-extension, for instance,
is coupled to the impedance of ulnar radial deviation. The passive wrist stiffness has been
measured in [70]. This study showed that stiffness in ulnar-radial deviation is larger than
the stiffness in flexion-extension. Gielen et al. [76] measured the 1-DoF wrist damping. It
is suggested that as muscle contraction increases to achieve faster rotations, the damping
increases. However, no conclusive results are drawn regarding the relationship between
the damping of the two DoFs, as pointed out in [35]. The difference in muscle activity
and timing might contribute to the different stiffness and damping of the two DoFs. In
[33] it is shown that wrist rotations (flexion-extension and ulnar-radial deviation) exhibit
a pattern of curvature which cannot be only attributed to neuromuscular noise. In [34] a
linear model of wrist rotation dynamics for flexion-extension and ulnar-radial deviation is
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formulated. Passive stiffness is found to mainly contribute to passive impedance, whereas
passive damping and inertia are relevant only for fast movements. Moreover, inertia and
passive damping coupling torques between the two DoFs are found to be negligible with
respect to coupling stiffness effects. In [35], Charles and Hogan investigated the causes of this
behaviour attributing the path curvature to the stiffness properties of the wrist. In the same
study, Charles et al., show that the interaction torques between the DoFs are significantly
smaller than the torques of each DoF, and the impedance couplings are negligible. Especially
wrist inertia is reported to not contribute substantially to the overall impedance for moderate
wrist rotation velocities. In [146], Milner and Cloutier investigate the ability of subjects to
maintain the mechanical stability of the wrist during rapid flexion movements in the presence
of instabilities introduced by a negative damping. Muscles co-contraction, wrist stiffness and
damping are analysed for increasing values of negative damping. It is shown that subjects
increased the co-contraction of flexor and extensor muscles in proportion to the amount of
negative damping (i.e., load instability). An increase in muscle contraction was reflected
in an increase in wrist stiffness and damping. However, damping changes in relation to
coactivation were less consistent. The reflex contribution to wrist damping is also discussed
in relation to the observation that stiffness and damping did not decrease as the subjects
lowered muscles’ co-contraction when the position oscillations were smoothed out.



Chapter 3

Related Work

Both industry and academic research put significant effort into advancing the state of the art
in motor prostheses and providing amputees with natural, simultaneous control of multiple
Degrees of Freedom (DoFs) of the artificial limbs. Progress in upper-limb prostheses control
is the result of significant advancement in different research areas tackling aspects of the
same problem. Progress in ergonomics and mechanical design of prostheses has resulted
in multi-DoF robotic limbs that offer a dexterity comparable to that of humans. Surface
electromyography has been a breakthrough in technology for designing non-invasive human-
machine interfaces (HMIs) to record biological signals containing information about the
human motor intent; advancement in surgery and medicine has allowed clinical translation of
HMIs for prostheses control [1].

This chapter reviews the state-of-the-art control methods implemented on commercially
available prostheses (Section 3.1) and those developed in academic research (Section 3.2).
Control methods developed in robot manipulation do not necessarily translate into state-
of-the-art controllers for prostheses. The design of methods for prostheses control has
to be guided by a human-centred approach and it is constrained by inherent difficulties
posed by the HMI as well as the information that can be extracted about the human motor
intent. The control methods described below are sEMG-driven and assume the possibility
of recording the activity of at least a pair of agonist-antagonist muscles to directionally
drive a DoF. As described in the previous chapter, considering single DoF motions, a muscle
(or a muscle-tendon model) is defined as agonist if the DoF acceleration is in the same
direction as the acceleration imposed by the muscle. Given an agonist muscle, the action
of a muscle opposing the joint motion is defined as antagonist. Three main categories of
approaches can be identified: conventional methods used on commercially available devices
that use the amplitude of sEMG signals directly as control command (Section 3.1); purely
data-driven methods that learn a direct mapping from input sEMG signals to desired motor
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functions (Section 3.2.1); process-informed data-driven methods that make use of sEMG-
driven muscle-tendon models (Section 3.2.2). Finally, we review the state-of-the-art methods
developed in academic research that aim to enable the user to voluntarily adapt the impedance
properties of a robotic system (Section 3.2.3). For some methods, the distinction into the
aforementioned categories is blurred and these approaches may be considered hybrid models.

In the domain of prostheses control, the difference between Degree of Freedom (DoF)
and Degree of Control (DoC) should be clarified. The number of DoC is the number of
independent control signals that can be provided by the user and these may not coincide with
the number of DoFs of the prosthesis. Consider the task of closing the fingers of a prosthetic
hand. This involves the control of multiple DoFs as each finger has at least 2 DoFs. However,
the user may control the high-level motor control function by providing a single control
signal (i.e., 1 DoC) and the control of the individual DoFs may be done automatically. To
independently drive the DoFs a number of DoC equal to the number of DoFs is required,
meaning that the activity of 2×DoFs muscles has to be recorded. In fact, the sEMG signals
from a flexor and an extensor muscle need to be recorded to directionally control a DoF. The
reader can understand the difficulties associated with the scaling of the sEMG measurement
sites in relation to multi-DoFs control, and the reason why the motor function of opening and
closing the hand is often done through a single DoC.

3.1 Commercially available devices

Conventional myoelectric control used in clinical settings is also known as “proportional”
or “direct” control. According to this approach, the magnitude of sEMG signals of a pair of
flexor-extensor muscles is used to proportionally drive a DoF of the prosthesis in position,
velocity or torque [207]. Typically, in position-based proportional control, the motor voltage
is controlled proportionally to the difference between the magnitude of the sEMG signal
of the flexor and extensor muscles. This means that to maintain the same DoF position
the level of muscles’ activation must be kept constant, which can lead to muscle fatigue
and tiredness. Velocity-based proportional control overcomes this limitation since changes
in activation are used as velocity commands and as a consequence null activation implies
no motion. However, this approach may lead to unwanted motion since the method can
not distinguish between changes in activation associated with changes in motion and those
associated with changes in impedance [190]. This problem is more pronounced during fast
motions when higher activation is usually required. Moreover, conventional approaches are
typically limited to the control of a single DOF at a time. This is due to challenges imposed
by the HMI itself. Residual muscles of the limb may be used to interface an amputee to
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Figure 3.1: Illustration taken from [59] showing the working principle of a conventional
control scheme implemented on commercially available prostheses. Two sEMG signals are
used to control a single DoF at a time. Muscle co-contraction is used to toggle between
control of different DoFs (e.g., hand opening-closing, hand pronation-supination).

the prosthesis, depending on the level of the amputation. Considering that a pair of sEMG
signals is needed to control a single DoF, for multi-DoF control one would need a pair of
sEMG signals for each DoF. However, this is often unfeasible due to the limited number
of available myocontrol sites depending on the level of amputation and due to technical
issues such as crosstalk (Section 2.3.2). As a result, only one DOF can be controlled at
a time and the patient has to perform a specific muscle co-contraction or press a physical
switch to toggle between DoFs [187], as illustrated in Figure 3.1. This control approach is
sequential and switching between DoFs occurs in a fixed order. In summary, conventional
control is difficult to deploy for multi-DoF control [59, 105]: the control is slow, unnatural
and it requires considerable training and cognitive effort [17].

Pattern-recognition-based myoelectric control, initially explored in research, constituted
a significant improvement over the conventional control discussed above since it allowed
for indirect control of multiple DoFs at a time. Supervised learning methods, e.g., linear
discriminant analysis (LDA), multi-layer neural networks, fuzzy techniques, wavelets, sup-
port vector machine (SVM), are trained offline to learn an association between patterns
in sEMG features and predefined classes of motion [106, 5, 210]. The learned mapping
is then used to classify incoming sEMG features in real-time. During the training phase,
the amputee performs a series of predefined muscle contractions that are associated with
specific classes of movement. These motor functions may include opening-closing of the
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fingers or different types of grasps. In these cases, multiple DoFs constitute a single DoC, as
the sEMG signals from only a pair of muscles are used to determine the motor commands.
Typical sEMG features used by these methods might be the mean absolute value (MAV), the
root mean square (RMS), the zero crossing, or frequency domain features [201]. A pattern-
recognition-based approach was implemented on a prosthetic limb by Coapt (LLC) for the
first time in 2017 [131]. In 2018, Ottobock used pattern recognition for allowing different
types of grasps [163]. The low take-up of such techniques on commercially available devices
might be due to different factors such as the sequential nature of the provided control and
to challenges associated with the HMI. In fact, features extracted from the sEMG signals
suffer from high variability and are strongly dependent on the selected time window [105]
which can deteriorate the performance of these methods during daily control. Moreover,
muscle fatigue, socket displacement, prosthesis use in conditions unseen during the training
(e.g., arm posture, loaded/unload hand, external perturbations) and other factors of variability
not included in the training samples can significantly affect the feature stability and lead to
misclassification and execution of unwanted motions [191, 135, 201, 186]. One additional
drawback of pattern-recognition approaches is the lack of proportional control for a specific
motor function.

Regression-based algorithms have been explored in research for simultaneous and pro-
portional control over multiple DOFs [206]. However, robust regression of more than 2
DoFs has proven challenging due to the training and to the difficulties associated with the
HMI interface. It is in fact difficult for most of the amputees to generate more than two
independent control signals [158]. Multimodal approaches have provided the prosthesis
with some autonomy and assistance to the user. For instance, Ottobock has used tactile
information to automatically adjust the grasping force of the robotic hand and prevent objects
from slipping during manipulation. However, since some functions are fully controlled
automatically this might lead to the execution of unwanted action that undermines the user
acceptance [59].

Pattern recognition methods and regression approaches developed in academic research
are discussed in the next section.

3.2 Academic research

Academic research has proposed different methods for decoding the human motor intent from
sEMG signals. The majority of the proposed methods focus on decoding the human intent
in terms of kinematics by using purely data-driven methods (Section 3.2.1) and process-
driven approaches (Section 3.2.2) that include some domain knowledge about the muscle
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contraction dynamics. These methods aim to increase the number of DoFs that can be
controlled at a time. Fewer studies instead attempt to provide the user with simultaneous
control of motion and impedance (Section 3.2.3) of the DoFs.

3.2.1 Data-driven methods

Simultaneous motion control over multiple DoFs is an open problem in motor prosthesis
control, especially when conventional methods are used to implement the user’s motor intent.
Several pattern-recognition-based approaches have been investigated in literature to provide
multi-class prediction [221, 86, 185, 30]. However, these approaches are limited by the need
for extensive training which is time-consuming and frustrating for the patient. A common
drawback, which affects pattern recognition-based algorithms, is the lack of proportional
activation of the motion classes [71]. To address this issue and benefit from the advantages
of proportional control, different methods have been proposed to enable proportional control
in pattern recognition approaches [40, 43, 107, 31].

Besides pattern-based recognition methods, various linear and non-linear regression-
based algorithms have been explored in literature for providing simultaneous and proportional
control over multiple DOFs [156, 152, 108, 83, 197]. Unsupervised methods, such as those
relying on Non-Negative Matrix Factorization (NNMF) allow to blindly extract activation
signals without the need for a reference training trajectory or class labels. NNMF has
been used to provide simultaneous and proportional control and has proved to be robust
to technical issues such as electrode shifting [59]. Krasoulis et al. [115] demonstrate that
non-linear regression methods outperform linear ones during the training phase, however,
during testing on unseen data the performances were comparable. In recent years, deep
learning methods are increasingly being explored to improve feature extraction and learn
complex non-linear mapping between sEMG signals and target motion trajectories or motion
classes [23, 218, 36, 9]. Although powerful, deep learning methods require large training
data sets, which implies long training sessions. Moreover, because of the black-box nature
of the algorithm, it is difficult to understand the internal representation of the model and
correlate factors of variability in the training data to changes in the model representation.
Moreover, these methods reported a performance that is comparable to that of less recent and
simpler methods based on linear regression, Non-Negative Matrix Factorization (e.g., [109]).
As a result, the higher complexity of the methods, the need for longer training sessions
and the need for examples of DoFs’ coactivation in the training set to train the methods for
simultaneous control of DoFs (e.g., [218], [208]) are not necessarily justified.

Despite the advantages provided by some of the proposed methods, most of the ap-
proaches fail to provide robust control for more than 2 DoFs [177]. A few works in literature
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attempt to provide simultaneous control of 3 DoFs using pattern recognition [159, 151].
Nonetheless, a clinical solution is not possible yet. Some of these rely on different types of
HMI such as intramuscular sensors [198] or high-density sensors [199], proving that classic
surface sEMG is the main bottleneck to allow robust estimation of the human motor intent.
Augmenting the sEMG with other multisensory data (e.g., vision, tactile sensing, inertial
sensors) is a promising approach explored to enrich the input information to the controllers
and provide some level of autonomy to the prosthesis [54, 194, 150, 200]. For example, in
[54] multisensory data are used to detect object slippage and provide an automatic reaction.
This proved to improve the performance in routine grasping and force tracking tasks.

3.2.2 Process-driven methods

One of the main challenges when implementing purely data-driven methods to decode the
human motor intent from sEMG signals is accounting for the non-linear and non-stationary
characteristics of these signals [64] and model their complex non-linear relation to force
generation. Progress in understanding and modeling the human musculoskeletal system
has allowed to obtain biomechanical models capable of predicting physiologically accu-
rate dynamics and kinematics of the muscular-tendinous and skeletal systems, respectively.
Researchers have used this domain knowledge to develop sEMG-driven simulations of the
musculoskeletal system that allow to decode the human motor intent in terms of kinematics
and dynamics. Specifically, the simulation of the forward dynamics of sEMG-driven mus-
culoskeletal models can predict the forces and torques generated on the skeletal system by
muscle-tendon models. These simulations have mainly been used offline and have found
applicability in different fields concerned with investigating the musculoskeletal dynamics of
healthy able-bodied subjects and of subjects with neuromotor disorders, and for studying
the biomechanical contribution of muscles to specific motions [195, 89, 183, 154]. The com-
plexity of such simulations, and in particular of the muscle-tendon models, is a compromise
between high prediction accuracy and retention of key model features that do not deteriorate
significantly the prediction performance but require lower computational costs. This trade-off
is crucial in applications that have real-time constraints, such as in prosthesis control.

One approach to muscle-skeletal modeling is to include multiple muscle-tendon units in
order to closely mimic the human musculoskeletal system and obtain physiologically accurate
predictions (e.g., [32, 134, 139]). This approach requires a high number of muscle-tendon
units, anatomical knowledge of the arrangement of muscle-tendon models on the skeletal
system and of their contraction dynamics. Each muscle-tendon unit is driven by an sEMG
signal. The need for as many input sEMG signals as the number of muscle-tendon units
is the main limitation, since the activity of some muscles might not be easily measured
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by sEMG due to technical difficulties (e.g., crosstalk, deep muscles) and depending on the
subject-specific anatomy. Finding an accurate placement of sEMG sensors to capture the
activity of specific muscles while minimising the crosstalk is a non-trivial task that requires
specific knowledge and training. Moreover, the parameters’ values of each muscle-tendon
unit are usually scaled or optimized using kinematic data recorded using motion capture
systems. This technology might not be always available. These difficulties might be enhanced
when the simulations are used for motor prostheses applications, as for amputees, depending
on the level of amputation, functional muscles are likely to be (partially) missing [100], and
some physiological parameters used in the muscle-tendon units can not be measured directly
(e.g., moment arms of the remaining muscles) [176]. As a result, the complexity of the
models and the computational cost makes this simulation approach impractical for real-time
prosthesis control applications.

Considerable effort was put to simplify musculoskeletal simulations for their use in
frameworks for real-time control of prostheses and other rehabilitation devices. Initial
promising results on a single able-bodied subject [41] showed the possibility of reducing the
model complexity and avoiding the need for an external motion capture system by relying on
sensors embedded in the prosthesis. Other studies [181, 180] proposed a musculoskeletal
model consisting of simplified muscle-tendon units to provide real-time (< 10 ms per cycle)
simulation of forces and torques generated at the knee joint with accuracy comparable to
that provided by more complex models [181, 132, 26]. A more niche approach to address
the limitations of complex simulations uses the so-called lumped models [123, 51, 57, 134].
According to this method, muscle-tendon units that contribute to the same motor function
are grouped into a single muscle-tendon unit. For example, wrist flexors and extensors are
grouped into two muscle-tendon units, one acting as flexor and the other as extensor which
represent the overall functional behaviour of the two muscle groups.

Lumped models were used to predict 1-DoF ankle position from sEMG signals; the
biomimetic model, tested by an amputee, is compared to a multi-layer neural network and it
is reported to provide a smoother position trajectory suggesting that model-based approaches
may offer advantages for prosthesis control [12]. A lumped muscle tendon modeling approach
allows to drastically reduce the model complexity and computational burden by reducing
the number of muscle-tendon units and sEMG channels. Usually, these models are subject-
specific and the parameters’ values of the muscle-tendon units are optimised using the joint
torque measured during a training phase. In 2015, a preliminary study [44] proposed a
simplified lumped model (based on [184]) consisting of four Hill’s type muscle units (the
tendon was not included) showing promising results in predicting individual and simultaneous
activation of two DoFs (i.e., flexion-extension of the wrist and MCP joint). Each muscle
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model required the optimization of five parameters and moment arms (considered constant
for simplicity) using the measured joint torque. While the described approach is promising,
the results are shown offline and for a single able-bodied subject. The same research group
proposed in 2016 a further simplification of the previously proposed muscle-skeletal model
[45], where the two joints skeletal model is modeled as a simple two-joint robot. The model
is evaluated offline with five able-bodied subjects and a transradial amputee using the Pearson
correlation coefficient as measure of prediction accuracy. A high average correlation was
reported during single-joint motions for the first DoF (able-bodied 0.94%, amputee 0.92%)
and the second DoF (able-bodied 0.88%, amputee 0.93%), respectively. The performance
decreases during simultaneous activation of the joints (the joint-specific correlations drop to
0.75% and 0.56%, respectively). While these studies involved simple motions in the free
space, other works investigated the robustness of their methods to different loading [166] and
arm postures [165] during posture-reaching tasks in the free space with able-bodied subjects.
The model used in [166, 165] is further extended to three DoFs, but tested only offline with
a single able-bodied subject [164]. In [165] interesting initial results on the possibilities of
using lumped models to obtain non-subject-specific muscle-tendon models is investigated.
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3.2.3 Adaptive impedance control of upper-limb prostheses

Researchers have investigated different methods (Section 3.2.1, Section 3.2.2) to implement
sEMG-driven controllers that allow human subjects to voluntarily control the kinematics of
the (simulated) prostheses. However, these approaches consider the prosthesis as a system
isolated from the external environment and do not allow the user to regulate the impedance
properties of the robot. In Section 2.2 we discussed impedance adaptation of the limb as a key
motor control strategy for humans interacting with unpredictable environments. Moreover,
research in robotics showed that motion control is unsuitable for tasks where different sources
of uncertainty lead to unexpected mechanical instabilities (Section 2.1.3). These observations
led to the introduction of the impedance control paradigm by Neville Hogan [96] in 1985 to
allow motion control and indirect control of the interaction dynamics between the robot end-
effector and the environment (Section 2.1.4). The same Hogan postulated the importance of
enabling such impedance behaviour on prosthetic limbs given that a human subject wearing
an upper-limb prosthesis performs tasks that involve kinematically constrained motions
or mechanical interaction with the environment [93]. As proof of concept, a biomimetic
impedance control method was implemented on an sEMG-controlled prosthetic elbow and
tested with an amputee [2, 3]. One important question posed in this study – and still valid
today – is whether the poor acceptance rate of myoelectric prostheses, with the main reason
related to lack of sensory feedback, could be improved by correctly interpreting the sEMG
signals and decoding the motor intent in terms of kinematics as well as dynamics. The
driving research question underlying the works reviewed below and this thesis, is whether
allowing impedance adaptation would improve the control of prosthetic limbs. Humans adapt
the limb impedance during movement by modulating the impedance at the level of the joint
by co-activation of agonist and antagonist muscles. Given the association between muscle
co-contraction and joint impedance, an additional signal defining the level of co-activation of
groups of agonist and antagonist muscles is introduced in control schemes that attempt to
enable the user to adapt the stiffness of the prosthesis.

In [92] the authors proposed an sEMG-based method for simultaneous control of the
position and stiffness (i.e., two DoCs) of the fingers of a VSA-driven prosthesis (i.e., one DoF,
hand opening-closing). However, the two DoCs are extracted from sEMG signals of different
groups of flexor and extensor muscles: the joint stiffness is decoded from the activity of
the muscles of the chest, while the joint position is obtained from the upper-arm muscles.
This choice maximises the independence between sEMG signals to avoid the problem of
decoding kinematics and dynamics from the same sEMG signals. This assumption eliminates
the ambiguity in associating changes in sEMG with changes in the joint position or joint
impedance, substantially avoiding the key challenge in the detection of motor intent. In the
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study, the choice of using different muscle groups is based on the assumption that these
provide similar stiffness. However, the validity of this assumption is unclear: the authors
provide experimental results showing a correlation between the stiffness computed muscles
of the forearm and the upper-arm, while it is unclear why the stiffness of the chest’s muscles,
used for the prosthesis control, is not tested for correlation. Moreover, as described in
Section 2.4, the impedance properties of a muscle are strictly related to the muscle’s state.
As a result, this approach does not attempt to mimic the human-like stiffness but provides an
engineered stiffness signal that can be used to control the robot’s joint stiffness independently
from its position. The feasibility of this approach and its intuitiveness were tested with five
able-bodied subjects during grasping tasks (16 objects, among which only one is fragile),
where the grasp accuracy is computed as the time required to complete the grasp. This
evaluation provides limited insight into the control performance and the object-dependent
adaptation of stiffness during the grasping tasks. The approach used to estimate stiffness is
based on the index of muscle co-contraction proposed by Osu et al., [161]. This stiffness
index was designed on the basis of two fundamental assumptions: (i) rectified sEMG signals
are linearly proportional to the corresponding muscle’s isometric tension and (ii) the stiffness
of the muscle is linearly proportional to muscle tension. This implied that the rectified
sEMG signals were linearly proportional to the stiffness. However, it was shown how this
assumption is not valid for dynamic motions. Therefore, the following simplifications were
made: linear tension-length and velocity-tension curves, and constant moment arms. While
these assumptions are not physically plausible and can cause misleading estimations of joint
stiffness and torque, the stiffness index provided a useful tool in comparative studies, where
the change in stiffness is of interest.

In [29], the authors provide a solution to enable the simultaneous detection and control of
joint stiffness and position from the same pair of sEMG signals. A simple index was defined
to quantify the co-contraction of flexor and extensor muscles and a task-specific threshold to
detect when the co-activation (i.e., stiffness modulation) occurred. The co-contraction index is
used to overcome the difficulties associated with the conventional velocity-based proportional
scheme (Section 3.1), which is highly sensitive to changes in muscles’ coactivation since the
magnitude of sEMG signals is directly used to proportionally drive the DoF. Based on the
co-activation index and the magnitude of individual sEMG signals, a state machine is used
to transition between three states ("stay", "open", and "close") and aid the velocity-based
controller to open and close the fingers of a soft prosthetic hand. A stiffness index, estimated
as a linear function of the sEMG signals magnitude, is used to adapt the proportional gain of
the controller allowing simultaneous stiffness and motion modulation. This control method
is tested against conventional methods (proportional and velocity control) with fixed high
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and low gains by an amputee wearing a soft prosthetic hand [77]. The amputee performed
tasks involving the manipulation of objects and the interaction with other human subjects
(e.g., handshaking). We argue that this approach, and those methods computing stiffness
and torque directly from the sEMG signals using linear models, are highly sensitive to the
amplitude and shape of the sEMG signals. However, this study provides valuable insight
into the user’s personal feedback on the control methods being tested: results show that the
amputee preferred the variable stiffness method; able-bodied subjects interacting with the
amputee stated the interaction felt more human-like when the variable stiffness method was
used. Similar conclusions were also provided by previous studies with able-bodied subjects
[192, 19].

Other methods first estimate a reference stiffness and damping from the measured torque
and then learn a model (e.g., a polynomial function) of the stiffness and damping [74, 202].
In [202] the joint stiffness damping estimated from the sEMG signs are used to decode the
human intended motion (i.e., admittance filter), but these are not employed to implement a
variable impedance controller on the robot, instead a fixed gains motion control is used. In
[110], while Hill-based muscle-tendon models are used to estimate the joint torque, the joint
stiffness is assumed to be proportional to the joint torque and it is computed as the sum of the
absolute torque provided by the flexor and extensor muscles. The obtained stiffness is not
used directly in the controller but is linearly mapped to the desired stiffness range according
to the subject requirements, the type of task, and the robotic system. The mapping is learned
during a calibration phase separate from the training process required for other components
of the framework. In contrast to previously discussed works, muscle-tendon units are used
to estimate the torque, avoiding simplifying assumptions on linear proportionality between
sEMG signals and muscle forces. Moreover, while the studies discussed above did not
consider the joint damping, in [110] it is set to vary proportionally to the joint stiffness,
requiring calibration of a proportional constant. This estimation and use of joint damping aim
to fulfil control stability requirements instead of decoding the human intended joint damping.
The control performance provided by the framework was evaluated with an able-bodied
subject on a knee exoskeleton with the aim of enabling the user to modulate the stiffness
of the exoskeleton to vary the level of assistance provided by the device. In the context of
upper-limb exoskeletons, a similar approach to stiffness estimation and use in the controller
is adopted by [127], but a linear relationship between the square-root joint stiffness and
the joint viscosity is assumed in order to obtain the join damping. Existing methods that
attempt to enable simultaneous control of joint position and impedance of a single DoF and
include muscle-tendon models (e.g., in [110, 202, 127]), estimate the joint stiffness directly
from the magnitude of the sEMG signals, even when muscle-tendon models are used within
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the pipeline and the impedance parameters could be retrieved from the muscle-tendon state.
Moreover, the joint impedance is remapped to suitable ranges in a separate calibration phase.
This means that the dynamics of the muscle-tendon model does not match that of the robot,
possibly leading to unwanted behaviour and instability. The work of this thesis provides a
solution to this drawback.

In [6] the authors propose a synergy-driven framework for controlling a single DoF of
the SoftPro hand (i.e., opening-closing of fingers). The framework is based on the concept of
teleimpedance, as in [110], and aims to transfer the stiffness and reference position estimated
from sEMG signals to implement a position-based impedance controller on the robot. The
joint stiffness and position are estimated from a pair of sEMG signals using a hyperbolic
tangent activation function, typically used in neural network architectures. The models for
stiffness and damping are a function of the sum and the difference of the sEMG signals’
magnitude. The framework was tested with two able-bodied subjects. During the data
acquisition phase, each subject is requested to perform hand opening-closing motions while
the sEMG and reference joint position were recorded to train hyperbolic function for stiffness
and position estimation, and for setting the upper-lower bounds for transferring stiffness. In
the training, repetitions of motions at different levels of co-contraction are included. The
online control performance provided by the teleimpedance framework was compared to
that of a fixed-gain compliant and stiff controllers during grasping of objects characterised
by different friction and elastic properties. No quantitative results are provided regarding
the grasping performance across the subjects for the different controllers and objects. A
qualitative analysis explains that the stiff controller caused deformation to some objects and
abrupt changes in contact forces. This effect was not observed for the other controllers. The
compliant controller did not always allow successful grasping depending on the object’s
weight and friction properties (detailed information about the characteristics of such objects
is not provided). The teleimpedance controller instead allowed user-based modulation of
stiffness. It should be noticed this framework included an additional component to estimate
the grasping contact forces and to provide it as vibrotactile feedback to the user. Interestingly,
this functionality enabled a reduction in muscle co-activations.

A detailed summary of key properties of related works is provided in Table3.1.

3.3 Conclusions on related work

In this chapter, we have provided a critical overview of relevant sEMG-driven control methods
that have been developed in literature to extract information about the human motor intent
and may be used to control upper-limb prostheses. Myoelectric prostheses control has been
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dominated by motion-based control methods. Despite the technological breakthrough in
designing sophisticated anthropomorphic prostheses, currently available HMIs and detection-
of-human-intent algorithms allow a low-dimensional control, still limited to up to 2 DoFs,
while the high-dimensional control over the multiple DoFs of the device is still an open
problem. As a result, currently available multi-DoF devices can not be fully exploited to their
potential, and the limitations often result in dissatisfaction and rejection of the prosthesis
[17]. Different are the directions of possible improvement and future research in motor
prosthesis control. On one hand, it is clear that the bottleneck is constituted by the noisy and
low-bandwidth information provided by non-invasive HMI. On the other hand, we have to
question whether the current algorithms to extract and implement the human motor intent
are providing a correct use and interpretation of these sEMG signals. More sophisticated
control methods that maximise the understanding of human intention have to be developed
to compensate for the limitations of the sEMG-based HMI. Preliminary studies have shown
that providing the prosthesis with semi-autonomous control can significantly improve the
performance when attempting to control multiple DoFs and it lowers the cognitive burden
on the human user [150]. The long-standing goal is to move away from prostheses that
only passively react to the user’s commands and allow the prosthesis to react proactively
to the user’s command in a collaborative human-robot physical interaction scheme. In this
regard, adaptive controllers have been developed to enable robots to autonomously adapt
their feedforward force, impedance [219], and reference trajectory [126] when interacting
with an unknown environment. In [126] the adaptive behaviour has been analysed during
tasks such as haptic identification or drilling, demonstrating a human-like adaptation to
instabilities. Such approaches could be implemented on a prosthesis enriched with perception
and learning abilities, to assist the user-based control. However, the actions of the robot have
to comply with the human’s intent or the user would not be willing to use a prosthetic device.
To achieve this goal and progress in this research field it is still - in my opinion - necessary to
first maximize the understanding of the human intention from sEMG signals and improve the
state-of-the-art of methods that aim to implement the human motor intent in terms of desired
motion, and desired impedance.

Studies on human motor control (Section 2.2), and robot control research (Section 2.1.4)
has shown the importance of moving away from stiff prostheses and allow the user to
voluntarily modulate the impedance behaviour of the artificial limbs, to be more compliant or
stiffer depending on the task and the interaction with the environment. The neural impedance
control typical of humans has inspired researchers to design bio-mimetic controllers that
implement some macroscopic properties of the neural musculoskeletal system (Section 3.2.3).
The reviewed related works are summarised in Table3.1. However, no commercial upper-limb
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prosthesis used for daily living tasks allows adaptation of the impedance properties. Moreover,
to the best of the authors’ knowledge, no control method developed in research allows robust,
intuitive, and simultaneous adaptation of the joint motion, stiffness, and damping of a single
DoF. This is due to the challenges in decoding the human motor intent from low bandwidth
surface electromyographic signals [84], and it is due to the high redundancy of human motor
control. In fact, there is a non-unique mapping from sEMG signals to target joint kinematics
since the same action can be performed at different levels of muscles contraction (i.e.,
impedance). This is also one of the main causes of performance deterioration of conventional
and data-driven methods that do not take into account muscles’ co-activation. Approaches
implemented to simultaneously decode from the same sEMG signals the intended joint
position and stiffness do not directly use the estimated joint impedance in the controllers.
The stiffness extracted from the trained muscle-tendon models is typically tuned during a
second calibration stage to satisfy the controller’s stability constraints. This approach creates
a mismatch between the dynamics of the muscle-tendon model, which represents the user’s
motor intent, and the dynamics of the robot. As a result, the user’s controllability and the
transparency of the control method are limited.

This thesis investigates this issue and introduces a framework that allows a human user
to simultaneously control the motion, stiffness and damping of a DoF and implements this
behaviour on a simulated prosthesis. This framework may be applied to other technologies
that require to detect the human intent as kinematics and dynamics.





Chapter 4

Adaptive impedance control for
upper-limb prostheses

In this chapter, we present a novel sEMG-driven framework that makes the two key contribu-
tions of this thesis, as outlined in Section 1.2. In contrast to previous work (Section 3.3), the
proposed framework extracts three Degrees of Control (DoC) from only two sEMG signals
allowing the user to simultaneously control the kinematics as well the dynamics of a DoF
of a (simulated) robot through wrist flexion-extension. In the first contribution, we describe
the design of the framework that includes a pair of sEMG-driven muscle-tendon models to
decode the human motor intent about the kinematics, stiffness and damping of a joint and
uses the estimated motor intent for implementing a joint space variable impedance controller
on a simulated robot. In the second contribution, we tackle the problem of estimating muscle-
tendon parameters’ values that enable the user to use impedance modulation as an effective
strategy to counter unexpected perturbations during online control tasks.

This chapter begins with a brief introduction (Section 4.1) that reminds the reader of the
motivation of this thesis and summarises the conclusions drawn from the review of relevant
related work, presented in the previous chapter. We then provide a high-level description
of the framework (Section 4.2), we discuss the sEMG-base HMI used in this work and
we provide an insight into the characteristics of the sEMG signals during dynamics wrist
flexion-extension movements, performed at different levels of muscle impedance. We thus
aim to provide a rationale, supported by experimental results, to the design approach of
the framework. We justify the choice of using two sEMG signals recording the activity
of the Flexor Carpi Radialis and the Extensor Carpi Ulnaris as representative of the flexor
and extensor muscle groups for wrist flexion-extension. The framework requirements and
assumptions are discussed. In Section 4.3 and Section 4.4 we proceed with the mathematical
formulation of the two constituent blocks of the framework. The first is concerned with
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decoding the human motor intent from a pair of sEMG signals, the second block implements
the motor intent onto a simulated robot. Finally, Section 4.5 provides a solution to the
ill-posed problem of estimating the parameters’ values of the muscle-tendon units.

4.1 Introduction

The domain of application chosen in this work is upper-limb prosthesis, given that the human
subject wearing the prosthesis physically interacts with the environment around, making
impedance adaptation a critical property to ensure stable and safe interaction and enhance a
more natural way of controlling the prosthesis.

Physical interaction with the external environment is a fundamental characteristic of
grasping and manipulation tasks (Section 2.1.3). Successful execution of these tasks requires
motion coordination and the adaptation of motor control strategies to account for instabilities
arising from the mechanical interactions between our limb and the external environment. In
fact, some tasks might be intrinsically unstable and unpredictable perturbations might cause
our upper-limb to deviate from the desired position, or motion (Section 2.1.3). This case
scenario was depicted at the beginning of Chapter 1, when we explained how the simple
task of holding an umbrella can become unstable as soon as the wind blows unexpectedly. It
has been shown in literature that the Central Nervous System (CNS) is capable of optimally
adapting the mechanical properties of the limb to modulate the dynamics of the physical
interaction with the environment and account for instability margins (Section 2.2).

These mechanical properties, known as impedance, comprise three parameters, namely
stiffness, damping, and inertia, which explain the relationship between the forces generated by
the neuro-musculoskeletal system and muscle-skeletal motion. Neuro-muscular impedance
is associated with the notion of mechanical impedance, a dynamic operator that maps applied
forces to displacements (Section 2.1.4). Stiffness is therefore defined as the resistance
opposed to a change in position, damping is the resistance opposed to a change in velocity and
finally, inertia is the resistance opposed to a change in acceleration. However, summarising
the problem discussed in Section 2.4, human-like impedance substantially differs from the
purely mechanical counterpart because of its dependence on neural input activation. In fact,
the CNS regulates the limb’s impedance by modulation of joint impedance by variation in
muscle co-contraction. Considering the agonist and antagonist muscles spanning a joint,
by appropriate modulation of the muscles’ co-contraction the impedance properties can
be modulated independently of the net joint torque applied to the joint. This mechanism
allows us to increase the rigidity of the limb while maintaining the same posture, or perform
similar motions with substantially different levels of limb impedance (Section 2.4.4). Many
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Figure 4.1: A) High-level block diagram of our framework to control a 1-DoF robot arm.
The framework comprises a Detection of Human Motor Intent block and a Prosthesis Control
block. The first block maps sEMG signals from the user’s wrist muscles (ch1,ch2) to estimates
of the user’s motor intent in terms of kinematics, i.e., sr = (qr, q̇r, q̈r) and dynamics, i.e., joint
stiffness and damping (K,D). The second block executes the motor intent on the robot plant,
using a variable impedance controller to track sr based on K and D. The framework’s output
q f is also the visual feedback that can be used by the user to module impedance in response
to external perturbation on the robot plant. B) Arrangement of muscle-tendon units on the
link of the simulated robot model of the first block. C) Diagram of the forces generated by
the elements within each muscle-tendon unit. MTUi comprises muscle (CE, PE) and tendon
components (DE, SEE) of length li

ce and li
se respectively.

studies have characterised the impedance properties of the human limbs, primarily focusing
on the lower limb and on the shoulder-elbow, while fewer studies have investigated the
impedance properties of the wrist. Advancement in muscle-skeletal modeling has allowed to
better understand and model the dynamics of the muscle contraction and the actuation of the
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musculoskeletal system and has inspired researchers to design control methods to implement
the human-like impedance behaviour on robots [95].

Section 3.3 summarises the conclusions drawn from the review of the state-of-the-art
control methods implemented on commercially available prostheses and those developed in
research, highlighting the difficulties in translation of control methods for clinical application.
The state-of-the-art control methods that attempt to detect the human-motor intent in terms
of kinematics and dynamics are limited to a single DoF, and damping is often neglected or
computed as a function of stiffness. Moreover, there is lack of consistency in approaches
that make use of muscle-tendon models to estimate the joint torque. In fact, the stiffness and
damping properties of the muscle-tendon models are often not used but these are estimated
using other models. Moreover, either the estimated stiffness and damping are not directly
employed to update the gains of the impedance controllers, or the stiffness and damping
estimated from sEMG signals are remapped to ensure the control stability. This means that
the dynamics of the muscle-tendon models, which drives the joint motion, does not match
the dynamics implemented on the robotic system. In this work, we tackle this problem.

4.2 Framework overview

Figure 4.1-A provides an overview of our framework in the context of controlling a single
DoF through wrist flexion and extension. The Detection of Human Motor Intent block takes
as input the sEMG signals from the user’s wrist flexor and extensor muscles (ch1,ch2) and
estimates the user’s motor intent in terms of reference kinematics sr = (qr, q̇r, q̈r), and joint
stiffness K and damping D. This estimation is done in two phases. In phase 1, the sEMG
signals drive the lumped muscle-tendon units (MTU1, MTU2) that generate the muscle-
tendon forces (F1,F2) based on the muscle-tendon contraction dynamics and sr. Note that
the MTUs are virtually arranged on the link of the simulated robot model so that their action
opposes one another as for agonist-antagonist muscles; MTUs’ state and qr are linked to
each other (Figure 4.1-B). The muscle-tendon stiffness and damping are computed from the
state of the MTUs. These muscle-tendon variables are then mapped to the joint space of the
simulated robot model to obtain the joint torque τr, stiffness K, and damping D. In phase
2, τr is applied to the simulated robot model to actuate the robot’s joint qr and obtain the
user-intended joint kinematics sr.

The Prosthesis control block executes the motor intent obtained from the previous block
on the (simulated) robot plant using a position-based variable impedance controller that
tracks sr based on K and D. The joint position q f is the framework’s output and visual
feedback. If an external perturbation acts on the robot plant, the user can use this feedback to
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modulate the plant’s kinematics and impedance, reducing the error between sr and the plant’s
state s f .

The sEMG signals are processed using proprietary software. The framework is imple-
mented using CoppeliaSim simulation environment [178] and MATLAB [140]. The software
developed within this thesis is integrated within the framework for sEMG data acquisition
and processing developed in the Bioengineering Laboratory of Imperial College London.
We use the model of the Puma 560 robot [11] as the simulated robot arm; we only consider
the first two links of the robot model (Appendix D) and control joint 2 with our framework.
In practice, this framework can be used to control a single DoF of any robot. In this work,
we do not use a real prosthesis (unavailable to us), so the robot plant is simulated. If the
framework was used with a real prosthesis, the simulated robot model in Figure 4.1-A would
be a simulation of the prosthesis and the robot plant would be the real prosthesis. In the
following sections, we refer to simulated robot model and robot plant despite the latter being
simulated to indicate the two instances of the same robot model, used in the first and second
blocks.

4.2.1 Input: analysis of sEMG signals during modulation of muscle
impedance

In Section 2.3.2 we have introduced surface electromyography as a viable way for interfacing
a human subject with a prosthesis due to its non-invasiveness and ease of use. Low-density
electromyography is the HMI employed in this work, and specifically, the myoelectric
armband (Myoband) by Thalmic Lab (see description in Section 2.3.2) is the device used.
This choice is motivated by different characteristics of the device, ranging from its low cost to
ease of use. In fact, the device streams data via Bluetooth and it is therefore portable and easy
to set up in any experimental setting. The configuration of the 8 sEMG sensors in a bracelet
allows to easily fit the device around the arm of able-bodied subjects, as well as amputees.
Especially for amputees, the exact location of the sEMG sites might have to be determined by
palpation and by visual inspection of the sEMG activity; having 8 sEMG sensors overlaying
a section of the arm allows to simultaneously inspect 8 sEMG signals and can facilitate the
process of localising the muscle activation sites. The non-invasiveness and ease of use come
at the cost of dealing with noisy and low-bandwidth sEMG signals which provide limited
temporal (200 Hz running frequency) and spatial resolution. In particular, the low spatial
resolution due to the size and arrangement of the electrodes may amplify the instances of
crosstalk (Section 2.3.2). In practice, this means that the sEMG signal recorded by a sensor
might be a superimposition of the electrical activity of multiple muscles, making it difficult
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Figure 4.2: Cross section of the forearm to illustrate the muscles configuration with respect
to the sEMG sensors of the Myoband (2.3.2). The main muscles involved in wrist flexion-
extension are highlighted with colors. The Figure is modified from [37]

to isolate the activity of specific muscles of interest. As a result, the sEMG activity of a
muscle might be recorded by multiple sensors. These technical issues are more pronounced
when recording the sEMG signal of muscles involved in dynamic motions, where the sEMG
features change rapidly due to the modulation of muscles’ co-contractions. In this work, we
deal with sEMG signals that are contaminated by these sources of noise and variability, since
we aim to enable a human subject to control the kinematics, stiffness and damping of a DoF
through wrist flexion-extension by modulation of muscles co-contraction (i.e., modulation
of impedance). Moreover, given the high redundancy of the neuro-musculoskeletal system,
we need to consider that muscles that do not contribute to the actuation of a specific joint
might instead be functional to stabilize the joint and contribute to the overall level of joint
impedance.

Here below we investigate the 8 sEMG signals recorded from the forearm’s muscles of
an exemplary able-bodied subject during dynamic and unconstrained wrist flexion-extension
movements, performed at low and high muscle impedance. We are interested in (i) investi-
gating the latent space of the sEMG features during flexion, and extension, performed at low
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and high impedance; in (ii) identifying which channels (Ch) of the myoband are best suited
to represent the global muscle activity of wrist’s flexion-extension.

Myoband positioning

As explained above, we aim to capture the activity of the muscles involved in wrist flexion-
extension. To do this the myoband is positioned approximately 5cm below the elbow so that
the central sEMG sensor lies along the virtual medial line crossing the forearm and hand
longitudinally and the sEMG sensors are placed on the most active areas of the main muscles
spanning the wrist. In Section 2.5.2, the muscles involved in wrist motions are listed and
illustrated in Figure 2.11. The following muscles are the most relevant for wrist flexion: the
Flexor Carpi Radialis and Ulnaris; while the Extensor Carpi Radialis Longus and Brevis,
and the Extensor Carpi Ulnaris are the main muscles involved in wrist extension [149]. In
Figure 4.2 we show a cross-section of the forearm with the relevant muscles highlighted
and a scheme of the myoband sensors placed around the forearm. This means that it is
reasonable to assume that four muscles are mainly involved in wrist flexion-extension, and
therefore the number of sEMG channels involved can be reduced from eight to four. In an
ideal scenario where each sensor captures the activity of a single muscle, we would observe
a significant change in magnitude of four out of eight sEMG signals, recorded during wrist
flexion-extension. However, due to technical difficulties, and subject-specific anatomy, the
problem of identifying the muscles activation for wrist flexion-extension is not trivial and
specific assumptions have to be made. Before discussing methods to extract relevant muscles’
activations for wrist flexion-extension, we provide experimental results to gain insight into
the changes in the sEMG features during wrist impedance modulation.

In this preliminary experiment, the subject is requested to perform 10 repetitions of wrist
extension-flexion, spanning the full range of mobility, while maintaining a low impedance
in the first five repetitions and the highest possible impedance in the other repetitions. The
kinematics of the wrist is also recorded using the Qualisys motion capture system [174].
The acquired myoelectric and kinematic data are shown in Figure 4.3. Repetition at low
and high impedance are color-coded in blue and green, respectively. Let us consider the
first repetition, executed in the time interval 0–10 sec, approximately. Observing the wrist
flexion-extension position in the last plot, the DoF position initially increases as the subject
performs extension, and then decreases when the subject returns to the rest position, and
finally, it reaches negative values as the wrist is flexed. Generally, a repetition is characterised
by a positive and negative peak, corresponding to extension and flexion. To identify which
sEMG signals capture the activity of the muscles of interest one can visually inspect the
signals and expect to observe a correspondence between peacks in the sEMG signals and
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peaks in the kinematic data. Channel 3–6 show an increase in activation in correspondence
with the positive peak observed in the position trajectory, and the activation peak recorded by
channel 5 is the one with the highest magnitude across channels.

We conclude that channel 5 may capture the activity of the main extensor muscle. The
same reasoning can be done to identify the channel for wrist flexion. In this case, both
channels 7 and 8 have similar trends making this process difficult and visual inspection of
other repetitions may be needed. While sEMG signals from repetitions at low impedance
allow us to more easily observe an association between muscular activity and joint kinematics,
it is in general more challenging to visually inspect and identify the relevant sEMG signal
when flexion-extension is performed at different levels of muscles’ co-activation. For instance,
considering the sEMG signal of channel 8 during high impedance flexion-extension motions
(last 5 repetitions) and contrasting it with the repetition at low impedance, it can be observed
that there is substantial muscle activation during both flexion and extension (i.e., co-activation
is observed). We can conclude that the sEMG features change substantially during modulation
of muscle impedance due to modulation of muscles’ co-activation, making the problem of
decoding the human intent in terms of kinematics challenging if the coactivation is not taken
into account. This is the cause of substantial performance deterioration for conventional and
data-driven methods as explained in Section 3.1 and Section 3.2.1.

Identification of relevant sEMG channels for wrist flexion-extension

Considering the framework pipeline, a bottom-up approach is followed to define the number
of channels needed. We aim to actuate a single DoF through flexion-extension movement
using two lumped muscle-tendon models. These two models represent the activity of agonist
and antagonist muscles. Given two muscle-tendon models, only two activations are needed,
one to drive the contraction dynamics of each model. However, two agonists and two
antagonists are mainly involved in flexion and extension (i.e., two sEMGs for flexion and two
for extension). The problem of choosing input activation for the muscle-tendon models is
that of extracting two activation signals from the eight provided by the Myoband, considering
that four muscles are mainly involved in wrist flexion-extension. This means that at least
four activation signals can potentially be extracted from the sEMG signals recorded by the
Myoband. The following options have been investigated during the design of the proposed
framework to choose the input sEMG signals:

• Instead of choosing specific sEMG channels, dimensionality reduction methods can be
employed to blindly learn a latent two-dimensional space (the space of the activation
signal given as input to the MTUs) embedded in the 8-dimensional space defined by
the sEMG signals of the Myoband. This would avoid the need for subject-specific
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Figure 4.3: Processed surface sEMG signals recorded by the Myoband placed on the forearm
of a volunteer as shown in Figure 4.2. The subject performs 5 repetitions of flexion-extension
motion at low and high impedance. The corresponding wrist kinematics is shown in the last
plot. These signals provide an insight into how the features of the sEMGs change due to
modulation in muscles coactivation.
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adjustment of the Myoband and manual selection of channels that capture the activity of
muscles of interest. Given sEMG data recorded during the wrist flexion-extension only,
the latent signals of the two-dimensional space would represent the overall activation
related to flexion and extension and could be used as input to the muscle-tendon models.
In practice, this means adding a block to the framework (Figure 4.1) that takes as
input the processed matrix of sEMG signals E and outputs ch1 and ch2. Blind source
separation methods such as Non-Negative-Matrix-Factorization (NNMF), Independent-
Component-Analysis (ICA), and Autoencoders neural networks (AENN) have been
previously used in data-driven frameworks [208] to automatically extract control
commands from recorded sEMG signals. In particular, NNMF has been the mainstream
method because of the inherent advantages it provides such as sparse coding, non-
negative matrix decomposition (activation to muscle-tendon models must be non-
negative) and ease of implementation. However, NNMF has different limitations [137]
which are enhanced by the sudden changes in sEMG features due to modulation of
muscles impedance. Different variations of offline and online NNMF with various
constraints such as sparsity, orthogonality of the basis vectors, and regularization
factors in the cost function have been implemented and investigated while developing
the framework. However, none of these led to robust control performance as the
signals estimated by the NNMF-based methods presented instances of missing or
wrongly assigned activation peaks (i.e., peaks corresponding to flexion, were assigned
to extension). Moreover, the lack of ground truth activation signals made it difficult to
assess the NNMF performance in predicting activation signals and understand if the
observed error in the predicted flexion-extension joint trajectory was due to issues in
the NNMF or in other components of the pipeline, such as the muscle-tendon models.
This ambiguity would have made the design and optimisation of the muscle-tendon
models challenging and possibly based on wrong inputs. Therefore, we decided to
extract the sEMG signals as explained in the next point.

• Given the unfeasibility of the first option, and the difficulties in identifying the sEMG
signals corresponding to the 4 muscles (i.e., two flexors and two extensors) due to
cross-talk and limitations imposed by the device itself (the sEMGs are arranged in a
bracelet, meaning that the sensors can not be positioned at different distances from the
elbow), it was decided to use two channels only, one for flexion and one for extension.
The position of the myoband is adjusted according to the subject’s anatomy in order
to maximise the amplitude of the signal recorded by channel 4 and 8, for extension
and flexion respectively. The Myoband positioning is guided by palpation and visual
inspection of the sEMG signals to ensure that the selected channels overlay the most
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active muscles during flexion-extention. In this process, we also optimise the Myoband
position to avoid recording the activity of muscles involved in other motor functions.
While channels 4 and 8, due to their position in the bracelet are the ones usually
capturing the activity of the main extensor and flexor, depending on the subject’s arm
size, sensors adjacent to Ch4 and C8 may be selected.

In Figure 4.1 the matrix E ∈ R8×T contains the sEMG signal acquired in the time interval T
by the sensors of the myoband. The variables ch1 and ch2 are the sEMG signals selected to
drive the contraction dynamics of the two MTUs. The input activations may correspond to
the signals recorded by channels 4 and 8 of the myoband, but as explained above the channel
selection is subject-specific.

4.2.2 Output: impedance control and visual feedback

The output of the framework shown in Figure 4.1-A is q f , the joint position of the (simulated)
robot plant. During online testing, the subjects use q f as visual feedback to adjust their
muscles’ contraction and make the robot plant move as desired. In the presence of external
perturbations acting on the robot plant, q f will start diverging from the user’s desired
position qr depending on the joint stiffness K and damping D. This will trigger the subject’s
corrective action. Details on how the visual feedback is provided to the user are described
in Section 5.3.2. In the later sections, we will explain how this behaviour is made possible
by the design of the framework, where the MTUs state is only dependent on the state of the
simulated robot model and it is therefore not directly affected by the perturbations.

4.2.3 Framework assumptions and requirements

The inputs to the framework are sEMG signals provided by two channels placed on the
Extensor Carpi Ulnaris and on the Flexor Carpi Radialis, which drive two lumped muscle-
tendon models. Based on the aforementioned assumption, the framework is designed to
satisfy the following requirements:

1. The user’s motor intent is decoded in terms of wrist flexion-extension kinematics, joint
stiffness and damping.

2. The robot’s impedance behaviour has to be updated based on the user’s motor intent.
This requires the implementation of a variable impedance controller on the robot’s
side.
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Figure 4.4: Scheme of inputs and outputs of the first block of the proposed framework. The
detection of human motor intent block is split in two phases. Phase 1 takes as input sEMG
signals ch1,ch2 and the current joint position of the simulated robot qr and outputs the human
motor intent in terms of net torque at the joint τr, joint stiffness K and damping D. The torque
τr is input to the Phase 2 component which outputs the next state of the simulated robot
sr = (qr, q̇r, q̈r). The stiffness K and D are not used in Phase 2, but input to the Prosthesis
control block. More details are provided in Figure 4.1.

3. The dynamics (i.e., stiffness, damping) of the user’s motor intent has to match the one
of the robot plant.

4. A corrective action has to be implemented to ensure the subject can modify the muscles’
activation to adjust the robot’s kinematic and dynamic behaviour.

4.3 Detection of human motor intent

In the previous section (Section 4.2), technical details on sEMG placement and recording are
provided. Specifically, we justify the choice of using two channels of the Myoband to record
the sEMG of the Flexor Carpi Radialis and Extensor Carpi Ulnaris (ch1,ch2). These two
sEMG signals are the input to the first of the two main blocks comprised in the framework,
the detection of human intent component, discussed in this section.

The detection of human intent block maps the input sEMG signals (ch1(t),ch2(t)) to an
estimate of the user’s motor intent, namely the desired joint kinematics, joint stiffness and
damping (sr(t), K(t), D(t)). These are required to implement the human intended impedance
behaviour on the (simulated) robot plant: sr(t) is the reference trajectory at time t for the
impedance controller, K(t) and D(t) are the virtual stiffness and damping of the impedance
model imposed in the adaptive control law.

The estimation of the human motor intent is done in two phases, described below in
mathematical detail. A scheme of the input and output variables for these two phases of the
first block is provided in Figure 4.4.
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4.3.1 Phase 1: muscle-tendon dynamics

In phase 1 a data-driven process-based approach which makes use of two lumped muscle-
tendon units is used to model the macroscopic properties of flexor and extensor muscles
involved in wrist flexion-extension. At each instant in time, given the current state of the
MTUs, the input sEMG signals (ch1(t) and ch2(t)) drive the forward dynamics of the lumped
muscle-tendon models that for each MTUi predicts the contraction force Fi and the state of
the MTU at the next time step. In Figure 4.1-A, it can be observed that the MTUs receive as
input the variable qr. Since the MTUs are virtually arranged on the robot’s link, as shown in
Figure 4.1-B, the state of the MTUs depends on the joint position and qr is used to update the
muscle-tendon length li

MTU and the velocity l̇i
MTU . Given the MTUi state and the generated

muscle force, the muscle-tendon stiffness K1 and damping Di are computed. The muscle
force Fi, stiffness Ki and damping Di are then mapped to the joint space of the simulated
robot model using the Jacobian of the moment arms, as described in Section 2.4.3. The
outputs of Phase 1 are the net joint torque τr, the joint stiffness K and the joint damping D.

Firstly, we mathematically formulate the muscle-tendon model structure (Figure 4.1-
C) and describe the muscle dynamics, which includes the activation dynamics and the
contraction dynamics. The theoretical foundation of the activation and contraction dynamics
was introduced in Section 2.4. We then derive the estimates of the muscle-tendon stiffness
and damping. The geometrical arrangement of the MTUs on the simulated robot model, as
illustrated in Figure 4.1-B, is discussed, and the Jacobian of the moment arms is computed.
The latest is used to transform the output variables of the contraction dynamics and the
muscle stiffness and damping from the muscle space to the joint space of the simulated robot
moded.

From sEMG signals to input muscle activations

The classic procedure to filter raw sEMG signals E is described in Section 2.3.2 and it mainly
involves signal rectification and filtering. According to the excitation-to-activation dynamics
presented in [223], the rectified sEMG signal (i.e., before filtering) represents the net neural
drive, while the rectified and filtered sEMG signal is associated with the net muscle activation
and is suitable to drive the muscle-tendon contraction dynamics. Given the input neural drive,
the excitation dynamics process provides the input activation. In this work, the excitation
process is not relevant since the processed sEMG signals (i.e., sEMG envelopes) are used
as muscle activations (Section 2.4). Differently from the reference model [81] each input
activation chi is subsequently normalised c̄hi in the range [chmin

i chmax
i ], where chmax

i is the
maximum value of chi recorded during the training session (Section 5.3.1) and chmin

i is set
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Table 4.1: List of independent and derived parameters of muscle-tendon dynamics.

Independent parameters Derived parameters

Parameter
Name Parameter Description Parameter

Name Parameter Description

Non-lin
Operator A Non-linear shape parameter in (-3,0)

CE Fmax Maximum isometric force Arel
Coordinate pole in l̇ce(Fce)
normalised to aFmaxFiso(lce)

lopt
Optimal muscle length, i.e., length at which
the maximum isometric force is reached Brel

Coordinate pole in Fce(l̇ce)
normalised to lopt

∆Wdes Width of the descending branch of isometric curve Fiso Isometric force

∆Wasc Width of ascending branch of isometric curve LArel Length dependency of Arel

vdes Exponent of descending branch of isometric curve LBrel Length dependency of Brel

vasc Exponent of ascending branch of isometric curve QArel Activation dependency of Arel

Arel0 Maximum value of Arel QBrel Activation dependency of Brel

Brel0 Maximum value of Brel

PE Lpe0
Rest length lpe normalised to
optimal length lopt

Kpe factor of non-linearity in Fpe

vpe Exponent of Fpe(lce) curve lpe length of PE element, equal to lce

F̂pe0 Fpe when lce = ∆Wdes

DE Rde
Minimum value of damping normalised
to dse,max

dde,max maximum value of damping coefficient

Dde Scaling factor for dse,max

SE lse0 Tendon slack length Ksenl Stiffness of linear part of Fse

∆Unl Relative tendon stretch at non-linear transition Ksel Stiffness of non-linear part of Fse

∆Ul
Relative stretch in linear area for an increase in
Fse of ∆Fse0

∆Fse0 Force at non-linear transition

Secc
Increase in inclination of Fce at transition
between concentric and eccentric area

Fecc
Normalised coordinate pole of
l̇ce(Fce) for eccentric contractions

to the value of 0.0001, a minimum activation required to ensure numerical stability of the
muscle-tendon model and based on the assumption of a constant minimal activation even
in the absence of neural excitation [82]. Each signal is further processed using a non-linear
operator accounting for the non-linearity in the activation-to-force relationship [132]:

ai(t) =
eAc̄hi(t)−1

eA−1
(4.1)

where the constant A ∈ (−3,0) determines the degree of non-linearity between c̄hi and the
activation signal ai.
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Figure 4.5: A) Isometric force Fiso as a function of the normalised muscle length lce
lopt

;
parameters characterising the shape of the curve are indicated in red and described in
Table 4.1; B) Force-velocity relation between the normalised contractile force Fce

Fopt
and the

normalised muscle contraction velocity l̇ce
l̇max
ce

. The force-velocity curves are plotted from light
to dark blue as the input activation increases in magnitude. C) Normalised force-length
relationship for the muscle component. The normalised contractile force Fce

Fopt
dependence on

muscle length is shown in blue (the dark blue curve corresponds to the maximum activation,
while the lighter blue curve corresponds to lower input activation magnitude) for a given
muscle contraction velocity, the force of the parallel element Fpe is shown in red. The muscle
force is given by the sum of the passive and active forces (i.e., FCE +FPE), shown in green.
The parallel element generates force above the normalised slack length Lpe0 =

lpe0
lopt

. See
Table 4.1 for a description of parameters.
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Contraction dynamics

The biomechanical model of each MTUi is based on the well-established Hill’s phenomeno-
logical muscle-tendon model [90] introduced in Section 2.4. Specifically, we employ the
model presented in [81] which demonstrated how including a damping element in parallel to
the serial element enabled the suppression of high-frequency oscillations within the model.
The MTU model’s structure and mathematical formulation are outlined below, highlighting
the differences with respect to the implementation used in the current work. Let us consider
the muscle-tendon unit shown in Figure 4.1. Each MTUi of length li

MTU is composed of a
muscle of length li

ce in series to a tendon of length li
se, similarly to classic models discussed

in Section 2.4. The muscle is modeled by a contractile element (CE) and a parallel elastic
element (PE). The tendon is made up of a serial elastic element (SE) in parallel to a damper
element (DE). The system at equilibrium is described by:

F i
ce(l

i
ce, l̇

i
ce,ai)+Fpe(li

ce) = F i
se(l

i
ce, l

i
MTC)+F i

de(l
i
ce, l̇

i
ce, l̇

i
MTC,ai) (4.2)

where the input activation ai is the input activation, l̇i
ce is the muscle contraction velocity,

l̇i
MTC is the muscle-tendon contraction velocities and F i

ce,Fpe,Fse,Fde are the forces generated
by the elements CE, PE, SE and DE, respectively. When CE is activated by ai, CE and
PE generate the forces F i

ce and F i
pe, which affect the equilibrium between the elements

of the muscle and those of the tendon, starting the contraction dynamics. As a result lce

starts contracting from its initial state linit
ce > lopt . The parameter lopt , introduced later in

the mathematical formulation of CE is the shortest length of CE at which the maximum
Fce is generated. The characteristics of each element composing the muscle-tendon model
and determining the contraction dynamics are detailed below. The subscript i and the time
dependency of each variable are dropped for clarity when describing a single MTU.

Contractile element CE In Section 2.4, we presented the theoretical foundations of the
force-length and force-velocity relationship for a contractile, which characterise the math-
ematical description of the CE element. The force Fce produced by CE depends on the
current fibre length lCE , contraction velocity l̇CE and input activation ai. In Figure 4.5-C, the
normalised contractile force is plotted in blue and its dependence on the input activation is
shown by the gradient of curves. When the contraction velocity is negative (l̇CE ≤ 0) the
muscle shortens (i.e., concentric contraction), otherwise for positive contraction velocities the
muscle lengthens (i.e., eccentric contraction). The force-velocity is shown in Figure 4.5-B.
In this work, the force generated by the contractile element differs from the formulation in
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Figure 4.6: Normalise force-velocity curve for the contractile element showing how the
relation scales with changes in the parameters Arel0,Brel0,Secc,andFrel0. The parameters Secc
and Fecc affect only the eccentric contractions.

[81] in order to account for eccentric contractions as formulated in [82]:

Fce(lce, l̇ce,a) =


Fmax

(
aFiso+Arel

1− l̇ce
Brel lopt

−Arel

)
, l̇ce ≤ 0

Fmax

(
aFiso+Arel,e

1− l̇ce
Brel,elopt

−Arel,e

)
, l̇ce > 0

(4.3)
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where Fisom is the normalised isometric force generated by the contractile component shown
in Figure 4.5-A and described in the following equation (the minus sign was incorrectly
missing in [81]):

Fiso(lce) = exp

{
−

∣∣∣∣∣
lce
lopt
−1

∆Wlimb

∣∣∣∣∣
νce,limb

}
(4.4)

where lopt is the optimal muscle length; ∆Wlimb corresponds to ∆Wasc for lce ≤ lopt and
to ∆Wdes for lce > lopt . The parameters ∆Wdes and ∆Wasc are the width of the normalized
isometric curve in the descending or ascending branch of the curve, respectively. Similarly,
νce,limb corresponds to the parameters νasc and νdes if it characterises the ascending or
descending branch of the isometric force. The reader is reminded of the excitation and
relaxation dynamics, characterised by different time constants. Excitation rises faster with
respect to relaxation. This is reflected in the curve of the isometric force by suitably
optimizing the parameters indicated in Figure 4.5-A. In equation 4.3, Fmax is the isometric
force at optimal length (i.e., Fisom(lce = lopt)); Arel and Brel are defined as follows:

Arel(lce,a) = Arel0LArel QArel (4.5)

LArel =

1 , lce < lopt

Fiso(lce) , lce ≥ lopt
(4.6)

QArel =
1
4
(1+3a) (4.7)

Brel(lce,a) = Brel0LBrel QBrel (4.8)

LBrel = 1 (4.9)

QBrel =
1
7
(3+4a) (4.10)

where Arel is the coordinate pole in the velocity-force curve normalised to aFmaxFisom; Arel0

is the maximum value of Arel; Brel is the coordinate pole in Fce(l̇ce) normalised to lopt ; Brel0

is the maximum value of Brel; LArel and LBrel are the length dependency of Arel and Brel;
QArel and QBrel are the activation dependency of Arel and Brel . In Figure 4.6-A,B it can be
observed how the force-velocity curve is affected by varying the parameters Arel0 and Brel0.
Equation 4.3 is obtained by reformulating the equation of the force-velocity relationship
introduced by Hill and explained in Section 2.4.2, modified by adding the dependency on the
activation. The eccentric parameters Arel,e and Brel,e are formulated as follows:

Arel,e =−aFeccFiso (4.11)
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Figure 4.7: The tendon force is shown as a function of lse = lMTU − lce. The tendon force
is normalised by the force ∆Fse0 at the transition between the non-linear and linear area.
The tendon starts producing force when extended above the slack length lse0. The transition
between the non-linear and linear area is for stretches above lse0∆Usenl . When the tendon
undergoes a further stretch of lse0∆Usel the normalised force is equal to 2∆Fse0

∆Fse0
. The exponent

characterising the non-linear curve is given by the ratio between ∆Usenl and ∆Usel .

Brel,e =
Brel(1−Fecc)

Secc(1+
Arel
aFiso

)
(4.12)

Where Fecc represents the coordinate pole in the velocity-force relation for eccentric contrac-
tions and Secc scales the intercept at l̇ce = 0 and the inclination of the curve force-velocity
curve for eccentric contractions. In Figure 4.6-C,D, it can be observed how the force-velocity
curve is affected by varying the parameters Secc and Fecc considering a fixed input activation
and lce.

Parallel Elastic Element PE The force generated by the PE element is shown in red in
Figure 4.5-C. The force Fpe is characterized by a passive force-length relationship with
respect to the muscle length lce. The PE element generates force only when stretched above
the slack length lpe0. The slack length is experimentally found to be a percentance of the
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optimal length (Section 2.4). The force Fpe for lce ≥ lpe0 is modeled as an exponential curve:

Fpe(lce) =

0 , lce < lpe0

Kpe(lce− lpe0)
νpe , lce ≥ lpe0

(4.13)

with stiffness Kpe obtained as follows:

Kpe = F̂pe
Fmax

(lopt(∆Wdes +1−Lpe0)νpe
(4.14)

where lpe0 = Lpe0lopt is the rest length; Lpe0 is rest length normalised with respect to the
optimal length lopt ; F̂pe is the force for lce = ∆Wdes; νpe is the exponent of the curve.

Serial Elastic Element SE The SE element is mathematically formulated as a continuous
piece-wise non-linear relationship between force Fse and length lse = lMTU − lce (Figure 4.7):

Fse(lse) =


0 , lse < lse0

Ksenl(lse− lse0)
νse , lse < lsenl

∆Fse0 +Ksel(lse− lsenl) , lse ≥ lsenl

(4.15)

where lse0 is the tendon slack length below which no force is generated; lsenl is the length
defining the transition from the non-linear relationship characterising the so-called toe region
and beginning of the linear region; Ksenl is the stiffness of the non-linear region; νse =

∆Usenl
∆Usel

is the exponent of the curve in the toe region; Ksel is the stiffness of the linear region; ∆Fse0

is the force at lse = lsenl; these are defined as follows:

Ksenl =
∆Fse0

(∆Usenllse0)νse
(4.16)

Ksel =
∆Fse0

(∆Usellse0)
(4.17)

Serial Damping element SD In [81] a solution is proposed for high-frequency oscillations
observed in Hill-type models consisting of only a CE, PE and SE element by adding a
damping element in parallel to SE. The authors tested different MTU structures, adding a
linear damping element in series or in parallel to CE, demonstrating that the serial damping,
delocalised from the muscle component and added in parallel to the serial element suffices
to damp the oscillations. Therefore, it is assumed that the damping coefficient of the DE
element should be a function of the tendon extension velocity and the contractile force. The
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Figure 4.8: The relation between the contractile force Fce and the damping coefficient Fce
l̇MTU−l̇ce

is shown for changes in the parameters Rde and Dde. To visualise the effect of the varying
parameters the curves are obtained considering the muscle-tendon velocity equal to zero for
simplicity, and for a given activation and muscle-tendon length. The parameters are described
in Table 4.1.
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serial damping force is given by the following equation, where l̇MTC is the MTU velocity
and l̇CE is the CE component velocity:

Fde(lce, l̇ce, l̇MTC,a) = dde,max

(
(1−Rde)

Fce(lce, l̇ce,a)+Fpe(lce)

Fmax
+Rde

)
(l̇MTC− l̇ce)

(4.18)
where dde,max(lce,a) = Dde,max

FmaxArel0
loptBrel0

and Dde,max is a dimensionless constant representing
the maximum damping coefficient at Fce = Fmax; Rde is the minimum value of damping at
Fce = 0. In Figure 4.8 we show how the relation between Fce and the damping coefficient

Fce
l̇MTU−l̇ce

is affected by varying the parameters Rde and Sde.

Simulation of contraction dynamics The main steps to simulate the MTU dynamics are
the following:

1. Given the initial muscle-tendon length lMTU , and assuming l̇ce = 0 and l̇MTU = 0
Equantion 4.3 is solved for lce assuming the minimum activation u = 0.001.

2. Given the current state of the muscle-tendon unit (lce, l̇ce, lMTU , l̇MTU ) and the input
activation u, we first calculate the forces generated by each element within the model.
The next state of the muscle-tendon unit is obtained by substituting Equation 4.3 in the
forces equilibrium Equation 4.2 which results in a quadratic equation when solved as a
function of the contraction velocity l̇ce:

l̇ce =
−C1−

√
C2

1−4C2C0

2C2
(4.19)

with coefficients formulated as in [81]:

C2 = dde,max(Rde−Arel(1−Rde)) (4.20)

C1 =−(C2l̇MTU +D0 +Fse−Fpe +FmaxArel) (4.21)

C0 = (loptBreldde,max(Rde +(1−Rde)uFiso)l̇MTU + loptBrel(Fse−Fpe−FmaxuFiso)

(4.22)
For eccentric contractions, the Arel and Brel have to be replaced by the corresponding
eccentric parameters Arel,e and Brel,e.

3. The new muscle length lce is obtained by numerically integrating l̇ce. In this work, the
muscle-tendon length and velocity are determined by the configuration of the robot
based on the assumption that the muscle-tendon units are virtually constrained on the
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robot’s link. In fact, it can be observed in Figure 4.1-A that the state of the simulated
robot qr is fed back to the muscle-tendon units. To formalise the muscle-tendon
velocity and length equation it is first necessary to introduce the robot model and the
arrangement of the MTUs on the link, which is discussed below in Section 4.3.3.

4.3.2 Phase 1: muscle stiffness and damping estimation

In this section, the stiffness and damping of the muscle and tendon are computed. These are
then transformed from them muscle-tendon space to the joint space and used to implement
an adaptive impedance controller on the simulated prosthesis.

Researchers have used different approaches to compute muscle-tendon stiffness (Sec-
tion 3). Methods which incorporate muscle-tendon model commonly estimate the stiffness
can be grouped in the following categories of approaches.

• Short range stiffness [220, 46].
Given a Hill-based muscle-tendon model the muscle stiffness is defined as (i.e., short-
range stiffness):

Km(t) =
γFm(t)

lopt
(4.23)

where Fm is the force generated by the muscle component, lopt is the muscle length
at which the maxim force is generated, γ scaling constant. The tendon stiffness is
computed as the slope of the dimensionless force-strain curve:

Kt(t) =
dFt(t)
dlt(t)

(4.24)

Then, given the lever arm R, the joint stiffness is computed as follows, using the
Jacobian of the moment arms R to map the muscle-tendon stiffness to the joint space:

K(t) =
Km(t)Kt(t)

Km(t)+Kt(t)
R2 (4.25)

The joint damping, if used in the controller is computed as function of the stiffness as
follows:

D(t) = 0.2
√

K(t) (4.26)

In this case D does not represent the human intended joint damping, but it the derivative
gain, set to satisfy controller stability requirements. This approach to obtain a variable
damping is also used in other studies (e.g., [110, 127]). Modeling the joint stiffness
as short range stiffness disregards the dependencies of stiffness on muscle length and
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velocity, substantially simplifying the estimates Km. However, during dynamic motion,
the stiffness is largely affected by changes in muscle length and velocity. Short range
stiffness is shown to not be appropriate for modeling muscle stiffness during dynamic
movements and it is shown to overestimate its value [172]. In fact, short range stiffness
characterises the intrinsic stiffness of the muscles, when the fibers are stretched within
3% of the length [209], as discussed in Section 2.4.4.

• Stiffness as linear function of the magnitude of sEMG signals [110, 127].
The computation of joint stiffness is based on the stiffness index proposed in [161],
discussed in Section 3.2.3 Based on the assumption that simultaneous increase in flexor
and extensor muscle forces acting on the joint does not change the net torque the
stiffness is defined as follows:

K(t) = αKindex(t)+β (4.27)

where α and β are constants to be identified experimentally, STI is the stiffness trend
index and is defined below:

Kindex(t) = | ∑
f lexor−i

τi(t)|+ | ∑
extensor− j

τ j(t)| (4.28)

where the torque is estimated using muscle-tendon models.

In this work, the stiffness and damping of each MTU are first estimated from the muscle-
tendon state and then mapped to the joint space. Ki is modeled as the muscle fiber stiffness
Ki

m in series with the tendon’s stiffness Ki
t , i.e., Ki = Ki

mKi
t/(K

i
m +Ki

t ). In this work we
choose to compute Ki

m as the directional derivative of Fce(li
ce, l̇

i
ce,chi) with respect to unit

vector of li
ce [179]:

Ki
m =

∂F i
m(l

i
ce, l̇

i
CE ,chi)

∂ li
ce

(4.29)

This formulation takes into account the state of the muscle (li
ce, l̇

i
ce,chi) and eliminates in

the stiffness computation the force component due to contraction velocity and change in
activation. Similarly, Ki

t is computed as the directional derivative of F i
t = F i

se +F i
de with

respect to unit vector of li
se = li

MTC− li
ce.

Ki
t =

∂Ft(li
se, l̇

i
SEE)

∂ li
se

(4.30)
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where li
se = li

MTC− li
ce Muscle and tendon damping (Di

m, Di
t) are computed as directional

derivatives with respect to muscle contraction velocity l̇i
ce and tendon extension velocity

l̇i
se = l̇i

MTU − l̇i
ce.

4.3.3 Phase 1: geometric arrangement of MTUs on robot’s link

Figure 4.1-B provides an overview of the arrangement of the MTUs on the simulated robot
model. Each MTUi is virtually attached to the link from the Center of Mass (CoM) of the
link (li

a) to a fixed base (li
b), i.e., the length of li

MTU varies as a function of qr. Given αi

and the initial joint position qr = 0, we can compute li
a as li

MTU sinαi. li
a and li

b are kept
constant during the simulation and control, while li

MTU(qr) and the moment arm ri(qr) vary
as a function of qr. The length of the muscle-tendon unit i is computed as follows:

li
MTU =

√
(li

a)
2 +(li

b)
2−2li

ali
b cos(π/2−qr) (4.31)

where the muscle-tendon contraction velocity l̇i
MTU is computed by numerical differentiation.

To transform the muscle-tendon forces, stiffness, and damping to the joint space, we define
the Jacobian matrix R = [r1 r2] = [

∂ l1
MTU (qr)

∂qr

∂ l2
MTU (qr)

∂qr
]T containing the moment arms ri of the

two MTUs:

ri(qr) =
∂ li

MTU(qr)

∂qr
= li

b sinα
i(qr)

with α
i(qr) = acos(

−(li
a)

2 +(li
b)

2 +(li
MTU)

2

2li
MTU li

b
)

(4.32)

The obtained Jacobian of moment arms R is used to transform τr, the muscle-tendon stiff-
nesses (K1, K2) and damping (D1, D2) from the muscle-tendon space to the joint space of the
simulated robot model.

4.3.4 Phase 1: mapping from muscle space to joint space

Forces generated by MTUi result in the net torque τr = [F1,F2]
T R. We compute the joint

space stiffness considering also the contribution given by the varying moment arms as a
function of qr, according to the following definition of stiffness [98]:

K =
∂τr

∂qr
=

∂RT

∂q
[F1,F2]

T +RT diag([K1,K2])R (4.33)

The joint damping is computed as D = ∑
2
i=1(Di(ri)2).
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Figure 4.9: Scheme of input and outputs of the second block of the proposed framework. The
Prosthesis control implements a variable impedance controller in the joint space of the robot
plant. The inputs are the reference motion trajectory sr, the joint stiffness K and damping D,
provided by the Detection of motor intent block. External perturbations τext may act on the
robot. This block outputs the next state of the robot’s plant s f . More details are provided in
Figure 4.1.

4.3.5 Phase 2: detect motor intent as kinematics

The net joint torque τr predicted by the two muscle-tendon units can not be used as input
to implement a variable impedance controller, since this control scheme requires a motion
trajectory and an impedance model as input 2.1.4. The impedance model is defined by
the joint stiffness K and D, while the reference motion trajectory sr = (qr(t), q̇r(t), q̈r(t))
is obtained by applying the τr(t) at the robot’s joint using the forward dynamics model
explained in Section 2.1.2.

4.4 Prosthesis control

The reader recalls that the proposed framework is constituted of two main blocks: the
detection of human intent and the prosthesis control. In Section 4.3 we have mathematically
formulated the first block of the framework, which decodes the motor intent from sEMG
signals. This section describes how the motor intent is implemented on a simulated robotic
system. The inputs and outputs of the two blocks are summarised in Figure 4.3 and Figure 4.4,
respectively.

The human motor intent at time t is represented by the simulated robot state sr(t), stiffness
K(t), and damping D(t). As stated earlier, our framework’s second block executes this intent
on the robot plant using a position-based variable impedance controller. The position-based
variable impedance controller is used to track sr(t) by adapting K(t) and D(t). Consider the
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generic dynamic model for a robot with a single rotational joint:

Mq̈r(t)+g(qr(t)) = τ f (t)+ τext(t) (4.34)

where M is the link’s joint space inertia, g is the gravity compensation torque, and τext(t)
is the external perturbation acting on the robot joint. Building on the impedance control
paradigm without force-torque sensor readings [96], we define the control law as:

τ f = Mq̈r(t)+K(qr(t)−q f (t))+D(q̇r(t)− q̇ f (t))+g(qr(t)) (4.35)

Note that we define an impedance behaviour that uses the natural robot’s link inertia, due
to the challenges in inertia shaping, and due to the low acceleration reached during control.
We design the framework and define the muscle-tendon models’ length and velocity as a
function of sr so that any external perturbation (τext), e.g., a force field acting on the joint,
affects s f only, while the state of the simulated robot model sr and the MTUs are unaffected
and represent the user motor intent based on the input sEMG signal. This choice allows
the implementation of the user’s corrective action as the feedback loop of the impedance
controller. In the absence of external perturbations (τext = 0), qr matches q f . If τext is not
zero, depending on K and D, q f will start diverging from qr. The joint position q f serves as
visual feedback for the user, who can adapt online the simulated robot’s state and gains (K,
D) by modulation of the muscles’ coactivation.

4.5 Muscle-tendon models training

For the two blocks of the framework to work according to the requirements listed in Section
4.2.3, it is necessary to set suitable values for the parameters of the muscle-tendon units. This
section is concerned with identifying and estimating the parameters of the muscle-tendon
models and constitutes the second contribution of this thesis. As discussed in the previous
section, the domain application imposes constraints on the framework design. In particular,
the lack of experimental joint torque, joint stiffness and damping to use as ground truth, which
would have allowed multi-output observations, makes the problem of identifying the model
and estimating muscle-tendon parameters challenging. The muscle-tendon model structure
used in the framework was described in the previous section and it is based [81]. This
choice is the result of incremental work and testing of different muscle-tendon architectures
in relation to the thesis’s objective. Table 4.2 lists the variables of MTUi that identify the
muscle-tendon model structure and the vector of parameters p̄ to be optimised. Typically,
the underlying optimization process minimizes the root mean square error (RMSE) between
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Parameter
Name Variable Lower

Bound
Upper
Bound

CE Fmax p̄1 1000 9000
lopt p̄2linit

ce 0.05linit
ce 0.085linit

ce
∆Wdes p̄3 p̄2 0.7 p̄2 3.5 p̄2
∆Wasc p̄4 p̄2 0.7 p̄2 3.5 p̄2
vdes p̄5 1.2 4
vasc p̄6 1.2 4
Arel0 p̄7 0.1 0.4
Brel0 p̄8 1.1 5.1

PE lpe0 p̄9 p̄2 0.7 p̄2 0.95p̄2
vpe p̄10 1.1 3
F̂pe0 p̄11 p̄1 0.5 p̄1 1 p̄1

DE Dde p̄12 0.001 3
Rde p̄13 0 0.8

SE lse0
2
3 lMTU

2
3 lMTU

2
3 lMTU

∆Usenl p̄14 0.02 0.07
∆Usel p̄14 p̄15 (1/3) p̄15 (2/3) p̄15
∆Fse0 p̄16 p̄1 0.3 p̄1 1 p̄1
Secc p̄17 1.2 2
Fecc p̄18 0.5 2

Table 4.2: List of parameters defining each MTU structure. The parameters description
can be found Table 4.1. In the column labelled "Variable”, the parameters are written as a
function of the variables p̄i to be optimized. The lower and upper bound of each parameter is
indicated in the last two columns and set experimentally and based on prior work [189].



4.5 Muscle-tendon models training 93

a reference torque and the torque predicted by the MTUs τr without any prior knowledge
of the interaction between elements within the MTU (e.g., [110]). This makes the MTUs
parameters’ optimization an ill-posed problem: multiple combinations of parameters can
generate the same net joint torque (τre f ) and thus the same reference joint position qr, but
most of these combinations may provide gains (K, D) that do not match the user-desired
dynamic behaviour and can result in an unstable and ineffective impedance controller. This
is a critical issue that undermines the model validity and transparency, making it difficult to
fully understand the dynamics of the MTUs and to extract valid gain values.

We attempt to overcome the problem of a priori identifiability of the model and of
estimating muscle-tendon parameters as follows:

1. enriching the training dataset;

2. making assumptions on the relative length between muscle and tendon elements;

3. reducing the number of parameters to estimate in order to maximize their inter-
dependency by reparametrizing the model, and introducing domain knowledge on
muscle-tendon contraction dynamics;

4. defining an optimization framework that includes the impedance controller and uses
q f as the optimization signal. In fact q f is affected by the human inteded joint stiffness
and damping.

(1) Enriching the training dataset As detailed in Chapter 4.2.1, the framework takes as
input the EMG signals of the wrist flexor and extensor and predicts the joint position q f .
The latter is the only experimental observation output by the framework that can be used to
optimize the muscle-tendon models. In Chapter Chapter 5.3 the experimental protocol to
collect necessary data to train the model is discussed in detail, and an introductory summary
is provided here. The training dataset consists of EMG data and the corresponding wrist
flexion-extension joint position. The wrist kinematics is used as the ground truth signal
to define an optimization problem and estimate muscle-tendon unit parameters. Since the
same joint kinematics can underlie different joint impedance values (i.e., level of muscle
co-contractions), EMG signals and corresponding kinematics data are collected for wrist
flexion-extension movements performed at various levels of impedance.

(2) Relative length between muscle and tendon elements The choice of the MTUs pa-
rameters affects the interaction between the elements in the muscle and in the tendon, which
(in turn) affects the muscle’s and tendon’s stiffness and damping. We found in initial sen-
sitivity studies that the result of the optimization is highly sensitive to the relative lengths
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of the muscle and the tendon since it affects the way each element of the muscle-tendon
unit contributes to the overall force generated by the MTU. Existing literature investigating
the relationship between architectural features of the MTUs and their contraction dynamics
in relation to specific functionalities (energy storage, impedance modulation, etc) indicates
that muscle-tendon systems characterised by a long tendon compared to the muscle enhance
control and impedance modulation [215, 16]. This hypothesis on the functional properties
enabled by such a MTU structure has been investigated by [175]. We rely on these studies
and define the MTUs structure to have a long tendon compared to the muscle and set the
tendon slack length to 2

3 li
MTU . The ratio between the muscle and tendon length is the same as

the one of the muscle-tendon complex investigated in [175].

(3) MTU’s parameters simplification Domain knowledge based on previous work dis-
cussed in Chapter 2 [223, 215, 81, 189] on muscle-tendon contraction is used to further
constrain the muscle-tendon parameter space. We consider ranges of parameter values
defined during identification studies in the literature and define lower- and upper-bound
conditions for these parameters to constrain the optimization problem. Moreover, the model
is reparametrized to maximize the interdependence between parameters (detailed in Table
4.2) (for example, the optimal muscle length is set as a function of the muscle length when the
contraction velocity is zero). Preliminary sensitivity studies indicated that some parameters
did not make any substantial contribution to the offline tracking performance. Based on this
observation, the parameter space of the MTU is simplified as follows: (i) the pennation angle,
i.e., the angle between the muscle and the tendon, is set to be constant at zero; and (ii) li

opt is
learned directly from data and assumed to be constant instead of being a function of the input
activation [132, 110]. Additional constraints to the optimization problem are detailed below.

(4) Optimization signal Typically, as discussed in Chapter 3.1 the torque τr is used as
the optimisation signal in the problem of estimating muscle-tendon parameters. However,
different combination of muscle-tendon parameters can provide the same net torque. Given
the input data (EMG signals), the model structure and a set of parameters, the muscle-
tendon model provides the joint torque, stiffness, and damping, as a result of the contraction
dynamics and mapping of variables from the muscle-tendon parameter space to the joint space.
While the joint stiffness and damping cannot be experimentally measured in the considered
set-up, in the proposed framework these values are used as gains of a position-based variable
impedance controller. This inherently limits the set of muscle-tendon parameter solutions to
those that not only enable the desired kinematics but also provide stiffness and damping values
that ensure the system’s stability. The output of the position-based impedance controller
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q f , which depends on the interaction dynamics defined by the gains (K, D), was used as
optimization signal and compared to the reference joint kinematics to define the cost function
for estimating the muscle-tendon parameters.

We formally define the prediction function f : Rm+2→R that acts on the input defined by
the sEMG signals [ch1(t),ch2(t)] ∈ R2 and the parameters of the MTUs p ∈ Rm to produce
the final joint position q f (t) ∈ R:

q f (t) = f ([ch1(t),ch2(t)];p) (4.36)

The constrained optimization problem given training data (E, qtain
f ) collected in the time

interval [0,T ] is defined as:

min
p

√
∑

T
t=1( f ([ch1(t),ch2(t)];p)−qtrain

f (t))2

T

s.t. lb≤ p≤ ub

(4.37)

Here, qtrain
f (t) ∈ R is the measured wrist flexion-extension angular position, lb, ub ∈ Rm

are the lower and upper bound values of p shown in Table 4.2 and T is the length of the
trajectories. Additionally, the following constraints are added to the optimization problem to
prevent numerical instability and aid the optimization convergence:

• W i
des +W i

asc < li
ceInit , where li

ceInit is the initial state of the muscle when qr = 0. This
ensures that the CE element operates in the muscle-length range.

• if li
ce < 0.001li

opt or li
ce > 0.95(li

MTU − li
see0) set l̇i

ce = 0. This ensures that li
MTU =

li
ce + li

see0 while considering that the tendon can not be compressed.

• constraints on joint stiffness and damping K > 0,D >= 0 to ensure the impedance
controller stability.

• The constraint that limits the maximum extension of the tendon (li
se) is set to 10% of

li
se [215] after which the tendon is assumed not to generate force.

Robot model for the Simulated prosthesis and the Robot plant

The simulated robot model and the robot plant, indicated in Figure 4.1, have different
purposes in the framework: the first belongs to the detection of human motor intent block, the
second one represents the prosthesis. One approach could have been to design the simulated
robot model to match a model of the human wrist by defining a simple two-link robot
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(forearm, hand) with a revolute joint (i.e., flexion-extension) and dynamic parameters (i.e.,
links mass, inertia, center of mass) set to average values of the human hand. However, the
kinematics and dynamics of the two robots would not match. The joint stiffness and damping
estimated from the muscle-tendon models would need to be tuned and remapped to a range
of values that allows the robust control of the robot plant. We discussed how this approach
creates a mismatch between the dynamics of the MTUs and that of the robot plant. This is
further discussed in the next section. Another option would be to set the robot plant to have
human-like parameters so that the two models match. This option was initially explored but
then abandoned for two main reasons: 1) the final future goal is to deploy the framework on
a real prosthesis or robotic arm which has kinematics and dynamics that differs from that of
the humans’ ; 2) due to the low values of the average inertia of the human hand the controller
results insensitive to changes in τr since the magnitude of the net torque given by the hills
model is significantly smaller than the compensation torques. This means that the controllers
are insensitive to changes in the muscle-tendon model parameters, making the optimization
problem challenging.

The aim of this work is not to closely imitate the wrist kinematics structure and the wrist’s
passive dynamics but to design a framework that retains key features that enhances the user’s
controllability of the (simulated) robotic system.

4.5.1 Importance of impedance controller in the optimization pipeline

As discussed in Section 4.5, our optimization method uses the joint position trajectory of
the robot’s plant q f as an optimization signal, instead of qr or a reference joint torque. This
choice is motivated by the fact that q f is affected by K and D since these are used as gains
in the position-based impedance controller. This means that the muscle-tendon models’
parameters have to be optimised to ensure that q f matches qtrain

f , while ensuring that the
dynamics of the muscle-tendon units support the implementation of a stable impedance
controller and enhances the control performance of the user. Existing methods discussed in
Section 3.2.3 instead use the joint torque τr or qr as optimization signal, and if the stiffness
or damping are estimated from the MTUs, these have to be tuned in a separate phase to
ensure the control stability. The importance of including the impedance controller in the
optimization framework is explained below and shown in Figure 4.10. The figure shows
the offline evaluation of the framework on the entire dataset. Training data were collected
from 20 repetitions of flexion-extension motions. The first five repetitions are performed
at low impedance, whereas repetitions 6–10 are done at high impedance. In repetitions
11 and 12 the subject performs isometric contractions, and the remaining repetitions the
subject performs flexion-extention in a desired range and impedance level. We trained the
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Figure 4.10: Preliminary results to discuss framework design choice. Trajectory tracking
during offline evaluation of the framework. The black dotted line is the ground truth position
of the wrist flexion-extension. The blue line is the predicted trajectory under the following
conditions: (top) framework optimization and evaluation included the impedance controller:
q f ; (center) framework training and testing did not include the impedance controller: qr;
and (bottom) the optimization framework did not include the impedance controller, but the
evaluation framework included the impedance controller: q f .

MTUs on the collected data using q f or qr. When qr is used as optimization signal the
impedance controller and the "robot plant" are not included in the optimization framework.
The estimated MTUs parameters’ values are used to then test the offline training error when
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the framework included the impedance controller and the robot plant. In summary, three
different cases are shown in the figure:

• the framework is the one presented in Figure 4.1, and it included the impedance con-
troller and the robot plant. The framework architecture during training and evaluation
of the trained framework on the training data is the same, therefore the RMSE values
between q f and qtrain

f are the same during training and evaluation.

• the framework did not include the impedance controller and the robot plant in the
training, as well as in the evaluation phase. In this case, the RMSE error is computed
between qr and qtrain

f . The training and evaluation errors are the same.

• The framework did not include the impedance controller and the robot plant in the
training phase. The RMSE in the training phase is computed between qr and qtrain

f .
Then, the impedance controller and the "robot plant" are included in the framework
used for the evaluation. The new RMSE is computed between q f and qtrain

f .

The offline flexion-extension prediction, reported in the third plot of Figure 4.10, shows that
the stiffness K and damping D estimated from the MTUs cannot be used directly as gains in
the impedance controller. In fact, this leads to oscillatory behaviour and instabilities of the
robot’s plant, as it can be observed by comparing the predicted joint trajectories in the three
cases. This explains why in related works the stiffness estimated from the MTUs had to be
tuned to be used in the control law of the impedance controller implemented on the robot.
This solution allows stable control but does not support the key requirement of implementing
the MTUs’ dynamics on the robot.



Chapter 5

Experimental design

This chapter details the methodology needed to evaluate the proposed framework and compare
its performance to a baseline method. We designed two experimental protocols. The first
(Section 5.3.1) describes the protocol for the acquisition of myographic and kinematic
data relevant to wrist flexion-extension. The collected data are neeed to train the proposed
framework and the baseline. The second experimental protocol (Section 5.3.2) defines an
online control experiment where the subject is given real-time control of the (simulated)
robot plant and has to perform reaching tasks in the free space and in the presence of
unexpected perturbations that require adaptation of impedance to stabilize the interaction
with the environment and successfully complete the task. We investigate the controllability
provided by the proposed framework and compare it to that of the baseline. We thus aim to
answer the following research questions introduced in Chapter 1:

• Does the proposed framework provide the subject with increased controllability due to
the possibility to adapt the stiffness and the damping of the robotic system?

In Chapter 3 we have discussed the related work in prosthesis control and summarised
key characteristics of the most relevant related studies in Table3.1. There is however a lack
of consistency in the experimental evaluation of methods during online control. Specifically,
studies that perform an online evaluation, design highly controlled experiments that limit
the modulation of muscle co-activation, which would be the primary cause of performance
deterioration. Methods that enable simultaneous control of the position and stiffness of one
or two DoFs, if evaluated online, often do not design experiments that require adaptation of
impedance for the successful execution of the task [92, 202, 74]. Moreover, either the execu-
tion time and the success rate are often the only performance measures used to analyse the
results [92, 74], or only qualitative results or exemplary results are provided ([202, 110, 6]).
This limits the evaluation of the overall task performance and does not provide insight into
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the influence of stiffness adaptation on the execution of the entire task.

In Section 5.1, we describe the composition of participants who took part in the experi-
ments (Section 5.1.1), the experimental set-up (Section 5.1.2), and the baseline used to
compare the performance of the proposed framework (Section 5.1.3). In Section 5.2, we list
the hypotheses being evaluated regarding the online performance on the proposed framework
and the baseline. The experimental design and protocols of the offline tracking experiment
and the online target reaching experiment are detailed in Section 5.3. The optimization
method used to train the muscle-tendon units of the proposed framework and the baseline
is described in Section 5.4. Finally, the evaluation methods to assess the online control per-
formance of the framework and the baseline are discussed in Section 5.5. This includes the
description of performance measures for the evaluation of the task outcome (Section 5.5.1)
and for the evaluation of the impact of stiffness and damping modulation on the entire task
execution (Section 5.5.2); a survey to collect the user’s personal feedback on the perceived
controllability provided by the methods (Section 5.5.3); the term controllability and its use
in this thesis is clarified. The experimental results of the offline and online experiments are
discussed in the next chapter.

5.1 Participant selection and experimental setup

5.1.1 Human participants

Eight able-bodied, right-handed volunteers without neuromuscular disorders (five females,
three males, age: 27.87±3.64) and a transradial amputee (female, age: 65), took part in our
study approved by the University of Birmingham and the Imperial College London Research
Ethics Committees. All participants read and signed informed consent before participating in
the experiments and did not have prior experience in myocontrol. The following information
were collected about the amputee. Her condition (neurofibromatosis) led to the amputation
below the elbow of the left, not dominant, arm in 2016. The participant stated that because of
the amputation and disease she feels the remaining muscles of the forearm are constantly tight
and tense. This might make it harder for her to perceive differences in muscles’ co-activation.

The relatively small number of participants is due to the difficulty in finding participants
willing to make the desired time commitment, and due to the recruiting challenges imposed
by the COVID-19 pandemic. Moreover, we did not have the means to recruit amputee, since
our laboratory (Computer Science, University of Birmingham) could not facilitate the correct
conditions to recruit amputees and run experiments with this target population. The case
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Figure 5.1: A) Data acquisition: subject’s wrist motions are guided by a visual cue (black
circle), and the data acquisition protocol. B) Experimental setup for data collection of
myoelectric and kinematics data. The wrist position of able-bodied subjects is tracked using
two reference frames, defined by three retroreflective markers on the forearm and on the
hand, respectively. The wrist position is computed given the position of the hand frame with
respect to the forearm one. The frames are firstly aligned, then the angle between the two
red arrows defines the flexion-extension wrist angle. Positive angles imply that the subject is
performing wrist extension.
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study with an amputee included in this work was made possible thanks to the support of the
Bioengineering Laboratory of Imperial College London. In addition to the time commitment
for the experiments, travelling constraints did not allow us to run experiments with more
amputees.

For these reasons, we conducted experiments mainly with able-bodied volunteers and a
case study with a transradial amputee. While the results for a single amputee do not allow us
to draw any conclusion on how the framework might perform for the transradial amputee
target population, it provides initial promising results on the possibility of transferring the
framework’s methods and acquired knowledge from able-bodied subjects to amputees.

Overall, the composition of participants is in line with relevant work found in the literature
(e.g., [74, 202]), discussed in Section 3.2.3. While [29] and [157] evaluated their framework
with a single amputee and no able-bodied subjects, [92], [110], [157] did not test with any
amputees.

5.1.2 Experimental setup

During the experiments, each participant sat in front of a screen, with their arm along the
side of the body in a neutral resting position. The screen displays a Cartesian space with
axes representing the angular position of two DoFs at the wrist, ulnar-radial deviation and
flexion-extension, as shown in Figure 5.1-A. The participants wore a Myoband (eight sEMG
sensors, working frequency of 200 Hz, details in Section 2.3.2) to record the forearm’s
muscle activations E(t) as they performed wrist motions guided by the visual cues moving
along the axes of the Cartesian space. The myoband was positioned approximately 5 cm
below the elbow joint, as shown in Figure 5.1-B) and as detailed in Section 4.2.1. The
myoband positioning, guided by palpation and visual inspection the sEMG signals, aimed
to maximise the activity recorded from the Flexor Carpi Radialis and the Extensor Carpi
Ulnaris, and minimize the crosstalk from adjacent muscles. The same procedure was followed
for able-bodied subjects and for the amputee. However, for the amputee, an anatomical
correspondence of these muscles could not be expected due to the amputation. In this
case, the Myoband was positioned to identify the two most active areas of the forearm’s
muscles when the subject contracted the muscles while thinking about performing wrist
flexion-extension.

The wrist position of able-bodied subjects was tracked with a Qualisys motion capture
system [174], as shown in Figure 5.1-B, using two sets of 3 retroreflective markers on the
participants’ forearm and hand. The Qualsys API was used to define 2 reference frames
representing the forearm’s and the hand’s position in the space, respectively. The hand frame
is translated so that its origin matches the forearm’s frame origine. The rotation required
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to align the axes of hand frame to those of the forearm frame allowed to compute the wrist
flexion-extension qtrain

f . The raw sEMG signals are filtered as described in Section 2.3.2. All
experiments were run on a computer with an Intel i7-8809G, 3.10GHz CPU and a Radeon
RX Vega M GH graphic card.

5.1.3 Baseline

The baseline framework was built on a data-driven regression method developed in [109].
Specifically, in the study, an artificial neural network (NN) was used to learn a mapping
from sEMG signals to the reference kinematics. The newtwork is a two-layer perceptron
with 3 hidden neurons. The implementation of the method was available to us, avoiding
bias from implementation. The same training data was used to train our framework and the
baseline. The latter was trained to match the performance reported in the reference paper
[109]. In order to ensure accurate motion tracking and robustness to perturbation occurring
during online control, a high-stiffness PD controller was then used to track the joint position
qr predicted by the NN. This controller had constant high stiffness (KB = 100 [N/rad]) and
damping computed assuming a critically damped system (DB =

√
KB/4 [Ns/rad]) [116]. For

the baseline, q f was the output position when tracking qr with KB and DB. The choice of
a purely data-driven baseline was motivated by the fact that existing methods that include
MTUs do not directly use the stiffness (or damping) predicted by the muscle-tendon models;
the joint stiffness is instead tuned for stable position tracking during a separate calibration
phase, which is, in principle, equivalent to the use of a high-stiffness position controller in
cascade to the NN.

5.2 Hypotheses

We experimentally evaluated the following hypotheses regarding the online control per-
formance of the proposed framework (M) which includes muscle-tendon models and the
baseline (B):

(H1) M achieves comparable or higher performance than B in the absence of a perturbation
field, and outperforms B when the user has to interact with perturbations.

(H2) Regulation of joint stiffness and damping is an effective strategy to adapt to perturba-
tions.

(H3) The user’s perceived controllability is higher with M than with B, especially when the
user has to interact with external perturbations.
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The first hypothesis H1 refers to the first contribution of this thesis (Section 1.2) and evaluates
the overall performance provided by the control methods with respect to the task outcome.
Hypotheses H2 concerns the analysis of modulation variable stiffness and damping during
the task execution. Hypothesis H3 refers to both contributions. Note that the data acquisition
experiment aims to collect data needed to train the methods being evaluated. The offline
tracking performance is not evaluated as a hypothesis, but it is a requirement to then proceed
with the online testing of the control methods and evaluation of the hypotheses. Our choice of
focusing on the evaluation of the online control of the methods is motivated in Section 6.1.1.

5.3 Experimental protocol

For each participant, experiments were conducted in three sessions. In the first session, we
collected sEMG signals and kinematic data relevant to wrist motion to train our framework M
and the baseline B. The other two sessions involve the online testing of M and B on separate
days to avoid muscle fatigue and involuntary bias due to the order in which frameworks were
evaluated. In fact, suppose the user performs the tasks with M. At the end of the experiment
the user might have learned how to better execute the task or might have muscle fatigue. If B
is tested immediately after the results might be biased due to the aforementioned reasons.

5.3.1 Data collection

In this section, we detail the experimental protocol for acquisition of data to train the
proposed framework and the baseline. The experimental setup is that described in Section
5.1.2. As shown in Figure 5.1-A, the subject viewed on the screen a Cartesian space with
axes corresponding to wrist joint positions (in Degrees) of ulnar-radial deviation and flexion-
extension. The upper and lower limits for flexion-extension and ulnar-radial deviation were
set to anatomically feasible ranges, [-80,80] and [-40,40], respectively. For a single trial
for each DoF, a visual cue (black circle) moved along the axis from the origin to the DoF’s
upper limit, and then to the lower limit, to finally return to the origin of the axes. The subject
was instructed to move their wrist to proportionally match the cue’s position (i.e., as the cue
moves along the flexion axis the subject has to proportionally flex the wrist). A single trial
was run for each DoF to ensure the subject moved the wrist correctly. The subject is requested
to perform 15 repetitions of flexion-extension and 15 repetitions of ulnar-radial deviation
while modulating the impedance properties of their wrists as illustrated in Figure 5.1-A. For
each DoF, the first 5 repetitions are performed at low impedance (in Figure 5.1-A repetitions
color coded in white), meaning that the subject keeps the muscles as relaxed as possible;
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repetitions 5–10 are executed at maximum impedance (Figure 5.1-A, blue); repetitions 11
and 12 involve isometric contractions (Figure 5.1-A, pale blue), which means the subject
started with the wrist in the rest position, gradually increased the muscle co-contraction as the
visual cue moves from the origin, then released the co-contraction as the visual cue returned
to the origin. Finally, in the last three repetitions, the subject moves the wrist in a chosen
range, and increases and releases the impedance before changing the direction of motion
(Figure 5.1-A, yellow).

Notice that even when we activate a single DoF (e.g., ulnar-radial deviation), there is
some unintentional motion along the other DoF (i.e., flexion-extension). For this reason,
although we focus on controlling a single DoF (flexion-extension), we asked the subject
(during data collection) to perform repetitions of ulnar-radial deviation so that we could
observe the indirect flexion-extension motion and use this small amplitude motion in the
training and testing data.

During the experiment, data from 15 trials of each type of motion were collected (i.e., 30
trials total) for all the able-bodied subjects. The data gathered included sEMG signals and
wrist kinematic data (i.e., flexion-extension qtrain

f ). The experimental protocol was modified
as follows for the amputee: firstly, the amputee was not asked to perform ulnar-radial
deviations given how difficult it was for the participant to generate other two independent
muscle activations that could be used as control signals; secondly, qtrain

f was the trajectory
of the visual cue the participant has to follow during the training experiment as done in
previous studies [109]. The lack of data regarding ulnar-radial deviation, despite providing
less information compared to the able-bodied subjects, did not substantially affect the training
and subsequent online testing of the methods since the latter is focused on flexion-extension
only. The experiment takes less than 15 minutes. While the number and type (i.e., level
of impedance) of repetitions are defined to avoid muscle tiredness, and the subject was
encouraged to take breaks as needed to avoid muscle fatigue. Details on the optimization
method to train the proposed framework and the baseline are provided in Section 5.3.1.

5.3.2 Online reaching task experiment

This experiment had the two following objectives which guided the experimental design:

• Investigate the controllability provided by M and B when the subject performs a task
that requires impedance modulation of the robot’s joint;

• Investigate if the proposed framework provides higher controllability than the baseline,
due to the possibility to adapt the robot’s joint stiffness and damping.
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Figure 5.2: Reaching task experimental protocol. In block 1 the subject has visual feedback
about the robot plant’s joint position q f (green circle); in block 2 the subject has to reach
a target Ti (pink circle), hence move the green circle in the pink target and maintain the
position for 3 seconds; in block 3 the reaching task is performed in the presence of a uniform
repellent force field τext .
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The term controllability and its definition within this work is discussed in Section 5.5.3.
In this work, controllability is quantified through the performance measures described in
Section 5.5, which evaluate different aspects of the online control performance. In each
trial of online testing, a participant had visual feedback of their predicted wrist position q f

represented on the Cartesian space as a green circle (Figure 5.2) and could voluntarily control
the circle by performing wrist flexion-extension. The task required the subject to control the
green circle to reach a target position Ti (purple circle) as accurately and quickly as possible.
Once at the target, the subject had to maintain the position for three seconds. Every time
the subject entered the target circle but could not maintain the position (i.e., the green circle
intersected the target circle) the 3-second dwelling time is reset. The radius of the circle
representing q f and the target Ti were eight and six density-independent pixels respectively,
requiring precise control. The experimental trials for each subject were divided into three
blocks illustrated in Figure 5.2:

• Block 1: familiarisation with the control interface and mapping of muscles contraction
to corresponding displacements of the cursor; notice that no targets and external
perturbations are included in this phase.

• Block 2: reaching tasks in the free space (4 targets x 10 reps);

• Block 3: reaching tasks in the presence of a perturbation field τext that pushed q f away
from the target (4 targets x 10 reps);

At the beginning of each session, the subject was told that different motor control strategies
could be explored (e.g., relaxed movement or changing muscle co-activation), but the subject
had no prior knowledge of the method (M or B) being tested. The subject was told that some
force would perturb q f , but no information about the force field such as the type, magnitude,
and location, was provided. The force field was activated when the distance from the centres
of the cursor q f and the target Ti was within 15 [deg] (variable d in Figure 5.2). The magnitude
of the force field was defined as a percentage of the maximum torque τmax

f generated by the
subject during training for M by considering the maximum stiffness generated at 45 [deg];
its average, across all participants, was ≈ 20Nm. Below, we discuss specific aspects of the
experimental design.

User interface for experiments

The implementation of the interface provided to the user builds on the software developed
in the Bioengineering Laboratory of Imperial College London. The two-dimensional repre-
sentation of the wrist position has been extensively tested by the group and extensively used
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in literature (e.g., previously for the baseline in [109]), proving to provide intuitive visual
feedback to the user. However, considering that the visual feedback about the predicted wrist
position substantially differs from the three-dimensional control and visual feedback of the
biological wrist, we gave the subjects time to familiarise themselves with the controller and
with the mapping from the biological wrist action space to the two-dimensional space of the
interface. In this way, we attempt to minimize factors that could affect the task execution
in initial trials to allow a fair comparison of the controllers’ performances. Notice block
one takes approximately 1 minute and has the aim of letting the subject familiarise with the
interface and controllers, not with the tasks of reaching the targets.

Visual feedback

While we provide visual feedback on the real-time position of the robot’s joint, visual
feedback on the stiffness was considered during the design of the experiment and of the
interface presented to the user. This could have been done by designing the cursor as an
ellipse with axis length along the flexion-extension direction function of the normalised user
stiffness. However, the variable shape of the cursors would have interfered with the task
requirements (i.e., match the target circle and maintain the position). We did not investigate
another way of providing visual feedback on impedance, but we designed a task (i.e., reaching
target positions in the presence of perturbations with constraints on posture maintenance
and motion precision) where the subject could benefit from impedance adaptation to achieve
better performance. Impedance adaptation is therefore task-driven, implicit in the user control
strategy, and the practical effectiveness of modulating impedance depends on the control
method being used. Moreover, joint stiffness and damping are interdependent and affected
by the joint position, and history of muscles’ activation. This makes the design of stiffness
and damping targets difficult and possibly infeasible for the subject.

Magnitude of force field

The magnitude of the perturbation had to be high enough to perturb q f so that the subject
could visually perceive a mismatch between q f and their motor intent. However, due to the
number of repetitions, the magnitude of the perturbation was kept relatively low to avoid
excessive muscle co-contraction and tiredness. While the baseline does not enable explicit
modulation of stiffness and damping, specific consideration have to be made regarding
the design of the force field magnitude in relation to the maximum torque, stiffness and
damping enabled by the proposed framework. When controlling the robot with the proposed
framework, the impact of an external perturbation on the robot’s plant depends on the muscle-
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tendon model (trained specifically for each subject) and on the subject’s level of muscles’
co-activation (i.e., the impedance of the robot’s plant). To allow comparison of performance
across subjects, the perturbation magnitude needs to be subject-specific and was determined
as a percentage of the maximum torque τmax

f , obtained considering the maximum stiffness
(i.e., maximum co-contraction) that could be generated by the subject during the training
phase at 45 [deg]. The contribution of damping was not considered because of its high
dependence on joint velocity which could lead to an overestimation of τmax

f . The impact of
different force field magnitudes (i.e., percentages of τmax

f ) was investigated in preliminary
experiments, concluding that 10% of the computed maximum torque (i) was adequate to
provide visual feedback perceived by the subject as perturbation of q f and to trigger the
need of increasing the activation of muscles to counter the force field; (ii) did not generate
excessive muscle tiredness; (iii) was suitable for the baseline, in relation to the proportional
and derivative gains of the high-stiffness PD controller.

5.4 Offline training method

For each subject, we trained M and B using the data acquired in the training phase. For
the amputee, the reference trajectory of the wrist flexion-extension qtrain

f needed to train M
and B was the trajectory of the visual cue in the training phase, that guided the participant’s
muscles contractions. Moreover, the data of each trial were visually inspected to make sure
the sEMGs and the trajectory were coherent, and the subject did not execute unintentionally
the wrong motion. The kinematic data were aligned to the sEMG data by to maximize the
correlation between the normalised trajectory and the normalised difference between the
sEMG signals corresponding to flexion-extension. This proved to be robust since the peaks
in the joint kinematic trajectory matched the peaks in the sEMG signals. A 60-40 split of
the collected data (EMG signals and corresponding wrist reference kinematics) was used for
training and validating the muscle models, with optimization based on Simulated Annealing
(500 iterations, 5000 function evaluations, initial value of temperature 300, annealing interval
50) [204] since the cost function has discontinuous derivatives. A summary of the working
principle of Simulated annealing is provided in Appendix A. The baseline was trained using
the same training and testing dataset.

Next, we describe the performance measures used to evaluate the results of the online
experiment.
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5.5 Online tasks evaluation method

The evaluation of the online testing experiment provided by M and B is analysed in three
steps. First, we discuss the performance measures by which we evaluate the task outcome
for M and B; we then analyse the task execution and the time evolution of the robot’s
state q f for both M and B. Finally, we ask the participants to complete a survey on the
perceived controllability provided by M and B, considering the performance of the methods
in the absence and presence of external perturbations. The one-tailed Mann–Whitney U test
[142] was used to measure the statistical significance (p-values < 0.05) of the difference in
performance provided by M and B. The analysis is performed across able-bodied participants,
and across the trials performed by the amputee. A comparative discussion between the
amputee and able-bodied performance is provided in the next chapter.

5.5.1 Task outcome performance measures

The design of the reaching target tasks during online control is common in the literature
and is based on Fitt’s study [67] on human motor performance. Fitt’s study, based on
Shannon work’s in Communication Theory [193], demonstrated that any motor task conveys
a finite amount of information limited by the capacity of the system to perform the task
rapidly and accurately. These measures have been extensively used to assess prostheses’
control performance for purely data-driven methods [212]. In this thesis, we selected six
performance measures to evaluate the performance of the reaching task for four targets
Ti = (Tix,Tiy) expressed in ulnar-radial and flexion-extension coordinate:

• Success Rate (SR) [%]: proportion of successful trials, with a trial considered success-
ful if the subject reached the target within 30 seconds and held the position for three
seconds;

• Time to Reach (TR) [sec]: time to complete the trial, with 30 seconds as the maximum
allowed completion time;

• Throughput (TP) = ID
T R ) [bit/sec]: TP measures the ability to deliver information during

TR through the control method being evaluated, considering the task difficulty. It is
computed based on Fitt’s extension of Shannon’s law, as the ratio between the index of
difficulty (ID) and TR, where ID = log2(

A
W +1) [bit] takes into account the difficulty

associated with targets of specific radius and distance from the origin. To obtain the
ID for each target, considering the matrix of the targets Targets = [T1, ...,T4]

T , A is a
vector containing the sum of the absolute values of the normalised coordinate of the
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targets, A =
∣∣∣ Targets:,1

max(Targets:,1)

∣∣∣+ ∣∣∣ Targets:,2
max(Targets:,2)

∣∣∣. W is the radius (8 density-independent
pixels) normalised by the largest target angle found in Targets. The larger ID, the
larger the difficulty associated with the task. The value of TP ranges from −∞ (if CT
is ∞) to +∞ (if CT is zero). In this experiment, as shown in Figure 5.2 the targets
are along the flexion-extension axis, and the targets closer to the origin have an equal
index of difficulty, which is lower with respect to the ID of the two targets at 45 and
-45 [deg], respectively.

• Path Efficiency (PE = 100∗ optimal path
actual path ) [%]: the ratio between the length of the optimal

path to the target (i.e., Euclidean distance) and the length of the trajectory executed by
the subject in Cartesian coordinates. This measure does not depend on the path length.

• Energy (E) [J]: the power used by the system for rotational motion during the time
interval t f − ti. It is defined as E =

∫ t f
ti τ f (t)q̇ f dt, the time integral over the trial

duration (t f − ti); this measure is affected by the values of the controller gains. In
particular, since B has high fixed gains it is expected to observe higher values of energy
for B with respect to M.

• Near Miss (NM) [#]: number of times the subject entered the target circle but did not
maintain the position for three seconds, intersecting the target circle with the green
circle of q f . The measure is indicative of the subject’s ability to accurately control the
cursor.

All these measures are affected by the distance to the target, which may impact the difficulty
of the task. The performance measures are thus weighted by the index of difficulty (ID) to
allow comparison across reaching tasks with different targets.

5.5.2 Task execution measures

The performance measures discussed above provide an indirect evaluation of the impact
of joint stiffness and damping modulation. Especially during reaching tasks performed in
the presence of the perturbations, the time taken to smooth out the oscillations imposed
by the perturbation and reach the target affects the performance measures. Since stiffness
and damping modulation can be used by the subject as an effective strategy to shorten this
stabilization time, impedance modulation has an impact on the values of the performance
measures. To provide insight into the impact of impedance modulation in relation to the
execution of the entire task, we expand the performance evaluation by considering the other
two following measures:
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Movement smoothness

Impedance adaptation of the limb and incremental learning of the task allow humans to
learn how to perform a task more smoothly [14]. The smoothness of a motion is defined by
considering the presence of sudden acceleration and deceleration which intuitively affect the
continuity of the movement. Smoothness can thus be used to analyse the subject learning
when using a new controller. We computed the smoothness of q f using the SPectral ARC
length (SPARC) measure [14]. Among the measures of smoothness proposed in literature to
evaluate smoothness SPARC is chosen since it is independent of the duration and amplitude
of the movement. SPARC formulation is based on the concept that a smoother movement
is composed of a lower amount of high-frequency components. Based on the assumption
that the Fourier spectrum of a smooth time domain signal tends to be smooth, SPARC uses
the Fourier magnitude spectrum of the speed profile to quantify the smoothness of a time
domain trajectory. Further details on the SPARC measure are provided in Appendix B.2. The
measure ranges from −∞ to zero. The closer the value to zero the smoother the trajectory
being evaluated. A higher value is obtained if the subject successfully counters the external
perturbations.

Mutual information

Mutual information (MI) quantifies the amount of information that a random variable contains
about another random variable (see Appendix B.1). This concept can also be interpreted as
the reduction in the amount of uncertainty about a random variable, given by the information
provided by another random variable. MI value varies from zero to infinity, and it is equal to
zero if and only if the two variables are strictly independent. MI has been successfully applied
to dynamic systems analysis to quantify the predictability (i.e., reduction in uncertainty)
of an object’s dynamics given its motion (e.g. [15]). In this thesis we consider the mutual
information between τ f and qr to quantify the predictability of qr given τ f ; Since qr is
the unperturbed reference trajectory and τ f is the torque that results in q f , we expect MI
to increase when qr matches q f (i.e., when the subject quickly counters the perturbation).
Additionally, we computed the conditional MI (See Appendix B.1) between qr and q f given
K and D respectively, to provide insights into the contribution of stiffness and damping to the
reduction in position error qr−q f provided by the controller. In this thesis, the computation
of the MI is based on the non-parametric method detailed in [225].
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5.5.3 Definition of the term controllability within this work

In control system theory, the term controllability refers to the ability to move a system
from any given state to any desired state. There are various definitions of conditions for
controllability depending on the dynamic system being evaluated. Moreover, any proof of
controllability is highly dependent on the hardware being used and assessment of controlla-
bility is particularly important when deploying a control method on the hardware. Therefore,
in this thesis, the term controllability differs from the meaning seen in classical control theory.
Rather, we define controllability as the overall online control performance, quantified using
the performance measures defined in Section 5.5.1 and Section 5.5.2.

5.5.4 Survey of user’s perception of controllability

The controllability provided by a control method determines the subject’s perception of the
effectiveness, intuitiveness and robustness of the method being evaluated. We, therefore,
decided to explore the user’s perceived controllability provided by M and B to determine if
the proposed method allows the subject to counter perturbation in a more intuitive and natural
way and if the subject considered modulation of impedance co-contraction as a strategy to
accomplish the task. The participants were asked to answer the following six questions about
M and B at the end of each experimental session:

1. Q1) How is the match between your motor intent and the cursor motion?

2. Q2) Did the system execute your motion command in a timely way?

3. Q3) Was the control precise? Did the cursor oscillate around the desired position?

4. Q4) Can you describe the force field?

5. Q5) What was your strategy to counter perturbations?

6. Q6) Did impedance modulation (muscle co-contraction) help to counter perturbations?

Users had to choose from one of three options (mostly good, good with some instances of low
controllability, and poor) for the first three questions; the other questions allowed free-form
answers.





Chapter 6

Experimental results

In this chapter, we discuss key results of the offline training and testing of the proposed
method (M) and the baseline (B). We then discuss in detail the results of the online control
experiments based on the experimental evaluation described in the previous chapter. All
participants (eight able-bodied subjects and the transradial amputee, Section 5.1.1) completed
the data acquisition experiment and subsequently took part in the online reaching task
experiment. Finally, all subjects completed the survey investigating their feedback on the
online control performance provided by M and B. The data acquisition and online testing
of the methods took about two hours, spread over two days, for each able-bodied person;
≈ 30 minutes for initial preparation and data collection, and ≈ 90 minutes for online testing
with our framework and the baseline. This process took ≈ 6 hours for the amputee because
multiple mental and physical factors make it harder for them to learn to express intent. The
time commitment requirement, the availability of amputees, and the COVID-19 pandemic
strongly influenced the size and composition of the study group.

The offline tracking results are presented in Section 6.1. We discuss quantitative results
of the offline evaluation of M and B across able-bodied subjects and for the amputee.
Additionally, we present an example of offline evaluation of M and B, and we provide a
comparative discussion on the tracking performance achieved by the two methods. Finally,
we discuss studies in literature that reported discrepancies between the offline and online
control performance of methods for prosthesis control. We thus justify our focus on the online
evaluation of the methods. The online control results are described in Section 6.2. We present
quantitative results in support of the hypotheses listed in Section 5.2 using the performance
measures described in the previous chapter to evaluate the outcome of the reaching tasks
as well as the entire task execution. We provide an in-depth discussion on the control
strategies used by the subjects and investigated whether impedance adaptation contributed to
the observed control performance. Finally, in Section 6.3, we describe exemplary data from
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trials performed by an able-bodied participant and by the amputee, providing insight into the
entire task execution.

Figure 6.1: A) Trajectory tracking during offline evaluation of the proposed framework. B)
Trajectory tracking during offline evaluation of the baseline. The black dotted line is the
ground truth position (qtrain

f ) of the flexion-extension DoF. The joint position trajectory (q f )
is obtained in each plot by evaluating the corresponding framework on the entire dataset.

6.1 Offline tracking experimental results

The proposed framework and the baseline are trained as explained in Section 5.3.1. Recall
that the proposed framework includes a pair of muscle-tendon models to actuate a single DoF.
Only two sEMG signals are used and input to the framework. The baseline, on the other hand,
uses a neural network to directly map the eight sEMG signals recorded by the Myoband
to the desired joint trajectory. The estimated joint trajectory is then tracked by a fixed
gains high-stiffness controller. For able-bodied subjects, the average values of the estimated
muscle-tendon models’ parameters are reported in Table C.1, and those for the amputee are
reported in Table C.2 of Appendix C. Moreover, in the same appendix we provide an example
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of the force-length-velocity relationship for the elements of a trained muscle-tendon model.
Considering the able-bodied subjects’ results, the average root mean square error (RMSE)
between the predicted and reference joint position for M and B obtained during offline testing
is RMSEM = 0.2291± 0.0457 and RMSEB = 0.1763± 0.0435, respectively. The baseline
achieved higher prediction accuracy than the proposed framework. In Figure 6.1, we provide
an example of trajectory tracking results for an able-bodied subject. For completeness, the
trained framework and baseline are evaluated on the entire dataset, with the results shown in
Figure 6.1-A and Figure 6.1-B, respectively. In these figures, the black dotted line represents
the ground truth trajectory of flexion-extension DoF, while the green line is the flexion-
extension trajectory predicted by the methods. We observe that the baseline achieves a lower
tracking error (RMSE), but it overestimates the repetitions performed at high impedance,
e.g., between 80-150 secs. This may due to the nature of the algorithm, which does not
explicitly learn the joint impedance and may provide a less accurate prediction of kinematics
in repetitions where the subject substantially modulate the muscle co-activation. The lower
magnitude repetitions of joint flexion-extension predicted after the time instant t = 275 [ms],
correspond to the indirect flexion-extension motions occurring when the participant performs
ulnar and radial deviations. Due to the kinematic and dynamic coupling between the DoF
of the wrist (Section 2.5.1), we observe some indirect activation of the flexion-extension
DoF during this time interval because flexion-extension and ulnar-radial deviation cannot be
completely decoupled. These indirect flexion-extension motions are overestimated by the
proposed framework, potentially because M trains muscle models driven by specific sEMG
activations, whereas B jointly considers all eight sEMG signals as inputs. In Section 4.2.1
we discussed the implication of choosing sEMG signals recorded by specific sEMG channels
and justify our choice. We discuss in the next chapter possible limitations related to this
choice. However, it can be observed that B provides a more noisy estimate than M; the
baseline substantially overestimates the position trajectory in certain repetitions where the
subject performs wrist motion at higher impedance (e.g., t = [90−125]).

For the amputee, the tracking errors are RMSEM = 0.4014 and RMSEM = 0.5817, re-
spectively. The substantially higher RMSE values compared to the one obtained for the
amputees is mainly due to the impossibility of recording the biological wrist traject and
the use of an engineered trajectory. As discussed in the previous chapter, the reference
flexion-extension position for the amputee is the trajectory of the visual cue displayed on
the screen to guide the subject’s muscles’ contractions during the data acquisition section.
As a result, the muscle activity of the subject is not always accurately synchronised to the
reference trajectory, making the training of the models harder. To mitigate this problem the
peaks of the reference trajectory were aligned at best to the signal obtained as the difference
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between the sEMG signals of Ch1 and Ch2. More details on the offline evaluation for the
amputee are reported in Appendix C for the interested reader. Below, we explain why this
thesis focuses on the online control evaluation, and why the offline tracking results may not
be good indicators of the online control performance of the evaluated methods.

6.1.1 Trade-off between offline tracking accuracy and online controlla-
bility

The online control task of reaching a target is goal-driven and belongs to the activity domain
[91]. Therefore, the evaluation methods used to analyse the data collected during this
experiment, discussed in detail in Section 5.5, include performance measures which evaluate
the task’s outcome and also the overall controllability provided to the subject. Controllability
is prioritised over prediction accuracy (i.e., the total error between the predicted joint position
q f and human biological wrist flexion-extension). This is motivated by experimental results
showing that high offline prediction accuracy does not necessarily imply high controllability
during online control and execution of goal-oriented tasks [160, 109]. In [109], the online
performance of three purely data-driven methods (i.e., linear regression, non-negative matrix
factorization and neural network. The latter is the baseline considered in this work) with
substantially different offline prediction accuracy proved to be similar during online testing.
We think the discrepancy between offline and online performance might be due to the
following reasons. Firstly, the sEMG data collected to train the models do not contain
features typical of online control when the subjects continuously interact with the prosthesis
and the environment and adapt their muscles’ contraction based on visual feedback of the
prosthesis’ state. In fact, during data collection experiments the subject is asked to perform
motions at a constant speed, while during online control the subject has visual feedback of
the state of the prosthesis and continuously modifies the muscle contraction to achieve the
task. As a result, the training data sets do not contain the fast-changing features of sEMG
signals typical of online adaptation and thus lack of sufficient information to properly train
the control methods. This problem affects all categories of methods, including process-driven
ones. Secondly, purely data-driven methods learn a direct mapping from sEMG signals to
kinematics and might therefore fail to distinguish between the changes in muscles’ activation
associated with the joint motion, and those contributing to joint impedance adaptation. This
second reason is not considered in the referenced study, since the conducted experiments
do not involve modulation of muscle contraction to regulate the limb impedance. From the
result presented in [160, 109], it is therefore difficult to understand whether an experimental
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Figure 6.2: Values of performance measures for the able-bodied subjects (red) and the
amputee (blue) for the proposed framework (M) and the baseline (B) in the presence (MON ,
BON) and absence (MOFF , BOFF ) of perturbations. Each red group contains the average
performance of the eight subjects (averaged over 40 trials); each blue group contains the
40 trials for the amputee. A statistically significant improvement of the median, computed
between MOFF -BOFF and MON-BON , is highlighted with an asterisk.

protocol that includes repetition of motions at different level of muscles’ activation, would
reduce the discrepancy between offline tracking accuracy and online control performance.

However, in this thesis, due to the aforementioned reasons, the online control performance
is prioritised over the offline prediction accuracy. Moreover, our data acquisition protocol
includes a variety of flexion-extension motions performed at different speeds, and at different
levels of muscle co-activation to attempt to include fast-changing sEMG features typically
observed during online control.
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6.2 Online control experimental results

Below, we describe key results of the experimental evaluation of the online control experi-
ments described in the previous chapter. We discuss the results of able-bodied participants
and of the amputee separately, due to the difference in the number of participants from the
two target populations. This section is concluded with a comparative analysis of the results
obtained for the able-bodied participants and the amputee.

6.2.1 Able-bodied participants

Figure 6.2 includes the results in support of our hypotheses on the online control performance
provided by M and B (Section 5.2). The average performance across the eight able-bodied
participants is shown in red for the proposed framework (Figure 6.2, MOFF MON) and for the
baseline (Figure 6.2, BOFF BON). For each performance measure, each box plot represents
the distributions of the average across-trials values of the performance measure for the eight
participants (i.e., distribution defined by eight points). The performance of each subject is
therefore averaged over the 40 trials for that participant to avoid bias or dependence between
individual trials of a participant. In Figure 6.2, instances of M providing a statistically
significant improvement over B are shown with a red asterisk at the top of the plot for the
corresponding measure.

Results in support of hypothesis H1

Firstly, we test if our findings support H1. Unlike B, M consistently enabled successful
task completion with or without perturbation: the success rate SR was 95% and 82.19% for
M and B (respectively) without perturbation, and 93.75% and 76.87% with perturbation.
Considering the values of performance measures reported in Figure 6.2, while M and B
provided comparable values for the time to reach the target TR and the throughput TP in
the absence of perturbations, M provides a significant improvement in TP when reaching
tasks are performed in the presence of perturbations. Additionally, M provides a significantly
higher path efficiency (PE) than B with and without perturbations; these results are in
accordance with the much lower number of near misses (NM) of M than B with or without
perturbations. Even the energy (E) used by M is significantly lower than that used by B, with
or without perturbations, as hypothesised. B was expected to provide higher values for E
since the baseline uses a fix-gains high stiffness controller, while the proposed framework
allows to modulated the controller gains according to the human intended joint stiffness and
damping. However, it should be considered that the high stiffness controller should support a
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more consistent rejection of the imposed perturbations, while the response of the proposed
framework to perturbation depends on the estimates of the subject joint impedance, which
may be low if the perturbation is not expected. Overall, these results support H1 and show
that M outperforms B in terms of task outcome when the subject performed reaching tasks in
free space and in the presence of external perturbations.

Results in support of hypothesis H2

Below, we test if our findings support H2. We evaluated whether online modulation of
joint stiffness and damping, compared to the fixed gains of the baseline, could be used as a
strategy to improve the task execution in terms of smoothness of the motion and to counter
the perturbations imposed by the force field. The value of SPARC reported in Figure 6.2
was significantly better with M than with B, with or without perturbations. This implies
that participants were better able to smooth out the oscillations imposed by perturbations
when using M. Notice that the smoothness decreased (as expected) for both M and B when
perturbations were included since the force field affects the robot’s plant state used to
compute the SPARC measure. One explanation for the variance in SPARC when using
M (with perturbations) is that the perturbation initially had an impact if the subject was
operating with low impedance, but the subject then appropriately adjusted the gains. When
using B, on the other hand, gains remained at a fixed high value, which enabled the rejection
of perturbations and accurate tracking. However, for the baseline, the high-stiffness PD
controller also attempted to track inaccurate estimates of the intended joint position provided
by the regression algorithm of the baseline (see Section6.3 for exemplary results of this
issue).

We further investigate the contribution of the joint stiffness and damping to the torque τ f

and observed that M provided a significantly higher MI between τ f and qr compared with
B, with or without perturbation. These results, especially those obtained in the presence
of external perturbation, may imply that the subjects were able to use modulation of joint
stiffness and damping to smooth the oscillations imposed by the force field and stabilise
the system to achieve the task. There was no significant difference in MI(qr,q f ,K) and
MI(qr,q f ,D) with or without perturbations. This result may be due to different factors
affecting the validity of the measures. While we expected to observe a correlation between
the reduction in the discrepancy between q f and qr, it may not be possible to correlate
changes in trajectory discrepancy and individual changes in stiffness and damping, as the
relative contribution of stiffness and damping may vary from trial to trial and according to
the subject’s strategy. As discussed later considering the results from the collection of the
participant’s feedback, different strategies were used by the subjects, including increasing
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Figure 6.3: A) Able-bodied volunteers’ responses to Q1–3 of the questionnaire, completed
at the end of the session with or without external perturbations. Possible answers were A1
(good), A2 (good, but some instances for lower performance), and A3 (poor, with many
instances of poor performance). Each category shows the fraction of subjects who provided
a certain answer. B) Amputee’s responses to Q1-Q3; the participant was requested to answer
questions after every 10 trials, i.e., four times per session.

the wrist impedance as the perturbation displaced the (simulated) robot plant or maintaining
high impedance since the beginning of the trial to reduce the impact of the perturbations.
Moreover, since participants did not have prior knowledge of M or B, some outliers could
have been due to the subject taking some time to determine how to successfully reach the
target. Overall, these results strongly support H1 and H2.

Results in support of hypothesis H3

Finally, we investigated the perceived controllability of M and B (H3) among able-bodied
subjects to determine if M is rated higher than B in terms of perceived controllability. Answers
to questions Q1–3 of the survey, detailed in Section 5.5.4, are summarized in Figure 6.3-A.
The subjects could provide three answers (A1–3) to indicate whether the methods completely
satisfied some aspects of the control, or there were instances of low controllability or the
methods provided low controllability. Subjects indicated that M provided a better match
between motor intent and cursor motion (Q1), resulting in more timely execution (Q2) of
motor commands, and more precise control (Q3) than B; results were more pronounced with
perturbations, where two subjects reported that B provided low controllability.

To further investigate the subject’s perception of controllability provided by the methods,
we asked the participants to describe the characteristics of the perturbations based on the
interactions observed during the experimental trials (Q4). Interestingly, the subjects had
more correct and consistent perception and description of the force field when using M. Six
out of eight subjects (proportion) gave a correct description of the perturbation field when
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using M while two subjects were unsure and did not know how to describe the force field;
with B, five out of eight subjects could not correctly describe the location of the force field
and the others were unsure. More detailed answers are provided below. According to Subject
1, the perturbation field had a higher magnitude when using B, and it required more effort
to complete the task. Subject 2 said the perturbation field was located on the positive axis
(extension) when using B, while the subject stated that a repellent perturbation field was
localised around the target when testing with M. Subject 3 is not sure how to describe the
force field when using B, while when using M the subject states that there might be a force
pulling towards the origin when approaching the target. Subject 5 felt the force field was
stronger around the target, and in general weaker around the targets further away when using
B. The magnitude and direction of motion felt randomised. When using M, the subject stated
that the force field was localised around the target, it seemed almost uniform and pulling
away from the target. Subjects 4–7 stated that there was a repellent force field in both cases.
Subject 8 is not sure on how to describe the force field, in both cases, when using M and B
the subject states it might be a parabolic force field around the target. From these answers, we
conclude that M provides the user with a better way of discriminating the undesired effects
related to the action of the perturbation and those due to inherent limitations of the methods.

For Q5, all the subjects had the same control strategy with B: maintain low muscle
co-contraction and move the wrist until the joint limit is reached. Notice that this strategy
avoids higher muscle co-activation. With M, two subjects did not significantly increase
muscle co-contraction, but the other six adapted joint impedance to counter perturbations.
Among the six subjects, 5 said they would reach the target and then increase the muscles’
co-contraction to maintain the position, and one subject increased the co-contraction from
the start of the trial to immediately reject perturbations. These different strategies are likely
to affect the values of some of the performance measures.

For Q6, all subjects agreed impedance modulation did not improve performance with
B; two subjects stated that it resulted in the worst perceived controllability and the cursor
would suddenly jump to a different joint position. With M, on the other hand, six out of eight
subjects indicated that impedance adaptation helped counter perturbations; two subjects were
unsure. These results support H3 and correspond to the quantitative results described above
(for H1 and H2).

6.2.2 Amputee participant

The distribution of the performance measures over the 40 trials per session, in the presence
and absence of perurbations, is reported in Figure 6.2-A in blue, next to the distribution
of performance across able-bodied subjects. While the two target populations are different
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in size, we provide a comparative discussion considering the amputee’s performance with
respect to that of the able-bodied subjects. For the amputee, we observed that M provided a
higher proportion of successful trials than B, with or without perturbation: 87.50% and 65%
for M and B without perturbations, and 80% and 55% with perturbations. While there was an
overall decrease in throughput (TP) for the amputee compared with the able-bodied subjects,
M provided a significantly higher TP compared with B, with or without perturbations. Also,
while there was no significant difference in the time to reach the target (TR) for the able-
bodied participants, for the amputee M provided a significantly shorter TR than B with
perturbations. M also provided a significantly higher path efficiency (PE) than B, with or
without perturbations. Notably, PE was comparable to or higher than with able-bodied
participants. We observed no significant difference in Energy between M and B, whereas
NM was significantly higher with B than with M in the presence of perturbations. These
observations support H1. In the context of H2, we observed that SPARC and MI between
τ f and qr were significantly better with M than with B, with or without perturbation. There
was no significant difference in MI(qr,q f ,K) and MI(qr,q f ,D) for M compared with B, with
or without perturbations, as observed for the able-bodied participants. Overall, these results
support H1 and H2.

Finally, Figure 6.2-C summarizes the amputee’s responses to questions Q1–3 of the
survey (Section 5.5.4). We asked the subject to answer questions four times per session (i.e.,
after every 10 targets) in an attempt to obtain more reliable answers considering that the
participant had to take longer breaks. Similar to the responses from able-bodied participants,
the amputee indicated that M provided better controllability than B, and correctly described
the force field (Q4) with M. The participant stated that the flexion motion felt more difficult
than the extension motion, especially when reaching the targets further away. For Q5, the
amputee’s control strategy when using B changed from tensing up the muscles to trying
to minimally co-activate the muscles “or the cursor would jump too far” (see next section
and Figure 6.10); this was an example of the baseline incorrectly assigning an increase in
activation to a change in position. When using M, the amputee focused on co-contracting
the muscles of the forearm when needed. For Q6, the subject was unsure if impedance
modulation by muscle co-activation improved the performance with B since the cursor would
sometimes oscillate unexpectedly. However, when using M, the amputee indicated three
times out of four that stiffening the muscles helped counter the perturbations, and mentioned
that it only once led to some overshoot. Overall, these results support H3 and match the
results reported for H1 and H2. This personal feedback is particularly interesting considering
the subject’s condition, and her statement regarding the difficulties in perceiving the level of
contraction of her muscle.
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Figure 6.4: Proposed framework. Example of a successful trial. We plot the time evolution of
the most relevant MTU variables and controller/robot variables while an able-bodied subject
performs a reaching task in the presence of a perturbation field. The system stabilises in less
than two seconds.
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Figure 6.5: Proposed framework. Example of failed trial. We plot the time evolution of the
most relevant MTU variables and controller/robot variables while an able-bodied subject
performs a reaching task in the presence of a perturbation field.
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6.3 Time evolution of controllers’ state variables during
online trials

In this section, we provide insight into the entire execution of the online reaching task. We
consider exemplary trials from an able-bodied subject and the amputee, and we show the
time evolution of key state variables of the evaluated methods. An example of successful
(Figure 6.4) and failed (Figure 6.5) trial is reported for an able-bodied participant when using
the proposed framework. Two examples of successful trials (Figure 6.7, Figure 6.8) and one
of a filed trial (Figure 6.6) are reported for the same able-bodied subject using the baseline.
We then show an example of successful trial for the amputee when using M (Figure 6.9) and
when using B (Figure 6.10).

6.3.1 Able-bodied participant

Firstly, we describe trials performed with the proposed framework and then trials obtained
with the baseline.

Proposed framework

We show two illustrative examples of reaching tasks executed by an able-bodied subject in
the presence of a perturbation field. In the first example in Figure 6.4, the subject successfully
reached the target, whereas in the second example in Figure 6.5 the subject failed to reach
the target. In each of these two figures, we plot:

A normalised input to the MTUs (ch1,ch2) representative of the activity of the flexor and
extensor muscles.

B joint position qr (dotted green line) output by forward dynamics and q f (continuous
green line) output by the impedance controller, as the subject attempts to move q f from
the initial position (black dotted line) to the target position (continuous black line).

C forces generated by the elements of MTU1.

D forces generated by the elements of MTU2.

E stiffness of muscle1 (KM
1 ) and muscle2 (KM

2 ), and the stiffness of tendon1 (KT
1 ) and

tendon2 (KT
2 ).

F damping of muscle1 (KM
1 ) and muscle2 (KM

2 ), and the damping of tendon1 (KT
1 ) and

tendon2 (KT
2 ).
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G stiffness of the MTUs in the joint space (black signal), where the red signal is the
stiffness contribution of the contraction dynamics of MTUs, and the blue signal is the
stiffness contribution of the moment arms as a function of qr(t).

H the damping of the MTUs in the joint space.

I the torque command provided by the impedance controller τ f and the perturbation
torque τext due to the force field.

In the first example, the subject receives visual feedback on the effect of the perturbation and
modifies their muscle activation in an attempt to negate the effect of the perturbation; the
increase in co-activation in Figure 6.4-A between 5-8 seconds corresponds to an increase
in joint stiffness KM

2 and damping DM
2 —see Figure 6.4-G, H. In Figure 6.4-B, we observe

a discrepancy between qr, unaffected by the perturbation field, and q f , the output of the
position-based impedance controller that "tracks" qr using the joint stiffness and damping
based on the estimates provided by the MTUs. The error between the two trajectories
decreases when the subject modulates the wrist impedance.

The time intervals during which the subject experiences the perturbation field are shaded
grey in Figure 6.4-I, i.e., τext is not equal to zero. Figure 6.4-D shows the forces generated
by the elements of MTU2, the muscle-tendon unit corresponding to flexion, i.e., contracting
the muscle. We observe that the force generated by the active element and by the elastic
component of the tendon, FCE and FSEE respectively, are mainly active. In the second
example, on the other hand, only muscle-tendon unit MTU2 is activated. We thus hypothesise
that the low co-activation has an impact on task performance and the ability to counter
the perturbation, as the subject cannot generate the necessary torque to move through the
perturbation field.
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Figure 6.6: Baseline. Example of a failed trial. Here, we plot the time evolution of the
controller/robot variables, while the subject performs a reaching task in the presence of a
perturbation field. The subject fails to stabilize the system and go through the force field.
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Figure 6.7: Baseline. Example of a successful trial. Time evolution of the controller/robot
variables while the subject performs a reaching task in the presence of a perturbation field us-
ing baseline. Example of successful trial where the subject is able to counter the perturbation
field.
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Figure 6.8: Baseline. Example of a successful trial. Time evolution of the controller/robot
variables while the subject performs a reaching task in the absence of a perturbation field
using baseline.
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Baseline

We show plots corresponding to three illustrative examples of reaching tasks with the baseline
framework: (i) Figure 6.6 shows a failed trial with perturbation; (ii) Figure 6.7 shows a
successful trial in which the subject counters the effect of the perturbation field; and (iii)
Figure 6.8 summarizes a successful trial in the absence of perturbations. In each figure, we
plot the following signals:

A normalised sEMG channels (ch1,ch2) that represent the activity of the flexor and
extensor muscles. Recall that the baseline considers all eight sEMG signals from the
myoband as input.

B joint position qr (dotted green line) output by the neural network, q f ; (continuous
green line) output by the PD controller when tracking qr, as the subject attempts to
move q f from the initial position (black dotted line) to the target position (continuous
black line).

C joint velocity.

D torque output of PD controller (τ f ) and the perturbation torque due to the force field
(τext).

We observe that although the magnitude of ch2 in Figure 6.6-A is approximately five times the
magnitude of ch2 in Figure 6.7-A, the reference joint position qr output by the neural network
estimator is (on average) very similar. The difference is in the smoothness of the estimated
trajectory; it is less smooth in Figure 6.6-B, potentially due to the higher co-activation of
the muscles. This may be the reason why the first trial resulted in a failure whereas the
second one was successful. This experimental result, and our (potential) explanation of how
co-contraction of muscles results in successful trials, reflect the feedback provided by the
human subjects regarding their strategy to counter perturbations when using B.
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Figure 6.9: Proposed method. Example of successful trial for the amputee. We plot the time
evolution of the most relevant MTU variables and controller/robot variables while the subject
performs a reaching task in the presence of a perturbation field.
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Figure 6.10: Baseline. Example of successful trial. Time evolution of the controller/robot
variables while the amputee performs a reaching task in the presence of a perturbation field
with the baseline.
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6.3.2 Amputee

Two examples of successful trials are presented, one for the proposed framework (Figure
6.9) and one for the baseline (Figure 6.10). The description of the viable described in each
figure is the same as that for the able-bodied subject, discussed in the previous section.

Proposed framework (M)

The evolution of the state variables is similar to that of the able-bodied participant in the
results provided in the previous section. It can be observed in Figure 6.9 that the amputee
starts increasing the activation of the single MTUs, resulting in a higher co-activation
(Figure 6.9-A) from about 1.5 seconds into the trial. The increase in co-activation results in
an increase in stiffness (Figure 6.9-G) and a change in damping (Figure 6.9-H) that allows
the subject to maintain the target position. Notive that in this trial the subject is performing
wrist extension, and therefore Ch1 has higher activation than Ch2 and this is reflected in the
values of individual muscle stiffness and damping.

Baseline (B)

It can be observed in Figure 6.10 that the amputee attempts to increase the muscle activation
between 1–3 seconds and after 4 seconds to counter the force field. However, this increment
in activation is mapped to a sudden change in position at ≈ 4.5 seconds as it can be observed
in the position and joint trajectories. The amputee then decreased the muscle coactivation
and managed to maintain the target position. This is an example of experimental result is in
agreement with the personal feedback provided by the subject and discussed in Section 6.2.2
reguirding the low robustness of the baseline to sudden changes in muscles’ co-activation.
The latter is mapped to a change in position.

6.4 Discussion

In this chapter, we provided experimental results in support of the hypotheses formulated in
Section 5.2 regarding the online control performance provided by the proposed framework
and the baseline (H1) and regarding the impact of enabling simultaneous control of the
kinematics as well as the impedance of the simulated robot (H2). Moreover, we collected
the feedback of the participants regarding the control performance provided by the proposed
framework and the baseline, to investigate whether our framework provided an improved
overall controllability with respect to the baseline and allowed the subjects to exploit modu-
lation of muscles’ co-contraction (i.e., impedance). We showed that the proposed framework
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resulted in a significantly better performance compared to the baseline, and allowed the
able-bodied participants to exploit joint stiffness and damping adaptation as a means to
modulate the physical interaction between the robot’s plant and the environment. While the
methods were tested with a single amputee, the obtained results were coherent with those of
the able-bodied participants. This is a promising result, especially considering the amputee
performance and personal feedback in relation to the participant’s difficulties in perceiving
differences in muscle co-contraction, as explained in Section 5.1.1. This may indicate that
our framework provides more intuitive control and higher controllability than the baseline,
which is also what was reported by the able-bodied participants. Overall, the proposed
method outperform the baseline. Because our framework estimates the human motor intent
in terms of kinematics and dynamics (stiffness, and damping) and utilises this information
to implement the feedback loop of the impedance controller, unlike prior work, it provides
robust simultaneous control of joint kinematics, joint stiffness, and damping based on only
two sEMG signals. The obtained results validate the contributions made in this thesis, which
is the design and implementation of an sEMG-based framework that meets the requirements
listed in Section 4.2.3.



Chapter 7

Conclusion and future work

Experimental studies on human motor control show that the central nervous system exploits
intrinsic mechanical properties of the muscles to adapt the limb impedance with time and
according to task requirements (Section 2.2). Regulation of limb impedance is a crucial motor
control strategy because unaffected by the latency of neural pathways, it allows humans to
promptly respond to external perturbations arising from the physical interaction between the
upper-limb and the environment. Joint impedance modulation is achieved by coactivation
of flexor and extensor muscles spanning the limb’s joints which allows modifying the joint
impedance independently of the joint torque. For this reason, the same joint kinematic may
underlie infinite possible solutions of joint dynamics. Therefore, describing the motor intent
only in terms of kinematics extremely limits its understanding.

The design of control schemes that mimics crucial characteristics of the human neuro-
muscular system, such as adaptation of the joints impedance, is today an open problem that
concerns different research areas from robot manipulation to rehabilitation robotics. In the
latter case, the detection of the motor intent is crucial to design shared control strategy to as-
sist, augment and substitute motor functions. This requirement is crucial in motor prostheses
since these rehabilitation devices aim to decode the user’s motor intent and replicate it on a
robotic device to substitute the motor function of the missing limb. However, today, none of
the commercially available upper-limb prostheses detect the human motor intent in terms
of kinematics and dynamics, and allows the user to adapt the impedance properties of the
artificial limb.

Motivated by the observation that impedance control is a crucial motor control strategy
in humans, and driven by the goal of maximising the understanding of the user motor intent,
as explained in Chaper 1, we investigate the problem of decoding the human motor intent
in terms of kinematics and dynamics and of implementing this intent in coherent manner
on a (simulated) robotic system. Upper-limb prostheses control is the long term domain
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of application chosen for this work and the motivation for specific design choices of the
proposed framework (Section 4), such as the use of non-invasive surface EMG sensors to
interface with the user’s neuromuscular system and to decode the motor intent.

In Chapter 4, we describe the contributions of this thesis. We presented a novel sEMG-
based framework for enabling a human subject to simultaneously control the kinematics and
the joint stiffness and damping of a DoF of a simulated robot while contracting the muscles
involved in wrist flexion-extension. To do this, we developed a hybrid framework which
incorporated domain knowledge about macroscopic properties of the muscle contraction
dynamics. Two Hill-type muscle-tendon units are used to decode the intended joint torque,
stiffness, and damping (Section 4.3). The motor intent is used to define an adaptive impedance
controller with input reference trajectory and impedance gains updated according to the
estimated human motor intent. In contrast with previous work, in order to ensure that
the intended dynamics (i.e., the one estimated from the muscle-tendon units) matched the
dynamics of the robot plants, the impedance model is implemented using the gains directly
estimated from the muscle-tendon units (Section 4.4). This required modifying the design of
the muscle-tendon models and implementing an optimization method to train the models’
parameter values (Section 4.5) to obtain at each point in time a reference trajectory, stiffness,
and damping that suitably represented the motor intent and that ensured the control stability.

The proposed framework was evaluated during online control experiments, designed in
simulation, where the subject had to perform reaching tasks in the presence of perturbations
that required impedance modulation of the robot for successful task execution (Section 5.3.2).
We contrasted our framework’s performance to that of a baseline (Section 5.1.3) constituted
by a data-driven method that learns and predicts the joint kinematics from sEMG signals
and a high stiffness controller with fixed gains that tracks the estimated motor intent on the
robot. We addressed the research questions discussed in Section 1.2: does the proposed
framework provide improved functionalities with respect to the baseline? Does the user
exploit adaptation of joint impedance to successfully complete the task and maintain the
system stable? Moreover, we provide experimental results in support of our hypotheses
(Section 5.2) on the methods’ control performance. The proposed framework and baseline
were tested with eight able-bodied participants and a transradial amputee. In Chapter 6,
we demonstrated that the proposed framework provided a significant improvement in task
performance for able-bodied participants, especially in the presence of external perturbations;
the amputee’s results were in accordance with those of the able-bodied participants. These
results demonstrated, that our method, which enables the users to adapt the joint stiffness and
damping of the robot’s joint, contributed to improved online control performance. Notice
that we neither measure the human joint impedance nor claim to learn stiffness and damping
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values that match the biological ones. Instead, our computational framework provides a
coherent representation of the dynamics of the muscle-tendon units and that of the robot,
leading to improved controllability and transparency with respect to the baseline and the
methods discussed in Section 3.2.3. While different studies on human motor control have
characterised the human joint impedance and musculoskeletal properties in great detail
(Section 2.4), today none of the commercially available upper-limb prostheses enables
impedance adaptation of a single robot’s joint, and there are no works proposed in the
literature that enable simultaneous control of joint kinematics, stiffness, and damping for
more than a single DoF. Our framework is a step forward in addressing these challenges.
While upper-limb prostheses control is the domain application considered in this thesis,
the proposed work is on the detection of user motor intent from sEMG signals and on its
implementation on a robot. The framework applicability is therefore not limited to motor
prostheses, but it may be relevant to other rehabilitation and assistive devices, to other HRI
scenarios (e.g., teleoperation), and to robot manipulation applications (e.g., aid the design of
variable impedance controllers). Overall, this work opens up multiple directions for future
research to expand the proposed framework, and to address some of its limitations. We
discuss these below.

• muscle-tendon model architecture
Further exploration of the online control performance provided by different muscle-
tendon architectures will be investigated in future work. Identification of intrinsic
parameters and structure simplification of muscle-tendon models will be carried out
with the aim of limiting the parameter estimation uncertainty while retaining the control
performance provided by the framework proposed in this thesis. In particular, guided
by the experimental observation provided in [214], a first experiment may investigate
the contribution of the tendon element to the overall control performance, including
the ability to modulate joint stiffness and damping. Given the muscle-tendon model
structure, the muscle-tendon unit geometrical arrangement on the robot link, and the
number of units used for actuating a 1-DoF (kinematics and Impedance) may impact the
control performance and has to be experimentally tested. As discussed in Chapter 6.1.1,
the impact of such modelling modifications must be investigated during online control,
when the subject has visual feedback of the state of the (simulated) prosthesis and
adapts the muscle contractions to achieve the desired control performance. The
experimental protocol to evaluate such muscle-tendon architecture may be designed to
investigate how fast the user adapts to the interface (learning) and the retention of such
learning over different days. These aspects may provide further insight into evaluating
the performance benefit provided by different models.
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• Single DoF
Current sEMG-based control methods presented in literature enable only low-dimensional
control of kinematics, and robust simultaneous control of 3-DoFs is still limited (Sec-
tion 3.2.1). While the use of electromyography to detect the human motor intent
constituted a revolutionary step in the field and allowed to move away from body-
powered prostheses, it is also one of the main limiting factors to enable the control
over multiple DoF of state-of-the-art prostheses. Simultaneous control of multi-DoFs
is challenging because it is difficult to extract sEMG signals that can be used to inde-
pendently control each DoF. This issue is more pronounced for amputees since the
number of activation sites for myocontrol might be limited due to the amputation [100].
We decided to focus on the control of 1-DoF through wrist flexion-extension because
the control of the wrist kinematics and dynamics is crucial in most activities of daily
living that involve grasping and manipulation of objects. In fact, these tasks involve
mechanical coupling between the robot and the environment. Therefore, interaction
forces at the contact points should be considered in the control schemes. We are not
aware of methods that allow robust adaptation of the kinematics, stiffness, and damping
of multiple DoF. We validated the framework on a single DoF to isolate confounding
factors that may contribute to error propagation and to thoroughly analyse the operation
of the framework’s components. The insights we obtained will enable us to expand
the framework for multi-DoF control. However, the most challenging part of this
extension will be to isolate suitable control inputs from sEMG signals. This is based
on observations from initial experimental results on 2-DoF control obtained from two
subjects. We expanded the framework presented in this thesis to enable a subject to
simultaneously control two DoFs of a simulated robot through wrist flexion-extension
and ulnar-radial deviation. Two pairs of muscle-tendon models had to be used to direc-
tionally activate the two joints. To drive the four muscle-tendon units, we used four
sEMG signals to measure the activity of the flexor carpi radialis and ulnaris, and the
extensor carpi radialis and ulnaris (Figure 2.11). The proposed framework was trained
considering single-DoF motions as in the experimental protocol described in Section
5.3.1. Initial results indicated that the two subjects could robustly perform reaching
tasks in the absence of perturbations, and thus perform single as well as combined
DoF motions. However, in the presence of perturbations, when the subjects had to
increase the muscle co-contraction to maintain the system stability and at the same
time reach the target, the control performance deteriorated. For example, when the
subject had to perform flexion with higher impedance, the change in muscle activation
cause the ulnar-radial DoF to deviate. We believe this is due to the fact that the input
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activations (i.e., the sEMG signals) are not independent, while we assume that control
of the two DoF is decoupled (i.e., the action of the MTUs of flexion-extension do not
affect ulnar-radial deviation). For the interested reader, some examples of our initial
control results are included in the GitHub repository in [65].

• Surface electromyography and detection of human motor intent
Modulation of joint impedance is the result of the synergistic activity of more than a
pair of flexor-extensor muscles. Multiple muscles span the wrist joint, as explained in
Section 2.5, and contribute to the joint motion and impedance modulation. This means
that targeting a single flexor and a single extensor muscle per motor function, as it is
done in this work, may reduce the information about human motor intent. We believe
this is one of the causes of performance deterioration when simultaneously controlling
two DoFs, as explained in the previous point. However, the low-density sEMG sensors
used in this thesis did not allow us to explore whether the motor intent decoded from
two sEMG channels targeting specific muscles limits the controllability provided to
the user and the estimation of stiffness and damping. Sensors with a higher spatial
and temporal resolution may be employed in future work to extract multiple input
activations from sEMG data and investigate the framework’s performance in relation
to different designs of the inputs to the muscle-tendon units.

• Lack of real-world experiments
The lack of evaluation on a real robotic system is a limitation of this work. The design
of the framework and the choice of using a generic simulated robot is to allow future
testing on a robotic system that is not necessarily tied to an upper-limb prosthesis.
This is because, despite the effort in the research community to design prostheses that
allow variable impedance control, none of the commercially available ones enable this
functionality yet. Moreover, in order to perform real-world tasks it is desirable to at
least provide the user with 2-DoF control. For these reasons, our current and future
research are focused on expanding the framework to 2-DoFs before proceeding with
testing on a real prosthesis or manipulator.

• Joint stiffness and damping contributing to the observed controllability
The conditional mutual information between qr and q f given the stiffness or damping,
discussed in Section 6.2, provides an initial indication of the contribution of joint
stiffness and damping to system stability. However, we did not observe any statistically
significant difference between the mutual information values during task execution in
the presence and absence of perturbations. We plan to explore this more thoroughly
by considering different tasks and force fields that require specific joint stiffness or
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damping modulation (e.g., posture maintenance; reaching tasks in velocity-dependent
force fields), with the aim of assessing the relative contribution of stiffness and damping
to the overall impedance behaviour.

• Subject specific and across-subjects models
An interesting future direction of research could involve the investigation of whether
the proposed framework could provide high controllability without user-specific model
training. This means investigating the generalisation properties of the proposed frame-
work. One approach is to evaluate the controllability provided by the framework when
the muscle-tendon parameters’ values are set to the average values obtained from
subject-specific models. This assumes that the across-subject model retains features
that enable the user to learn a mapping from muscle contraction to the desired motor
outcome on the (simulated) robotic device. This is especially interesting in the context
of upper-limb prostheses, where long training sessions are a burden for the subject.
The control performance provided by non-subject-specific control methods may be
determined by the ability of the subject to adapt to the interface. In this regard, future
work could investigate if the proposed framework, which includes process-driven
models and is designed to enhance control transparency, would enable the user to adapt
more quickly to the framework with respect to purely data-driven controllers and other
methods implemented on commercially available prostheses.
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Appendix A

Simulated annealing

Simulated annealing (SA) [113] is a stochastic global search optimization method, suitable
for non-linear or discontinuous objective functions. The algorithm is based on the Metropolis
Monte Carlo integration algorithm [143], extended to include a temperature-based schedule
to improve the efficiency of the algorithm’s searching. The term “annealing" refers to the
process of heating a material and then slowly cooling it, to change its physical and chemical
properties. The temperature t is a key parameter used for regulating the probability of
accepting a new point and it is obtained according to an annealing schedule Temperature.
The main steps of SA are briefly explained below and outlined in Algorithm 1. Given an

Algorithm 1 Pseudocode of simulated annealing
x← x0
e← E(x0)
t← t0 > 0
i← 0
while stop criteria not met do

Randomly select xtest in the neighborhood of x
etest = E(xtest)
if etest− e < 0 then

x← xtest
e← etest

else if P(e,etest , t)> xrand = Random(0,1) then
x← xtest
e← etest

end if
k← k+1
t← Temperature(k)

end while
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initial point x0, the initial value of the cost function E(x0), and an initial temperature t0, at
each iteration k, the algorithm makes the following steps:

• A new solution is randomly generated in a neighbourhood of the current solution and
the objective function value E(xtest) for xtest is computed.

• The distance of the new point from the current point is based on a probability distri-
bution with a scale proportional to the temperature. The probability of making the
transition from the current state x to the candidate state xtest depends on the acceptance
probability P(e,etest , t). The algorithm accepts the new point if it lowers the cost. If
the solution xtest raises the objective function value (i.e., etest > e), a random number
xrand is generated between 0 and 1. The probability of transitioning to the new solution
depends on the acceptance probability P, and it may be proportional to the temper-
ature and inverse proportional to etest − e (e.g., the Boltzman distribution [204]). if
xtest < P(e,etest , t) the solution is accepted. This allows the optimization process to
avoid getting trapped in local minima and increases the chances of global exploration
of the solutions.

• The temperature is reduced from the initial value to zero according to an annealing
schedule defined by the function Temperature(). A linear, slow decrease rule may be
used, which reduces the temperature at a different rate.

This process of searching is repeated until a stopping criterion is met (e.g., the maximum
number of iterations is reached, or objective function value reduction is below tolerance).
The temperature plays a key role in the algorithm as it affects the probability of accepting a
new point that raises the objective function values. Reducing the temperature is equivalent
to decreasing the chance of accepting solutions that raise the objective function values (i.e.,
the extent of the search is decreased). Increasing the temperature increases the chance
of accepting a worse solution together with the chance of escaping a local minimum. A
reannealing step may be used to increase the temperature after a number of points have been
accepted, by modifying the iteration number according to the current and initial temperature,
and the objective function values.



Appendix B

Concepts underlying used performance
measures

Below, we summarise fundamental concepts underlying the performance measures used for
the evaluation of the online task experimental results described in Section 5.3.2.

B.1 Mutual Information

Mutual information [167] is a concept from information theory that quantifies the information
that can be obtained about a random variable X, given another random variable Y. To
mathematically define MI, the concept of entropy is first introduced. In the following
derivations, we consider discrete random variables X and Y acting over the sets X and X .

The entropy H(X) quantifies the expected uncertainty about X and it is mathematically
formulated as follows:

H(X) =−∑
x∈X

P(x) logP(x) (B.1)

Given the joint probability P(X,Y), the conditional entropy H(X|Y) is defined as follows:

H(X |Y ) =−∑
x∈X

∑
y∈Y

P(x,y) logP(x|y) (B.2)

The conditional entropy quantifies the remaining uncertainty about X given the value of Y.

Based on the definition of entropy and conditional entropy, the mutual information
MI(X,Y) is defined as follows:

MI(X ,Y ) = H(X)−H(X |Y ) = ∑
x∈X

∑
y∈Y

P(x,y) log
P(x,y)

P(x)P(y)
(B.3)
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Where P(x) and P(y) are the marginal distribution, and P(x,y) is the joint distribution of X
and Y. The logarithm may be the natural logarithm or the base 2 logarithm, and the MI is then
expressed in [nats] or [bits] respectively. The mutual information between two variables is
zero if and only if these are statistically independent. Considering the concept of entropy, MI
is interpreted as the reduction in the uncertainty of a random variable due to the knowledge
of the other random variable. The relation between MI(X,Y), H(X), H(Y) and H(X|Y) is

Figure B.1: Venn diagram showing the relation between mutual information and entropy of
two random variables X and Y.

illustrated in Figure B.1 using the Venn diagram. The MI of X and Y, given another discrete
random variable Z, is given by the following equation:

MI(X ,Y |Z) = H(X |Z)−MI(X |Y,Z) (B.4)

B.2 Measure of motion smoothness

The SPectral ARC length (SPARC) measure [14] is based on the Spectral Arc Length measure
(SAL) [13], used in motor control and rehabilitation research to estimate the smoothness
of a discrete motion trajectory. Both measures are based on the concept that a smoother
movement is composed of a lower amount of high-frequency components. Moreover, it
is assumed that the Fourier spectrum of a smooth time domain signal tends to be smooth.
The Fourier magnitude spectrum can therefore be used to quantify the smoothness of a time
domain trajectory. Given the velocity trajectory v(t) and its Fourier magnitude spectrum
V (ω), The SAL measure in frequency range 0−ωc is defined as follows:

SAL ≜−
∫

ωc

0

[( 1
ωc

)
+
(dV̂ (ω)

dω

)] 1
2
dω (B.5)
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where V̂ (ω) is the Fourier magnitude spectrum normalised with respect to V (0). In SPARC,
ωc is defined in an adaptive manner, depending on a threshold on V and an upper bound limit
on ωc, indicated as ωmax

c and defined as follows:

ωc ≜ min
{

ω
max
c ,min

{
ω,V̂ (r)<

V (r)
V (0)

∀ r > ω

}}
(B.6)

Both SAL and SPARC share properties that are key for a measure to appropriately quantify
the degree of smoothness. However, differently from SAL, SPARC is not dependent on the
movement amplitude and duration. This improvement allows to the definition of a standard
measure that can be used across different types of movements. The code provided in [14] is
used to implement the SPARC measure within this thesis.





Appendix C

Offline experiments: additional results

In this appendix, we include additional information on the optimization of the proposed
framework and the baseline. We report the average muscle-tendon parameters’ values across
the able-bodied subjects in Table C.1 and for the amputee in Table C.2, respectively. An
example of a trained model is considered and the force-length-velocity (Figure C.1) and
impedance-force-velocity (Figure C.2) three-dimensional curves are shown. In Figure C.3
and Figure C.4, we show the offline evaluation of the methods for the amputee. The trials for
the evaluation are chosen after visually inspecting the sEMG data, to make sure the amputee
is performing the correct motion. In fact, there were instances where the subject performed
flexion instead of extension, for example. As described in Section 5.3.1 the reference joint
trajectory qtrain

f for the amputee corresponds to the trajectory of the visual cue shown on the
screen to guide the muscle contraction during the data acquisition experiment. The positive
and negative peaks of qtrain

f have been automatically aligned to match, where possible, the
peaks found in the signal obtained as the difference between the two sEMG signals.
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Table C.1: Average values of the muscle-tendon models’ parameters for the able-bodied
subjects.

Parameter name Variable Lower Bound Upper Bound MTU1(mean) MTU1(std) MTU1(mean) MTU2(std)
CE Fmax p̄1 1000 9000 8.0832e+03 1.8728e+03 8.1738e+03 1.7937e+03

lopt p̄2linit
ce 0.05linit

ce 0.085linit
ce 0.0850 1.4836e-17 0.0849 1.7263e-04

∆Wdes p̄3 p̄2 0.7 p̄2 3.5p̄2 0.2975 0.0116 0.2548 0.0422
∆Wasc p̄4 p̄2 0.7 p̄2 3.5p̄2 0.3026 0.0151 0.2999 0.0178
vdes p̄5 1.2 4 1.9498 1.1521 1.5665 0.5501
vasc p̄6 1.2 4 3.6641 0.9039 3.6421 0.5726
Arel0 p̄7 0.1 0.4 0.1234 0.0465 0.1161 0.0456
Brel0 p̄8 1.1 5.1 1.3863 0.4383 1.0051 0.1284

PE lpe0 p̄9 p̄2 0.7 p̄2 0.95p̄2 0.7000 1.1869e-16 0.7000 1.1869e-16
vpe p̄10 1.1 3 2.1689 0.1581 1.9219 0.0975
F̂pe0 p̄11 p̄1 0.5 p̄1 1p̄1 0.7473 0.0216 0.7314 0.0175

DE Dde p̄12 0.001 3 2.6328 0.2848 2.3750 0.2799
Rde p̄13 0 0.8 0.0378 0.0117 0.0417 0.0010

SE lse0
2
3 lMTU

2
3 lMTU

2
3 lMTU 0.2000 2.9672e-17 0.2000 2.9672e-17

∆Usenl p̄14 0.02 0.07 0.0557 0.0035 0.0513 0.0077
∆Usel p̄14 p̄15 (1/3)p̄15 (2/3)p̄15 0.0327 0.0071 0.0317 0.0053
∆Fse0 p̄16 p̄1 0.3 p̄1 1p̄1 2.5409e+03 748.2483 2.8338e+03 707.7229
Secc p̄17 1.2 2 1.5533 0.3405 1.2944 0.1325
Fecc p̄18 0.5 2 1.6572 0.1281 1.7487 0.0071

Table C.2: Values of muscle-tendon models’ parameters for the amputee.
Prameter Name Variable Lower Bound Upper Bound MTU1 MTU2

CE Fmax p̄1 1000 9000 6.7945e+03 7.1809e+03
lopt p̄2linit

ce 0.05linit
ce 0.085linit

ce 0.0850 0.0850
∆Wdes p̄3 p̄2 0.7 p̄2 3.5p̄2 0.3400 0.3387
∆Wasc p̄4 p̄2 0.7 p̄2 3.5p̄2 0.3400 0.3400
vdes p̄5 1.2 4 1.4807 1.2112
vasc p̄6 1.2 4 3 3
Arel0 p̄7 0.1 0.4 0.2250 0.1000
Brel0 p̄8 1.1 5.1 1.7750 1.1500

PE lpe0 p̄9 p̄2 0.7 p̄2 0.95p̄2 0.7000 0.7000
vpe p̄10 1.1 3 1.7500 2.1250
F̂pe0 p̄11 p̄1 0.5 p̄1 1p̄1 0.7359 0.7359

DE Dde p̄12 0.001 3 2.8438 2.5938
Rde p̄13 0 0.8 0.0500 0.0422

SE lse0
2
3 lMTU

2
3 lMTU

2
3 lMTU 0.2000 0.2000

∆Usenl p̄14 0.02 0.07 0.0576 0.0576
∆Usel p̄14 p̄15 (1/3)p̄15 (2/3)p̄15 0.0372 0.0376
∆Fse0 p̄16 p̄1 0.3 p̄1 1p̄1 5.6904e+03 2.4236e+03
Secc p̄17 1.2 2 1.9734 1.9813
Fecc p̄18 0.5 2 1.5038 1.7557
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Figure C.1: Three-dimensional plot of the force-length-velocity surfaces for the elements of
an MTU. The black line indicates the initial muscle length, while the red line is the optimal
muscle length.
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Figure C.2: Three-dimensional plot of the impedance-length-velocity surfaces for the ele-
ments of an MTU. Stiffness and damping are considered. The black line indicates the initial
muscle length, while the red line is the optimal muscle length.
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Figure C.3: Trajectory tracking during offline evaluation of the proposed framework. The
black dotted line is the ground truth position (qtrain

f ) of the flexion-extension DoF. For the
amputee, qtrain

f corresponds to the visual cue used during data collection to guide the subject’s
muscle contraction or wrist motion.
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Figure C.4: Trajectory tracking during offline evaluation of the baseline. The black dotted
line is the ground truth position (qtrain

f ) of the flexion-extension DoF. For the amputee, qtrain
f

corresponds to the visual cue used during data collection to guide the subject’s muscle
contraction or wrist motion.



Appendix D

Model of Puma 560 robot

Table D.1: Description of the dynamic parameters of the two first links of the Puma 560
robot. For each linki (i = 1,2) we report the mass, the center of mass (CoM), and the diagonal
terms of the link’s inertia. According to the DH convention [196] di, ai and αi are the link
length, offset and twist, respectively.

Dynamics parameters
Link i Mass [Kg] CoM [m] Inertia [Kgm2]
1 0 [0 0 0] [0 0.35 0]
2 17.40 [0.068 0.006 -0.016] [0.130 0.524 0.539]

DH parameters
Joint i αi−1 [deg] θi [deg] a_{i-1} [m] di [m]
1 90 q_{1} 0 0
2 0 q_{2} 0.4318 0

In Table D.1, we report the dynamic parameters and the Denavit-Hartenberg (DH)
parameters defining the structure of the robot model used in this work. We consider only the
first two joints of the original model of the Puma robot [11]. The second DoF is actively
controlled with the methods discussed in the thesis.
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