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Abstract—Recent developments in sensor technology [1], [2]
have resulted in the deployment of mobile robots equipped
with multiple sensors, in specific real-world applications [3]–
[6]. A robot equipped with multiple sensors, however, obtains
information about different regions of the scene, in different
formats and with varying levels of uncertainty. In addition,
the bits of information obtained from different sensors may
contradict or complement each other. One open challenge to
the widespread deployment of robots is the ability to fully
utilize the information obtained from each sensor, in order to
operate robustly in dynamic environments. This paper presents
a probabilistic framework to address autonomous multisensor
information fusion on a humanoid robot. The robot exploits the
known structure of the environment to autonomously model the
expected performance of the individual information processing
schemes. The learned models are used to effectively merge the
available information. As a result, the robot is able to robustly
detect and localize mobile obstacles in its environment. The
algorithm is fully implemented and tested on a humanoid robot
platform (Aldebaran Naos [7]) in the robot soccer scenario.
Keywords: Information fusion, Robot Vision, Obstacle localiza-
tion, Humanoid robot soccer.

I. INTRODUCTION

Recent developments in sensor technology [1], [2] have

resulted in the deployment of mobile robots equipped with

multiple sensors, in specific real-world applications such as

surveillance, navigation and disaster rescue [3]–[6], [8], [9].

The ability to accurately sense and interact with the envi-

ronment is however still missing. One key challenge to the

widespread deployment of mobile robots is the ability to

operate autonomously in dynamic environments. The major

aspects of this challenge include:

• Autonomous learning: How to enable a robot to learn

environmental models based on sensory input, and adapt

the learned models in response to changes?

• Processing management: Given multiple sources of infor-

mation, which bits should be processed, and what process-

ing should be performed to achieve a desired goal reliably

and efficiently?

• Multisensor information merging: How to enable a robot

equipped with multiple sensors to effectively merge the

information obtained from the individual sensors?

There has been significant research on autonomous learning

from sensory input [4], [6], [10], and processing manage-

ment on mobile robots [3], [11]. However, the ability to

autonomously exploit the complementary properties of the

available sensors to effectively merge the available informa-

tion, is still lacking. Each sensor mounted on a robot typically

provides information on different regions of the scene, with

varying levels of uncertainty. The bits of information obtained

by processing the sensory inputs may contradict or comple-

ment each other. The visual input from a color camera, for

instance, is a high-bandwidth source of information as com-

pared to the range input from a laser range finder. Visual input

is however more noisy and the visual information processing

algorithms are typically computationally expensive. In order

to operate robustly in dynamic environments, humanoid robots

need to fully utilize the information obtained from the different

sensors. However, the sophisticated algorithms used for motion

control [12], [13] and the requirement of operating in real-

time, make it a challenge to efficiently merge the information

obtained from the different sources.

There has been extensive research on information fusion

on a robot equipped with multiple sensors, for different

applications [4], [14]–[16]. However, a major shortcoming of

existing methods is that manually encoded heuristic constraints

specify the conditions under which the information obtained

from each specific sensor is given precedence. In the DARPA

grand challenges, for instance, range and GPS information

were used for most of the decision-making, while the visual

input was predominantly used for only close-range obstacle

avoidance [4], [6]. Such an approach that does not utilize all

the available information, is likely to be at a disadvantage in

a dynamically changing environment.

This paper advocates a probabilistic approach to effectively

merge the information obtained from multiple sensors, and

describes an instance of this approach for the challenge task

of detecting and localizing mobile obstacles in a dynamic

environment. It makes the following significant contributions:

(a) an efficient approach for a robot to use the environmental

structure to model the expected performance of the algorithms

that process the sensory inputs, and (b) a probabilistic ap-

proach that uses the learned models to robustly combine the

information obtained from the different sources. Furthermore,

the robot is able to better exploit the rich information encoded

in camera images. All algorithms are implemented and tested

on a humanoid robot platform (Aldebaran Naos [7]).

The remainder of the paper is organized as follows. Sec-

tion II describes the test domain and the proposed approach,

while Section III describes the experimental results. Section IV

provides a brief overview of some related methods, and the

paper concludes with Section V.



II. TEST PLATFORM AND PROPOSED APPROACH

This section first describes the experimental domain and

the challenge task chosen to evaluate the proposed approach.

This is followed by a description of the available information

sources, and the algorithm that effectively merges the infor-

mation obtained from these sources.

A. Test Platform

RoboCup is a research initiative with the stated goal of

creating, by the year 2050, a team of humanoid robots that

can beat the champion human team in a game of soccer on

an outdoor soccer field [17]. The Standard Platform League

Fig. 1: Images of the Nao [7] and the soccer field.

of RoboCup has a team of humanoid robots (three robots per

team) playing a competitive game of soccer on a 6m × 4m
indoor soccer field [18]. Figure 1 shows some images of the

humanoid robot and the soccer field. The robot used as the

common platform in this league is the Aldebaran Nao [7],

a 58cm tall robot with 23 degrees of freedom—five in each

arm and leg, two in the head, and one at the pelvis. The

primary sensors are the two monocular color cameras, one in

the forehead and one in the nose. The test platform imposes

the constraint that only one camera can be used at a given

instant, i.e. stereo capabilities do not exist. Each camera has a

58o diagonal field of view, and provides images at a maximum

resolution of 640×480—the 320×240 or the 160×120 images

can be used for faster processing. There are two ultrasound

sensors in the chest, one each on the left and the right with

a 60o field of view. Other sensors include accelerometers and

bump sensors, in addition to microphones, loudspeakers and

LEDs. The robot is equipped with Wi-Fi to communicate with

other robots or an off-board PC. However, all processing for

vision, locomotion, localization and team coordination is to be

performed in real-time (30Hz) on board the robot, using the

x86 AMD GEODE 500MHz CPU that runs embedded Linux.

The robot soccer framework presents many of the challenges

faced while deploying a humanoid robot in the real-world (e.g.

autonomous vision, motion, localization, team coordination).

At the same time, it provides a moderate amount of structure

that makes the domain tractable to solutions. It is therefore an

ideal platform for our experiments.

B. Proposed Approach

The goal is to enable the robot to learn models that can

predict the response of the information processing schemes,

and to use these models to robustly fuse the information

provided by the individual processing schemes. In this work,

the processing schemes under consideration are:

• Ultrasound (US): each ultrasound sensor provides a read-

ing of object distance within a 60o cone, up to a maximum

distance of ≈ 150cm. The bearing information is limited to

object presence on the left and/or the right.

• Vision–Color (VC): Since the main objects in the domain

(ball, robots, goals, field etc) are color-coded, color seg-

mented regions in the input images are used to detect objects

of interest based on heuristic constraints.

• Vision–SIFT (VS): In order to extract maximum informa-

tion from the images, we incorporate the popular SIFT

(Scale Invariant Feature Transform) algorithm [19] that

characterizes objects using image gradient features.

The task we choose to address is that of localizing mo-

bile obstacles in the humanoid robot’s environment. In this

work, localization refers to the relative distance and bearing

(angle with respect to the axis pointing straight ahead) of

the obstacles with respect to the robot. In the robot soccer

scenario, the major “obstacles”are the other robots (opponents

and teammates) on the field. Collision with other robots can

cause physical damage and is likely to provide the opponents

with an advantage, since the rules of the game penalize

robots that collide with each other. We include teammates

despite the availability of wireless communication because the

communication is typically delayed and noisy.

Each robot has a uniform of a specific color—all robots

in one team are red while those on the other team are blue.

As seen in Figure 1, each uniform is characterized by four

large regions (head, shoulders, chest), and being able to see

at least three of these regions arranged in a specific pattern,

can be used to detect a robot in the image. However, the

colored uniforms can be detected uniquely only from specific

viewpoints, and up to a distance of ≈ 2m. In addition, given

that the robot can only use one camera at a time, the distance

to the object is computed based on a geometric comparison

of the known object size and the detected size (in pixels) in

the image. Since segmentation errors can affect the size of

the detected image region, the computed distance can have

significant errors. The bearing values are based on offsets

(from the image center) of the segmented regions, and are

more robust to such segmentation errors. The SIFT algorithm,

(a) (b)

Fig. 2: (a)-(b) Images with some gradient features superimposed.

on the other hand, characterizes objects of interest by local

image gradient features that are known to be robust to scale,

orientation and illumination changes [19]. Given such feature

representations of the target object (in this case a robot),



recognition in test images can be achieved up to a distance

of ≈ 4m. However, the distance to the object cannot be

computed accurately, even though the bearing can be (once

again) computed with reasonable accuracy. Figure 2 shows

some images with the gradient features superimposed. Table I

Scheme Distance Bearing
FOV (cm) Accuracy FOV (deg) Accuracy

Ultrasound (US) 20 to 150 high 80 low

Vision-Color (VC) 20 to ≈ 200 medium 190 high

Vision-SIFT (VS) 20 to ≈ 400 low 190 high

TABLE I: The field of view (FOV) and accuracy of distance and
bearing computation using the available processing schemes. Vision
has a larger angular FOV because the robot typically pans its head
while moving forward.

compares the three processing schemes based on the field of

view and accuracy. We see that the three available process-

ing schemes have complementary characteristics. Typically,

heuristic constraints are imposed (manually) on when (and

how) the information from each of these sources should be

used. Instead, our algorithm enables the robot to learn a model

that can predict the performance of the individual schemes.

Based on these learned models, Algorithm 1 assigns suitable

“weights” to each source and robustly merges all the available

information. The algorithm requires models of the expected

Algorithm 1 Multisensor Information Merging

Require: Learned models that predict the error in range

distance and bearing for measurements from each infor-

mation source.

Require: Learned SIFT model of the target object (in this

case, robots).

1: repeat

2: UpdateExistingEstimates()
3: {dus, dir} = CurrentObstaclesus()
4: {dc, θc} = CurrentObstaclesvc()
5: {θs} = CurrentObstaclesvs()
6: ResolveCurrentEstimates()
7: MergeWithExistingEstimates()
8: until end of the game

error in each processing scheme, and the SIFT model of the

target objects. Section III describes how these models can be

learned, while the algorithm is described below.

Since the relative estimates of each obstacle need to

be maintained and tracked across a sequence of frames,

a Kalman filter [20] is associated with each estimate.

The first step, the “time update” of the Kalman filters

(UpdateExistingEstimates(), line 2), adjusts the existing

obstacle estimates in response to the robot motion since

the previous update. It also removes older estimates that

correspond to obstacles that have not been seen for some

time. Each processing scheme is then used to compute the

distances and bearings of the obstacles in the current frame

(CurrentObstacles(), lines 3–5). The ultrasound sensor pro-

vides limited bearing information (left, right or both), and

Vision-SIFT does not provide distances to detected obstacles.

The next step (ResolveCurrentEstimates(), line 6) per-

forms two tasks. It first groups the individual distances and

bearings obtained from the current frame so that, for instance,

the distances and bearings obtained from the ultrasound sensor

are grouped with similar values computed using the colored

regions. In the case of processing schemes that provide partial

information (e.g. Vision-SIFT only provides bearing), grouping

is done based on the available information. Since the number

of detected obstacles in each frame is small, this grouping

is accomplished using the expected errors in the measured

values. For example, if the difference between the bearing

computed using colored regions and the bearing computed

using SIFT, is more than the expected error in the individual

measurements, they are not grouped together. This “threshold”

can be modified to detect obstacles at different resolutions, and

more sophisticated data association can be performed [21], but

it is not required in our domain.

Once the grouping has been completed, the values within

a group are merged to arrive at a single estimate for each

obstacle sensed in the current frame. The merged values are

the weighted average of the individual values:

dj =
∑

i

wj
d,id

j
i (1)

θj =
∑

i

wj
θ,iθ

j
i

where dj and θj represent the computed distance and bearing

to the jth obstacle in the current frame—they are the weighted

averages of the values provided by the individual schemes

(i ∈ {us, vc, vs}). The symbols wd,i and wθ,i are the weights

associated with the distance and bearing values obtained from

the ith source. However, since SIFT cannot provide a distance,

and the ultrasound only provides directional (left or right)

information:

θj = wθ,us{w
j
θ,vcθ

j
vc + wj

θ,vsθ
j
vs} (2)

wd,vs = 0, wθ,us =

{

−1 if only right US triggers

+1 otherwise

The weights are a measure of the degree of trust associated

with each processing scheme. They are obtained by normal-

izing the degree of certainty associated with each scheme:

wi =
piIi

∑

j pjIj

(3)

pd,i ∝ 1/fd,i, pθ,i ∝ 1/fθ,i

f(x) = a0 +
N

∑

k=1

akxk : N ∈ [1, 3], x = d or θ

where pi ∈ [0, 1] is the certainty associated with a measure-

ment from the ith source (us, c, s). It is a function of the

expected error, which in turn is a function of the measured

distance or bearing. The errors in the measured bearing values

are mostly a function of the distance (except for Vision-

SIFT where a distance value is not available). In situations



where several sensors are able to provide good distance and

bearing measurements, the function can be changed to a joint

function of distance and bearing, and the proposed functional

form can be automatically inferred. The symbol I is the

indicator function that indicates the presence or absence of

a measurement from each source.

The individual and merged estimates generated from the

current frame are matched with the existing estimates (from

prior frames), using the same grouping process used in

line 6. The grouped current and prior estimates are then

merged (MergeWithExistingEstimates(), line 7) through

the “measurement-update” step of the Kalman filters. The prior

estimates without matches in the current frame are retained

until they are eventually removed in the “time update” of line

2. It is possible to directly input the measured values to the

Kalman filters, but that would still require that the current

measurements be matched with the existing estimates. We

also found that using the estimated errors (with the different

processing schemes) in the Kalman filter noise models did

not provide the desired accuracy. We show (below) that the

proposed algorithm enables the robot to robustly detect and

localize obstacles in its environment.

The experimental results in this paper will consider other

mobile robots as the obstacles, and will use the proposed

approach to robustly find the relative distance and bearing

to these obstacles (i.e. localize the obstacles). In general, the

challenge tasks, processing schemes, sensors and robot plat-

forms may change. However, robots operating in a dynamic

environment will still need to fully utilize the available in-

formation. With suitable models for the individual processing

schemes and the target object representations (all of which

can be learned as described in the next section), an approach

similar to the proposed algorithm can be used to perform

robust information fusion.

III. EXPERIMENTAL SETUP AND RESULTS

This section describes the approach to learn the models

required in Algorithm 1, and then describes the experiments

conducted to evaluate the proposed approach.

A. Error Models and Visual Representation

The vision system on the humanoid robot follows an es-

tablished sequence: input images are color segmented using a

color map that maps image pixels to numerical color labels.

Contiguous segmented regions of the same color are grouped

into regions that are then used to detect objects based on

heuristic constraints—see [15] for details.

Most mobile robot environments have a moderate amount

of structure, which can be used to automate tasks that usually

require extensive manual supervision. The robot soccer domain

has objects of known color at known positions. Based on prior

work where this knowledge was exploited to learn the color

map [10] autonomously, we model the expected performance

of the information processing schemes.

The information obtained from the different processing

schemes can be merged autonomously if it were possible to

compute the expected error in each measurement obtained

from the individual schemes—a measurement with a lower

error will automatically be assigned a larger weight in Equa-

tion 3 above. In order to learn such models of the expected

error, obstacles (other robots in the current example) are

placed at fixed positions on the field that are known to the

robot. The robot is asked to move slowly through a sequence

of poses (position+orientation) that it can reach with very

high accuracy using cues from the standard visual processing

sequence described above—typical examples include points

on the center line of the field, and the white “dot” a fixed

distance from each goal (that is used for penalty shootouts).

At each such pose, the robot compares the actual distance and

bearing values against the measured values to compute the

measurement errors. The error values are collected and used

to train a function approximator that models the measurement

error as a function of the measured distance (or bearing),

and then computes a number p ∈ [0, 1] as a measure of the

certainty of the measured values (Equation 3). Polynomial

regression functions are used to approximate these errors

(see Section II-B), and parameters of these functions (de-

gree, coefficients) are learned using the collected statistics.

Similar performance is achieved using more popular function

approximators (e.g. neural networks [22]) but the polynomial

functions are easier to estimate.

At each pose, the robot also projects the known positions

of the obstacles within the field of view of the camera, to the

image. The image gradient (SIFT) features extracted from the

corresponding image regions are used to generate a training

database of features that represents the robot, and a similar

database is created for the background i.e. the environment.

During testing, features extracted from the test images are

compared with those in the training database, and a Nearest

Neighbor classifier [22] is used to classify features and detect

obstacles (> 3 feature matches).

B. Experimental Results

Given the learned models, the humanoid robot can now

effectively localize the obstacles (i.e. other robots) on the field.

The hypothesis we aim to test is that the merged estimate

(using Algorithm 1) is more robust than the estimates obtained

in the absence of this algorithm.

Kalman filters are used in Algorithm 1 to track the ob-

stacles across frames. However, we are primarily interested

in evaluating the detection and localization accuracy, and the

corresponding experiments are described first. Though the

different sensors have different field of view, we tried to make

the test cases as challenging as possible.

The experiments consisted of the robot moving through a

fixed sequence of poses with the obstacles placed at different

points on the field. In our experimental scenario, a detection

accuracy < 100% reflects the inability of the robot to find the

obstacles (i.e. there are no false positives). The localization

errors were hence computed only when the obstacles were

detected correctly. When an obstacle is detected (using the

processing scheme being evaluated), the robot stopped and



performed additional trials at that point. In each such trial,

the relative distance and bearing of the detected obstacles

were measured. The corresponding ground truth values were

provided manually, except when the robot is well-localized

and knows the global position of the obstacle it has detected.

The difference between the estimated and ground truth values

provide the error values that are documented in Table II.

The first three rows of Table II correspond to the individual

processing schemes: ultrasound (US), vision-color (VC) and

vision-SIFT (VS). The last row corresponds to the results

obtained with our algorithm, i.e. US+VC+VS. Each entry in

the distance-error and bearing-error columns was computed

over ≈ 20 different points (over the possible range of distance

and bearing values), with ≈ 15 trials at each point.

The entries in the last column (labeled “Accuracy”) in

Table II were computed by capturing several images as the

robot moved through the sequence of poses to compute the

distance and bearing errors. The robot logged ≈ 400 images

for each processing scheme, with more than half the images

containing the obstacles. Some of these images corresponded

to situations where the obstacles were outside the angular

and/or distance-based field of view of one or more schemes.

These images were hand-labeled to provide the ground truth

(presence or absence of obstacles), and used to compute the

detection accuracy of each processing scheme. The accuracy

results reported in Table II are statistically significant. For the

Scheme Error Accuracy(%)
Distance (cm) Bearing (deg)

Ultrasound (US) 6.5 ± 3.6 −− 70

Vision-Color (VC) 17.5 ± 8.7 8.5 ± 4.0 81.5

Vision-Sift (VS) −− 9.1 ± 4.5 85.5

US + V C + V S 9.2 ± 5.1 8.8 ± 4.3 91.5

TABLE II: The distance and bearing errors, and the detection accu-
racy of the processing schemes. Proposed approach is more robust
than the individual processing schemes.

challenge task under consideration (moving obstacles in the

robot soccer domain), an average error of 10cm in distance

and 10o in bearing, along with a detection accuracy > 90%
would be more than sufficient to operate robustly. The results

in Table II are analyzed by comparing the measured values to

these desired (i.e. target) values.

The processing scheme based on ultrasound information

(row 1 in Table II) computes the distances very accurately

but the bearings cannot be estimated. Though the sensor is

very sensitive to obstacles, it cannot detect obstacles beyond

a certain distance (≤ 150cm) and outside the 60o cone (for

each sensor). Hence, though the detection accuracy is almost

100% within its limited detection zone, the overall accuracy

over the wide range of test cases is only 70%.

When the obstacles are detected using just the color infor-

mation (row 2 in Table II), the error in distance estimates is

substantially higher because the distance computation based

on image region sizes is noisy. The bearing estimates are

however reasonably accurate. The overall detection accuracy

is not good because the color-based detection is not valid at all

viewpoints (the uniform on the obstacle robots is not visible

at all viewpoints) and at large distances (> 200cm).

When the obstacles are detected using just the SIFT-based

processing scheme (row 3 in Table II), the bearing estimates

are statistically similar to those obtained using color. The

expected error in bearing does not change much as a func-

tion of the measured bearing, and the scale and orientation

invariance results in a higher detection accuracy than the color-

based scheme. The robots can now be detected at different

viewpoints and up to a distance of ≈ 400cm. The scheme

fails when the obstacles are a significant distance away from

the robot, or if very few SIFT features are detected on the

obstacles (e.g. due to strong highlights). However, distances

to obstacles cannot be computed.

Though not included in Table II, combining ultrasound with

one of the vision-based techniques does provide an improve-

ment, but either the detection accuracy is low (e.g. US+VC),

or the distance computation is inaccurate or infeasible (e.g.

US+VS with the obstacle outside the FOV of the ultrasound

sensors). However, when all three processing schemes are

used together (final row in Table II), the system is able to

exploit the complementary features of the individual schemes.

The localization errors are within the desired limits, and the

detection accuracy is above the desired value. The distance

errors are higher than those obtained with just the US scheme

because the ultrasound sensors can help reduce distance errors

only when the obstacle is within its field of view. Furthermore,

the proposed approach is better than an ad-hoc information

fusion approach, where extensive tuning over a few days

results in a distance error of ≈ 14.1 ± 6.6cm and detection

accuracy of ≈ 85%. These results show that the proposed

approach better exploits the features of the individual schemes.

Next, Table III shows the computation time associated with the

Scheme Time/frame (msec)

US 33.3

VC 33.3

VS 125 ± 52

US + VC + VS 39.2

TABLE III: Computation time per frame for each processing scheme.
With some approximations, the combined scheme can function at
close to frame rate.

processing schemes under consideration. The ultrasound-based

and color-based processing schemes individually take very

little computational effort. When these schemes are executed

in conjunction with the existing modules (vision, localization,

team coordination etc) the robot can operate at frame rate

(30Hz = 33msec/frame). Though our SIFT implementation

only processes specific regions of the low resolution images

(e.g. only the pixels below the horizon), resulting in processing

times that are much smaller than that of the standard SIFT

implementation, the approach is computationally expensive.

However, if the SIFT-based approach is applied at a reasonable

frequency (e.g once every 10-20 frames) and over appropriate

image regions, the combined approach can operate at close to

frame rate. Kalman filter-based tracking of obstacles provides



(a) (b)
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Fig. 3: (a)-(d) Image results: detected obstacles are enveloped in pink
boxes superimposed on segmented images.

two benefits: (a) it is easy to incorporate the velocity of moving

obstacles and account for the relative motion between the

robot and the obstacle, and (b) it propagates belief for a few

frames after the last sighting of an obstacle, and is robust to

some intermittent noisy measurements and mis-classifications.

The performance is observed to be statistically similar to that

reported in Table II. Some qualitative results of the robot’s

performance are shown in Figure 3. The detected obstacles

are enveloped in rectangular bounding boxes (in pink when

viewed in color) superimposed on the segmented images.

IV. RELATED WORK

Humanoid robots, and mobile robots in general, are in-

creasingly being equipped with multiple sensors and used in

practical applications [3]–[6]. Since the sensors have different

capabilities, and the environment changes dynamically, it is

essential that all the available information be used effectively.

In recent times, the DARPA challenges [4]–[6] have had

robot vehicles equipped with several sensors (lasers, cameras,

GPS etc) navigating autonomously in the real-world domains

such as deserts and urban roads. However, most of the

decision-making was based on input from the range-finders

and GPS, and visual input was predominantly used only for

close-range detection or obstacle avoidance. In related work,

Wellington et al. [14] used lasers and cameras to find the true

ground height and hence traversability of vegetation-covered

regions. Rankin et al. [16], on the other hand, merged stereo

vision and thermal signatures to detect drop-offs at night.

Murarka et al. [23] utilized stereo and range information

to detect drop-offs on a robot wheelchair. However, these

methods fail to model and use the errors associated with each

information source—information fusion is typically based on

manually specified heuristics.

Sensor fusion has been extensively studied in the field of

networks and multiagent systems [24]. Several approaches

have also been proposed for specific tasks such as image

registration, using established state-estimation methods such

as Kalman filters or Bayesian networks [21], [22]. However,

most of these strategies use manually-specified heuristics that

require supervision when applied to mobile robot domains.

Some methods are also computationally expensive.

On humanoid robots, localization and object tracking is

accomplished using the same probabilistic state estimation

techniques used on other mobile robot domains (e.g. Kalman

filters and Monte Carlo methods) [25]. Research in the

RoboCup framework [26] and the humanoid robotics com-

munity has resulted in several innovative techniques for chal-

lenges specific to humanoid robot platforms. For instance, ro-

bust techniques have been developed to address the challenges

of robot control and balance [12], [13]. Approaches have

also been proposed for sensor-based navigation, for instance

using stereo-vision [27]. Humanoid robots are also being used

extensively for human robot interaction studies [28]. However,

as with other mobile robot platforms, there is a need for an

efficient strategy to fully utilize the available information to

operate reliably in dynamic environments. This paper presents

an approach that addresses an instance of this information

fusion challenge in the robot soccer scenario.

V. CONCLUSIONS AND FUTURE WORK

Developments in sensor technology have resulted in the

deployment of mobile robots in applications such as medicine

and autonomous navigation [3], [4]. A major challenge for

a robot equipped with multiple sensors, is the ability to

efficiently merge the information obtained from each sensor

through different processing schemes, in order to operate

robustly in dynamic environments.

In this paper we have presented an instance of such multi-

sensor information fusion using range and visual information.

The robot is able to autonomously learn models that predict the

performance of the different schemes that process the visual

input (from a color camera) and range input (from ultrasound

sensors). The learned models are used in a probabilistic

approach that effectively merges the information obtained from

the different sources. In the robot soccer domain, we have

shown that a humanoid robot is able to detect and localize

obstacles significantly more robustly than what could have

been accomplished in the absence of such an information

fusion scheme.

In multirobot settings (e.g. robot soccer, disaster rescue),

information merging can have other advantages. Information

communicated by teammates can be merged to obtain robust

estimates about areas that are hidden from the robot’s field

of view, which would prove very useful in surveillance sce-

narios [9]. In robot soccer, for instance, if the robot knows

the global position of one of its teammates (e.g. the teammate

communicates its pose with high certainty), relative distance

and bearing to this teammate can help the robot localize itself

in the global frame of reference. Furthermore, in applications



where the communication is delayed or noisy, the robots in

a team may be able to coordinate their actions better using

information fusion schemes.

Currently the robot learns its errors models (and object

models) in a separate training phase. However, the robot can

bootstrap such that the learned models are updated over time

in response to environmental changes. Obstacles and other

objects that are found to be stationary can even be used

as “fixed markers” that enable a robot to localize when the

initial set of field markers (e.g. goals) are not visible. Another

direction of further research is to use a combination of existing

gradient feature detectors such that the robot can detect the

desired objects more efficiently and reliably.

This paper shows the feasibility of effectively using the

available information for robust performance on a humanoid

robot. The long-term goal is to enable robots to autonomously

learn environmental models, effectively merge information

obtained from different sources, and operate robustly in real-

world application domains.
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