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Abstract. An assistive embodied AI agent often has to collaborate with
previously unseen humans. State of the art frameworks for such ad hoc
teamwork use a large labeled dataset of prior observations to model the
behavior of other agents and to determine the ad hoc (i.e., embodied AI)
agent’s behavior. These approaches do not support rapid incremental
revisions or transparency, and the necessary resources (e.g., training ex-
amples, computation) are not readily available in practical domains. Our
previous work introduced an architecture that enabled an ad hoc agent to
choose its actions in simple simulated domains based on non-monotonic
logical reasoning with prior domain knowledge and models learned from
limited examples to predict the behavior of other agents. Here, we extend
this architecture to enable an ad hoc embodied AI agent to collaborate
with a human performing household tasks in a complex indoor environ-
ment, focusing on the ad hoc agent’s ability to identify and reason with
relevant knowledge, and provide relational descriptions as explanations
of its behavior and that of the human. We evaluate our architecture’s
capabilities in VirtualHome, a realistic 3D simulation environment.
Keywords: Ad hoc teamwork · Non-monotonic logical reasoning · Eco-
logical rationality · Explanation generation · Embodied AI.

1 Introduction
The screenshots in Figure 1 show an embodied AI agent collaborating with
a previously unseen human to perform household tasks (e.g., make breakfast,
clean dishes) in a multiagent simulation environment. The agent has to reason
with different descriptions of some commonsense domain knowledge and uncer-
tainty. This includes logic-based and metric descriptions of some attributes of
the domain and the agent, some rules governing actions and change, and de-
fault statements that are true in all but a few exceptional circumstances. The
agent may have to revise its knowledge and action choices in response to do-
main changes. Also, the agent has a limited view of the environment and limited
communication bandwidth. This scenario is an instance of Ad Hoc Teamwork
(AHT), the problem of enabling an agent to cooperate with others without prior
coordination [22], which arises in many practical applications.

The state of the art in AHT has moved from using predetermined policies
for selecting actions in specific states to methods with a key data-driven compo-
nent that uses a long history of prior experiences to build probabilistic or deep
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Fig. 1. Screenshots from the VirtualHome environment [16], showing a human (female
in green top) and an embodied AI agent (male in blue shirt) collaborating.

network methods that model the behavior of other agents (or agent types) and
optimize the behavior of the ad hoc agent [15]. However, it is difficult to gather
large training datasets of different situations in practical domains. Also, these
methods lack transparency, and make it difficult to revise existing knowledge
over time. Unlike existing work, our prior work developed a knowledge-guided
architecture for AHT, enabling an ad hoc agent to determine its actions based
on non-monotonic logical reasoning with prior domain knowledge and learned
predictive models of other agents’ behaviors [8, 9]. In this paper, we describe an
extension, REACT, which considers a more complex embodied environment for
human-agent collaboration, focusing on two key capabilities:
1. Automatically identify and perform non-monotonic logical reasoning with

relevant commonsense domain knowledge and a rapidly-learned predictive
model of a human agent to determine an ad hoc agent’s actions; and

2. Introduce and implement a methodology to automatically construct on-
demand relational descriptions of the decisions of the ad hoc agent and the
human as explanations in response to different types of questions.

We evaluate these capabilities in household scenarios in VirtualHome, a realistic
physics-based 3D simulation environment for multiagent collaboration [16]. We
first describe related work (Section 2), followed by our architecture (Section 3),
results of experimental evaluation (Section 4), and conclusions (Section 5).

2 Related Work
As discussed in a recent survey on AHT [15], early work used specific protocols to
define the agents’ behavior in different scenarios [6] while subsequent work used
sampling methods [5]. State of the art methods include a key data-driven compo-
nent, using probabilistic, deep-network and/or reinforcement learning methods
to learn action choice policies for different types of agents based on a long history
of prior observations of similar agents or situations. For example, attention-based
deep neural networks have been used to jointly learn policies for different agent
types [7] and account for different team compositions [17], and sampling strate-
gies have been combined with learning methods to optimize performance [23].
Such methods require considerable computation, memory, and training exam-
ples, build opaque models, and make it difficult to adapt quickly to changes.
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There is considerable research in action languages and logics for multiagent
domains. This includes action language A for an agent computing cooperative
actions in multiagent domains [19], and recent work on action language mA∗
that introduces action types, epistemic planning, and dynamic awareness to
model realistic interactions [4]. Our prior AHT architecture translated an ac-
tion language description of prior knowledge to a program in Answer Set Prolog
(ASP), a non-monotonic logical reasoning paradigm. For any given goal, the ad
hoc agent computed a plan by reasoning with this knowledge and the predicted
action choices of other agents (obtained from learned models) [9].

Embodied AI refers to AI systems operating within physically realistic (sim-
ulation) environments such as Habitat [18] and VirtualHome [16]. These interac-
tive platforms support the generation of complex scenarios for evaluating algo-
rithms for single-agent and multi-agent collaboration problems. With the increas-
ing use of embodied AI agents and AI methods in different applications, there is
renewed focus on transparency and explainability of decision-making [1]. Work
in our group on a theory of explanation generation has been implemented within
a refinement-based architecture (that uses ASP for reasoning) for robots [21].

The architecture described in this paper builds on and extends our prior work
in two significant ways: (i) automatically identifies and reasons with relevant
knowledge, reducing the search space to support scaling to complex domains; and
(ii) provides a methodology for generating relational descriptions as explanations
in response to different kinds of questions.

3 Architecture
Figure 2 is an overview of our architecture, Reasoning and Explanations for Ad
hoc Collaboration in Teams (REACT), for human-embodied AI collaboration.
The embodied AI agent is the ad hoc agent that performs non-monotonic logi-
cal reasoning with prior commonsense domain knowledge and an incrementally
learned behavior model of its teammate (i.e., human). At each step, each team-
mate receives state observations, and independently determines and executes an
action. REACT’s components are described using the following example.

Example Domain 1 [Example Embodied AI Agent Domain]
Consider an embodied AI agent and a human collaborating to complete house-
hold tasks; Figure 1 shows snapshots while preparing breakfast [16]. The agent
and the human can interact with the environment through high-level actions,
e.g., move to places, pick up or place objects, switch appliances on or off, and
open or close appliances. Completing a task requires a sequence of such actions
to be computed and executed by the embodied AI agent or the human who
do not communicate directly with each other. Also, the agent assumes that the
human has access to the same state information and will make (what it consid-
ers as) rational decisions. Prior commonsense knowledge of the embodied agent
includes relational descriptions of some attributes of the domain, ad hoc agent,
and human (Section 3.1); a learned (or encoded) graph of information about
likely locations of objects in the domain; and default statements that hold in all
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Fig. 2. REACT architecture

but a few exceptional circumstances. The knowledge also includes some axioms
governing actions and change, e.g., the agent or human can only pick one object
at a time, and certain food items require preparation prior to consumption.

3.1 Knowledge Representation and Reasoning
In REACT, the transition diagram of any given domain is described using an ex-
tension of action language ALd [12]. REACT’s domain representation comprises
a system description D, a collection of statements of ALd, and a history H. D has
a sorted signature Σ with basic sorts such as object, appliances, ad_hoc_agent,
human, and step (for temporal reasoning) in our example domain; actions such
as grab(ad_hoc_agent, object) and switch_on(ad_hoc_agent, appliances); stat-
ics, i.e., domain attributes whose values cannot be changed by actions; and flu-
ents, i.e., attributes whose values can be changed by actions. Basic sorts (and
actions) are arranged hierarchically, e.g., microwave is a sub-sort of electricals
that is a sub-sort of appliances, a sub-sort of objects; and the action find can in-
clude a series of move and rotate actions. Fluents can be inertial, i.e., they obey
laws of inertia and are changed by actions, e.g., in_hand(ad_hoc_agent, object)
describes an object being held by the ad hoc agent; and defined, i.e., they do not
obey inertia laws and are not directly changed by the ad hoc agent’s actions,
e.g., agent_hand(human, object) describes the human holding an object.

Based on Σ, the domain dynamics are described in D using three types of
axioms: causal law, state constraint, and executablility condition such as:

grab(A,O) causes in_hand(A,O) (1a)
heated(F ) if on(F,E), switched_on(E) (1b)
impossible grab(A,O) if on(O,E), not opened(E) (1c)
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where Statement 1(a), a causal law, implies that grabbing an object causes
it to be in the hand of the ad hoc agent; Statement 1(b), a state constraint,
implies that a food item placed in an electrical appliance (e.g., microwave) that is
switched on gets heated; and Statement 1(c), an executability condition, prevents
the ad hoc agent from trying to grab an object from an appliance with a closed
door. History H is a record of observations of the form obs(fluent, boolean, step),
and action executions of the form hpd(action, step) at specific time steps. It also
includes default statements that are true in the initial state.

To reason with knowledge, we automatically construct program Π(D,H) in
CR-Prolog [3], an extension to ASP that supports consistency restoring (CR)
rules. Π(D,H) includes statements from D and H, inertia axioms, reality check
axioms, closed world assumptions for defined fluents and actions, helper rela-
tions, e.g., holds(fluent, step) and occurs(action, step) to imply that a fluent is
true and an action is part of a plan at a time step, and helper axioms that define
goals and guide planning and diagnosis. ASP encodes default negation and epis-
temic disjunction, and supports non-monotonic logic reasoning. This ability to
revise previously held conclusions is essential for agents reasoning and acting in
practical domains based on incomplete knowledge and noisy observations. The
CR rules allow the agent to make assumptions (e.g., that a default statement
does not hold) under exceptional circumstances to recover from inconsistencies.
All reasoning tasks (i.e., planning, diagnostics, and inference) are then reduced to
computing answer sets of Π. We use the SPARC system [2] to solve CR-Prolog
programs. Example programs and results are in our open source repository [10].

Our current application domain is substantially more complex than those in
our prior work, with many more objects and actions; the corresponding domain
description is more complex and the tasks require much longer plans. To enable
the use of the KR formalism (above), REACT incorporates new strategies to
constrain the search space. Specifically, as the ad hoc agent traverses through our
household environment or in other similar environments, it can collect statistics
from observations, e.g., of relevant locations of objects, human action preferences.
Any such (learned or encoded) knowledge is used to automatically restrict the
grounding and simplify the processing. For example, depending on the goal and
specific actions in the plan, the ad hoc agent can automatically select the relevant
signature and restrict the axioms to this reduced signature.

3.2 Agent Behavior Models
The human’s actions also revise the domain state, which determines the ad hoc
agent’s action choices. REACT thus reasons with prior knowledge and models
that predict the behavior of the human. Our prior work introduced the use of
the Ecological Rationality (ER) principle [13], which is based on Herb Simon’s
definition of Bounded Rationality and the algorithmic theory of heuristics, to
rapidly learn and revise these predictive models. The ER-based approach enables
the ad hoc agent to choose relevant attributes and learn models of the human’s
behavior from limited data while supporting rapid, incremental updates.

Specifically, REACT enables the ad hoc agent to learn an ensemble of Fast
and Frugal (FF) trees that predict the behavior of the human; each FF tree pro-
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Fig. 3. FF tree model of human behavior for the find(microwave) action.

Table 1. Attributes used to create behavior models of human.

Description of the attribute

Immediate two previous actions of the human
Immediate two previous objects human interacted
Position of the human (x,y,z)
Orientation of the human (x,y,z)
Distance from human to the kitchen table
Distance from human to the kitchen counter
Number of objects on the kitchen table

vides a binary choice for a particular action and the number of leaves in the tree
is limited by the number of attributes [14]. One FF tree in an ensemble learned
for the human is shown in Figure 3. The initial version of these trees were built
using only 100 traces of human action choices and domain state from the Virtual-
Home domain, with the corresponding attributes listed in Table 1. Furthermore,
consistent agreement (disagreement) between observations and predictions of an
existing model triggers model choice (revision); the ad hoc agent is thus able to
quickly adapt to changes in the domain or the other agent.

3.3 Transparency in decision making
An automated decision-making system’s ability to answer questions about its
decisions promotes acceptability [1, 11]; this transparency also plays an impor-
tant role in human reasoning and learning. Unlike existing methods that seek
to make a complex learned model interpretable, or to explain (or justify) all the
choices made by a reasoning system, REACT seeks to respond to any given ques-
tion about specific decisions made by the ad hoc agent or the human by quickly
identifying the relevant information and constructing relational descriptions.

REACT’s use of knowledge-based reasoning and simple predictive models is
the foundation for the approach introduced in this paper to provide the desired
on-demand descriptions. We build on prior work in our group that demonstrated
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the ability to identify the axioms and literals relevant to the questions posed
to a system making automated decisions [20]. The agent generates relational
descriptions in response to four types of questions identified as being important
in work on explainable planning [11]. Here we describe the procedure the ad hoc
agent follows to generate responses for these types of questions.

1. (Causal questions) Why did you execute aI , i.e., action a at step I?
• If aI is not the last action of plan P executed by the agent, extract actions
{Aaf} ∈ P that occurred immediately after aI ∈ P .

• Examine Π(D,H) to identify axioms with the negation of aI+i ∈ {Aaf} in
head, i.e., axioms encoding conditions that prevent aI+i from occurring.

• Check if each such axiom’s body is satisfied by answer set at time step I. If
yes, identify fluent literals f in body whose value changed from I to I + 1.

• All such literals {f} over all identified axioms have been changed by the
execution of aI . Collect these literals to construct the answer.

• If aI is the last action in P , it contributed directly towards achieving the
goal. Use goal G and aI to construct the answer.

2. (Contrastive questions) Why did you not execute aI , i.e., action a at I?
• Examine Π(D,H) to identify axioms with the negation of aI in its head,

i.e., executability conditions.
• Check if each selected axiom’s body is satisfied by answer set at I. If yes,

collect fluent literals {f} in body as they prevented consideration of aI .
• If not, examine Π(D,H) to identify axioms with aI in its body alongside

other literals {f ′}, i.e., causal laws.
• Extract the additional precondition literals {f ′}. Examine Π(D,H) to

identify axioms with l ∈ {f ′} in its head, i.e., state constraints.
• Check if selected axiom’s body is satisfied by answer set at step I. If not,

use literal l ∈ {f ′} and the body literals of axiom to construct answer.

3. (Justify beliefs) Why did you believe lI , i.e., l at step I?
• Replace the grounded terms of lI with the corresponding variables.
• Examine Π(D,H) to identify axioms with lI in head. i.e., state constraints.
• Check whether each selected axiom’s body is satisfied by the answer set at

step I. If yes, collect fluent literals {f} in body as they support belief lI .
• If multiple axioms are identified, select one of them to provide explanation.
• If belief tracing is enabled, create a tree with lI as its head and each selected

axiom as a branch. With the axiom, also store the supporting {f} fluents.
• Repeat procedure for each fluent literal in {f} as target belief until no

more axioms are identified. An example of a belief tree is in Figure 4.

4. (Counterfactual Questions) What will be the outcome if you (or human
R) execute a′I in (future) step I? What will be the resultant world state at
(future) step I if the human executes actions predicted by learned models?
• Retrieve most recent state observation of environment SI−n in relation to

step I. i.e., start with the current best estimate of world state.
• Use the predictive behavior models of human(s) to retrieve their action
{Aot

I−n} for step I −n. REACT provides action for the ad hoc agent aI−n.
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• Perform mental simulation of the future step I − n + 1 from SI−n using
existing knowledge and action choices of human(s) {Aot

I−n, aI−n}.
• Repeat above n times, i.e., roll out the future and explore effects of the

action of ad hoc agent and human until environment reaches the queried
step I. Collect the state information SI at I.

• Feed SI to the predictive behavior model of the human R (REACT) to
retrieve the action aoI (aI) for R (ad hoc agent) in state SI .

• Traverse through the FF tree model of R to identify active branches when
selecting aoI . Collect aoI and these branches to construct the answer.

• Replace action aoI (aI) with a′I for the human R (ad hoc agent).
• Roll out environment one step to obtain the resultant state SI+1. Collect

state information SI+1 to construct the explanation.
The acquired information may be used for further training, especially the human
behavior prediction models. For all types of questions, the identified literals are
processed using existing tools and templates to generate textual descriptions
provided as responses (i.e., explanations) before, during, or after planning or
execution. Section 4.3 provides execution examples.

4 Experimental Setup and Results
We experimentally evaluate two hypotheses regarding the capabilities of REACT
in the VirtualHome domain:

– H1: The combination of reasoning and learning in REACT enables the ad
hoc agent to adapt to changes and perform better than a logic-based baseline;

– H2: REACT enables the ad hoc agent to generate relational descriptions as
explanations of its decisions and beliefs and those of the other agents.

The performance measures were the number of steps (i.e., plan length) and the
total time taken by the team (i.e., human and embodied AI agent) to complete
the task. Details of experiments and baselines are provided below.

4.1 Experimental Setup
In the VirtualHome domain, we modeled the human as a simulated entity that
chooses its actions based on an ASP program. The human was assigned the
same goal as the embodied AI (ad hoc) agent, e.g., prepare and eat breakfast.
The baseline operation involved each of them receiving the same observations
of the domain at each step; they then continued with their planned actions or
computed a new plan as needed. There was no direct communication between
them, and they did not have any prior knowledge or model of each other’s ca-
pabilities. With REACT, the ASP program for the ad hoc agent and that for
the human were similar. The key difference was that the ad hoc agent used the
learned models to predict a couple of actions of the human, and its ASP pro-
gram included additional axioms for reasoning about these predicted actions.
The agent’s plan thus expects the preconditions for some intermediate steps to
be created by the actions executed by the human although the human may not do
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Table 2. Mean and standard deviation of no. of steps and time taken by REACT
architecture to achieve the goal, expressed as a fraction of these values for the baseline.

Architecture Steps Time

REACT 0.89± 0.11 0.90± 0.19
Baseline 1± 0.05 1± 0.04

so. The human, on the other hand, could not predict the ad hoc agent’s actions
and the axioms to reason about these actions were not included in the corre-
sponding ASP program. The human’s actions were primarily determined by the
current state. The human’s ASP program did include actions such as eating and
drinking that were not available to the ad hoc agent. Furthermore, the human’s
ASP program encoded priorities and preferences, e.g., when preparing breakfast,
the human toasted the bread first before preparing the cereal.

As described in Section 3.2, each predictive model was an ensemble of FF
trees based on just 100 prior traces of human actions and domain state. These
observations also provided priors regarding the likely locations of objects; this
information is used to simplify planning (end of Section 3.1).

To evaluate H1, we designed Exp1 by first constructing 720 different con-
figurations, each with a different arrangement and status of objects in the initial
condition, e.g., bread on the kitchen table instead of the counter, microwave
open instead of closed. We then randomly chose 100 of these configurations and
measured the ability to achieve the shared goal (e.g., prepare and eat breakfast)
with each of our two options: REACT and the baseline. To evaluate H2, we
designed Exp2 in which we randomly selected 10 configurations (from the 100
in Exp1 and saved the corresponding answer sets (with REACT, baseline) to
provide ground truth. Then, we posed 32 different questions (divided between
the four types of questions) about some chosen steps in each trial corresponding
to one of these 10 configurations, with answers computed as described in Sec-
tion 3.3. We recorded the precision and recall of retrieving literals to answer these
questions, with saved answer sets used to provide ground truth. Furthermore,
we considered execution traces as qualitative evaluation of H2.

4.2 Experiment Results
Table 2 summarizes the results of Exp1. Since the plan length and task com-
pletion time will vary substantially between trials based on the configuration,
we computed the values of the performance measures for REACT as a fraction
(i.e., ratio) of those for the baseline in each trial. The average of these ratios is
reported in Table 2. We observe that REACT reduces the number of steps and
the time taken to achieve the goal compared with the baseline. This significant
improvement in performance provided by REACT supports H1.

Table 3 shows the prediction accuracy of the behavior models learned by
the ad hoc agent for the human using the ensemble of FF trees, as described in
Section 3.2. We observe that the model does make errors, but it supports rapid
learning and revision. Also, reasoning with prior knowledge and the output of
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Table 3. Prediction accuracy of the learned behavior model for human.

Model Accuracy

Human 85.19%
Table 4. Precision and recall of retrieving relevant literals for providing explanations.

Question type Precision Recall

Action justification 1.00 1.00
Contrastive 0.89 0.99
Belief justification 0.88 0.94
Counterfactual 1.00 0.78

these predictive models significantly improves the performance (as summarized
above). In other experiments not reported here due to lack of space, we noticed
that the ad hoc agent was able to revise these models to both improve accuracy
and to track (or adapt to) changes in the human’s behaviors over time.

Table 4 summarizes results of Exp2. The observed high values of precision
and recall indicate the ability to automatically extract the correct literals to
provide relational descriptions as explanations in response to different types of
questions, thus supporting hypothesis H2.

4.3 Execution Trace
Next, we provide execution traces illustrating REACT’s capabilities. Consider
the scenario in which the: bread slice is inside toaster; cutlets are on kitchen
counter; poundcake is on kitchen table; water glass is in bedroom; microwave is
closed and switched off; frying pan is on stove that is switched off; and the human
and ad hoc agent are in the kitchen. To help the human prepare breakfast, the
ad hoc agent generated a plan with 23 steps, some of which are shown in Table 5;
the agent expects the human to complete some intermediate steps.

Execution Example 1. [Action Justification, Contrastive, Counterfactual] Con-
sider an exchange with the ad hoc agent after executing first plan step.
– Questioner: “Why did you find bread slice in step 0 ?"
– Ad hoc Agent: “Because I had not found the bread slice yet and I wanted

to grab it in step 1".
The agent’s response draws attention to the target action’s outcome being a
requirement for executing a subsequent action. The agent can also be asked
why it did not consider picking up a different object.

Table 5. Part of the ad hoc agent’s plan for task in Execution Example 1; brdslice
refers to breadslice, mcrwave to microwave, ktchntable to kitchentable.

occurs(find(ahagent,brdslice),0) occurs(putin(ahagent,cutlets,fryingpan),8)
occurs(grab(ahagent,brdslice),1) occurs(put(ahagent,cutlets,ktchntable),11)
occurs(put(ahagent,brdslice,ktchntable),2) occurs(grab(ahagent,poundcake),13)
occurs(switchon(ahagent,stove),4) occurs(open(ahagent,mcrwave),15)
occurs(grab(ahagent,cutlets),6) occurs(put(ahagent,poundcake,mcrwave),16)
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Table 6. Part of plan generated by ad hoc agent to avoid conflict with human.

occurs(find(ahagent,cutlets),1) occurs(put(ahagent,poundcake,microwave),9)
occurs(grab(ahagent,cutlets),2) occurs(close(ahagent,microwave),10)
occurs(find(ahagent,fryingpan),3) occurs(switchon(ahagent,microwave),11)
occurs(putin(ahagent,cutlets,fryingpan),4) occurs(open(ahagent,microwave),13)
occurs(grab(ahagent,poundcake),6) occurs(put(ahagent,poundcake,kitchentable),16)
occurs(open(ahagent,microwave),8) occurs(put(ahagent,cutlets,kitchentable),24)

– Questioner: “Why did you not find the water glass in step 0?"
– Ad hoc Agent: “Because I predicted that the human will find the water

glass in step 0."

The agent may also be asked about the human’s action choices.
– Questioner: “Why do you think human will grab water glass in step 1?"
– Ad hoc Agent: “Because my prediction is that the human wants to bring

the glass to the table."
– Questioner: “What if the human decided to grab the cutlets in step 1 ?"
– Ad hoc Agent: “If the human grabs the cutlets in step 1, they will be in

the human’s hands in step 2."
To answer questions about hypothetical situations, the ad hoc agent has to
simulate the evolution of state, and the execution of actions by the human
and the agent, for a few steps in order to identify and report the motivation
for specific action choices.

Execution Example 2. [Action Justification, Contrastive, Belief Tracing] The
accuracy of the model predicting human action choices (85%, Table 3) indicates
that the predictions can be incorrect, particularly in situations in which the
agent’s understanding of the human is limited to a few observations. Consider
a variant of the scenario above, in which the human decided to find and grab a
slice of bread as the first action. Since the ad hoc agent decided to do the same
action, it created a conflict. Table 6 shows key steps of the plan computed by
the ad hoc agent to overcome this conflict. The subsequent conversation between
the questioner and the ad hoc agent is as follows:

– Questioner: “Why did you find cutlets in step 1 ?"
– Ad hoc Agent: “Because I have not found the cutlets and I wanted to grab

them in time step 2".
– Questioner: “Why did you not grab bread slice in step 1?"
– Ad hoc Agent: “Because the human was holding the bread slice."

This exchange demonstrates the ability of the ad hoc agent to change its plan
in order to prevent a conflict with the human and to justify this decision.
Figure 4 shows the belief tree created for tracing the ad hoc agent’s beliefs
and justifying why it did not grab the bread slice in step 1. The green and
blue boxes represent the satisfied axioms and their grounded literals while
red boxes represent the axioms that were not satisfied in this example.
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Fig. 4. Belief tracing to explore why ad hoc agent did not grab bread slide in step 1.

Overall these results support hypothesis H2. Additional results in the form of
videos are available in our open-source code repository [10].

5 Conclusions
This paper described REACT, an AHT architecture for an embodied AI agent to
collaborate with a human by reasoning with prior commonsense domain knowl-
edge and incrementally learned models predicting the behavior of the human.
REACT combines the principles of non-monotonic logical reasoning and eco-
logical rationality, automatically identifying and reasoning efficiently with the
relevant information. Also, the interplay between reasoning and learning enables
the embodied AI agent to provide relational descriptions as on-demand expla-
nations of its own decisions and those of the human. Experimental evaluation in
a realistic physics-based simulation environment (VirtualHome) demonstrates
REACT’s capabilities and the improvement in performance compared with a
logical reasoning baseline. Future work will explore: (a) incremental learning of
other aspects of domain knowledge (e.g., axioms) in such complex domains; (b)
scalability to multiple ad hoc agents and humans; and (c) implementation and
evaluation on physical robots in AHT settings.
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