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ABSTRACT

For an artificial agent to be fully autonomous and robust, it needs to be able to learn

from and adapt to the environment. In order to keep the learning costs and complexity

low, knowledge transfer from humans to agents becomes essential. Ideally, human

users, including those without programming skills (i.e., non-technical users) should

be able to teach agents desired behaviors using simple communication methods as

quickly and as effortlessly as possible. Past work showed that giving human feedback

can greatly reduce the sample complexity required to learn a good policy and can

enable lay users to teach agents the behaviors they desire. However, prior work has

focused on either training agents using human feedback or enabling agents to learn

from environmental feedback. In case of domains with multiple agents, providing

extensive human feedback becomes costly and infeasible and thus in such domains, it

becomes necessary that the agents learn from limited human feedback. In this thesis,

we enable an agent to exploit both environmental feedback and human input when it

is available, thereby improving its performance significantly. Two domains are used to

evaluate the agent’s performance: “Tetris” and “Keepaway Soccer Simulator”. While

Tetris domain has a single agent, Keepaway Soccer domain is a more complex domain

with multiple agents.
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CHAPTER 1

INTRODUCTION

For an artificial agent to be fully autonomous and robust, it needs to be able to

learn from and adapt to the environment. In order to keep the learning costs and

complexity low, knowledge transfer from humans to agents becomes essential. The

vast majority of knowledge transfer from humans to learning agents occurs through a

programming language interface. This method, unfortunately, can only be harnessed

by a small, technically trained subset of the population. In addition, this method is

not so efficient in domains with large number of agents, as it is difficult for a single

human (or a small set of humans) to give feedback to a large set of agents. Work

has been done to create systems that allow humans to give advice to agents or to

demonstrate the task for the agent. However, the complexity of these two methods

makes it challenging to implement them in a way that is accessible to a user without

technical training. Additionally, these methods require that the human be able to

perform the task himself/herself.

Prior work [1] introduced methods to design agents that can be interactively shaped

by human trainers. For instance, in the TAMER framework introduced in [1], human

trainer can merely give positive and negative reinforcement signals (called reward in

the learning agent community) to the agent. It only requires that a person observe

the agent’s behavior, judge its quality, and send a feedback signal that can be mapped

to a scalar value (e.g., by button press ).

Existing work, however, does not allow human training to be combined with au-

tonomous learning based on a coded reward function. This research addresses the key

1



Texas Tech University, Mamatha Aerolla, May 2011

challenge of how to best combine human and environmental feedbacks to improve the

agent’s performance. Before we discuss the problem statement, let us briefly discuss

the terminology used henceforth in this document.

1.1 Terminology

This section briefly discusses the terminology used for the purpose of this thesis

work.

1. Reinforcement Learning : Reinforcement learning is a computational goal

oriented approach to learning from interaction. It is learning what to do, how

to map situations to actions, so as to maximize a scalar reward signal. The

learner is not told which action to take, as in most forms of machine learning,

but instead must discover which actions yield the most reward by trying them

[51](see Figure 1.1).

2. Reward Function : A reward function defines the goal in a reinforcement

learning problem. It maps each perceived state (or state-action pair) of the

environment to a single number, a reward, indicating the intrinsic desirability

of that state.

R : S ×A× S ′ → <

3. Value of a state : The value of a state is the total amount of reward an agent

can expect to accumulate over the future, starting from that state.

4. Value Function : It maps each perceived state of the environment to the

value of that state indicating the long term desirability of that state.Whereas a

reward function indicates what is good in an immediate sense, a value function

2
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Figure 1.1. The Reinforcement Learning Framework

specifies what is good in the long run.

Vπ : S → <

5. Policy : Policy is a mapping from perceived states of the environment to actions

to be taken when in those states. It defines the learning agent’s way of behaving

at a given time.

π : S → A

6. Environmental Feedback : If reward comes from the environment, it is called

environmental feedback.

7. Human Feedback : If reward comes from a human, it is called human feedback

3
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1.2 Problem Statement

In order for the learning agents to be useful to non-technical users, it is important

to be able to teach agents how to perform new tasks using simple communication

methods as quickly and as effortlessly as possible. The agent should be able to

learn both in the presence and absence of human feedback. However, only limited

research has been done on modeling the human feedback or training an agent to learn

simultaneously from both human and environmental feedbacks.

In this thesis, we enable the agent to efficiently utilize the human feedback and the

environmental feedback, such that the agent learns from the environmental interaction

and efficiently combines the information with the limited human feedback when it is

made available. Two simulated domains are used to evaluate the agent’s performance:

“Tetris” (with a single agent) and “Keepaway Soccer” (with multiple agents). The

related work is summarized in Chapter II while Chapter III describes the work that

forms the basis of the work described in this thesis. The performance of the agent

trained using our method in Tetris domain is shown in Chapter IV. Chapter V briefly

describes Keepaway soccer Domain. The performance of the agent trained by both

human and environmental feedbacks in Keepaway Soccer Domain is shown in Chapter

VI while Chapter VII presents the conclusions.

4
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CHAPTER 2

RELATED WORK

Human-Robot Interaction (HRI) has received considerable attention in recent times

and this chapter presents a brief review of the related work in this field. The goal of

this review is to present a unified treatment of HRI-related problems, which is the

underlying motivation for this thesis.

Early robot implementations were remotely operated devices with no or minimal

autonomy. As stated in [50], Nicola Tesla demonstrated a radio-controlled boat in

1898, which he described as incorporating “a borrowed mind”. Tesla described the

first race of robots as mechanical men which will do the laborious work of the hu-

man race. He even envisioned one or more operators simultaneously directing 50

or 100 vehicles. Other examples include the Naval Research Laboratory’s Electric

Dog robot from 1923 which attempts to remotely pilot bombers during World War

II, the creation of remotely piloted vehicles, and mechanical creatures designed to

give the appearance of life. As technology evolved, the capabilities of remotely op-

erated robots have grown (see [18] for a brief history). Complementing the advances

in robot mechanics, research in artificial intelligence has attempted to develop fully

autonomous robots.

As stated in [50], a breakthrough in autonomous robot technology occurred in

the mid 1980s with work in behavior-based robotics [12,16]. A second important

breakthrough for autonomy as it applies to HRI is the emergence of hybrid architec-

tures. These architectures simultaneously allow sophisticated reactive behaviors that

provide fundamental robot capabilities along with the high-level cognitive reason-
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ing required for complex and enduring interactions with humans. Robot behaviors

initially focused on mobility, but more recent contributions seek to develop lifelike

anthropomorphic behaviors [32], acceptable behaviors of household robots [22], and

desirable behaviors for robots that follow, pass, or approach humans [20,25,31].

Emerging from the early work in robotics, human factors experts have given consid-

erable attention to two paradigms for human-robot interaction: teleoperation and su-

pervisory control. At the teleoperation extreme, a human remotely controls a mobile

robot or robotic arm. With supervisory control, a human supervises the behavior of

an autonomous system and intervenes as necessary. This is important because robots

are becoming part of our everyday social lives - and will increasingly become so. In

future years, robots may become caretaking assistants for the elderly, academic tutors

for our children, medical assistants, day care assistants, or psychological counsellors.

Robots may become our co-workers in factories and offices, or maids in our homes.

They may also become our “friends”. Here, one of the major issues that is starting

to gain attention is the role of a human [29]. While much of the discussion up to this

point is with respect to humans and robots performing a task together, there are cases

where the robot may have to interact with bystanders or with people who are not

expecting to work with a robot. Examples include the tasks where coordination in

hazardous, uncertain, and time stressed environments are the critical problems (e.g.,

search and rescue). In such environments, rescuers must have timely and accurate in-

formation on the status of the dangerous and evolving environment. To address these

challenges, fundamental research advances are required in the design of distributed

subsystems that can effectively coordinate with dispersed humans [8,9].

Even if a robot is capable of learning autonomously, it is likely to require human

6
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inputs during the learning phase. Existing HRI research has enabled robot to learn

both offline as part of the design process [15,23] and online as part of interaction,

especially long-term interaction [17,26]. Such learning includes improving perceptual

capabilities through efficient communication between humans and robots [33, 17,

26, 33], improving reasoning and planning capabilities through interaction [30, 14],

and improving autonomous capabilities [28]. Approaches to robot learning include

teaching or programming by demonstration [34, 35, 36, 37, 38, 39], task learning

[14, 26, 23], and skill learning including social, cognitive, and locomotion skills [40,

41, 42, 43, 44]. Some researchers are exploring biologically inspired learning models,

including how teaching among humans or social animals can be used to train a robot

[10,40, 45]. Others are exploring how learning can become more efficient if it leverages

information about how the human brain learns in very few trials [19,11]. Many HRI

researchers are also striving to develop systems that allow multiple robots and humans

to interact with each other. In order to permit a small number of humans to supervise

large robot teams, novel techniques and tools are required to understand and model

human-robot interactions. For instance, Goal-Directed Task Analysis is an ongoing

research direction. In order to design agents that learn efficiently and effectively

from instructions, it is important to understand how people, who are not experts in

Machine Learning or Robotics, will try to teach social robots [12].

This thesis focuses on enabling an agent to efficiently combine feedback from hu-

mans (who may be non technical users) and the environment. Chapter III briefly

describes the existing work that forms the basis of our thesis. Chapter IV presents

an instance of the implemented method along with experimental results of training

a single agent in the Tetris domain, while Chapter V and chapter VI describe the

7
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multiagent Keepaway Soccer domain along with experimental results.
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CHAPTER 3

BACKGROUND

This thesis uses two simulated domains, namely “Tetris” and “Keepaway Soccer”

to evaluate the agent’s performance. This Chapter describes the Tetris domain along

with the algorithms/frameworks that form the basis of the work described in this

thesis and the corresponding experimental results. The keepaway Soccer domain is

described in Chapter 5.

3.1 The Tetris Domain

Tetris is a game played on a w×h grid in which “tetrominoes” (falling pieces of

different shapes) of four blocks, fall one at a time from the top of the grid and stack

upon the grid’s base or any blocks below. If the blocks fall such that there is a row

completely filled with blocks, then that row is cleared. All the blocks in that row

disappear and all the blocks in higher rows shift down by a row. When the blocks

stack up beyond the top of the grid, the game ends. The goal of a Tetris player is

to maneuver the falling blocks in order to clear as many lines as possible before the

game ends. Since clearing a line moves blocks down, away from the top, clearing lines

allows a player to play for a longer duration of time. Thus, we measure success in

Tetris by the number of lines cleared per game. A screenshot of the experimental

domain of Tetris is shown in Figure 3.1.

9
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Figure 3.1. Experimental Domain - Tetris

Ours experiments to evaluate Tetris agent are based on an existing general frame-

work called “Training an Agent Manually via Evaluative Reinforcement (TAMER)

[1]” that allows a human to train a learning agent to perform a common class of com-

plex tasks simply by giving scalar reward signals in response to the agent’s observed

10
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actions. While the “TAMER” framework deals only with training an agent using

human feedback in Tetris Domain (described as shaping problem in [49]), the goal of

this thesis is to combine human and also environmental feedbacks to train the agent

in the same domain of Tetris. The TAMER framework described in the following sec-

tion is an approach to the Shaping Problem that uses established supervised learning

techniques to model a human’s reinforcement function.

3.2 The General TAMER Framework

Typically an agent learns autonomously via environmental interaction. However,

the TAMER framework [1], allows a human trainer to give feedback, as shown in Fig-

ure 3.2. The agent’s interaction with the environment differs from the usual frame-

work because the reward R function has been removed from the task specification,

creating an MDP\R. Instead, reward comes from a human trainer who receives infor-

mation about the current state, most likely via a visual representation. The TAMER

framework for shaping agents shares much common ground with reinforcement learn-

ing, but there are some key differences. In reinforcement learning, agents seek to

maximize return, which is a discounted sum of all future reward. In contrast, a

TAMER agent does not seek to maximize a discounted sum of all future human re-

inforcement. Instead, it attempts to directly maximize the short-term reinforcement

given by the human trainer. It does this because the trainers reinforcement signal is a

direct label on recent state-action pairs. Correspondingly, the humans reinforcement

function H is not an exact replacement for a reward function R within an MDP. Al-

though it may be possible for a reinforcement learning algorithm to use H in place of a

reward function, it would be unnecessary extra computation, since H already defines

a policy. Based on the TAMERS’s evaluation of the agent’s recent performance, the

11



Texas Tech University, Mamatha Aerolla, May 2011

trainer can choose to give reward in the form of a function that maps to a scalar

value. The TAMER action selection scheme is given by action = argmaxaĤ(s, a, s′)

Figure 3.2. The General TAMER Framework

3.2.1 TAMER: The learning algorithm

An algorithm which implements the TAMER framework is described in this section

(see Algorithm 1). The learning algorithm consists of an overarching function RunA-

gent() (shown in Algorithm 1) , and two functions that are called by RunAgent():

UpdateRewardModel() and ChooseAction(). RunAgent() begins by initializing the

time t, the weights for the reward model and feature vectors. After initialization

12
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steps (steps 1−6 of Algorithm 1), ChooseAction(), i.e., Algorithm 3 is called and

the first action is taken. RunAgent() then begins an infinite loop that occurs once

per time step (line 7, Algorithm 1). In the loop, the agent first obtains a scalar

measurement of the human trainer’s reinforcement since the previous time step (line

10, Algorithm 1). If the reinforcement value is nonzero, then the error is calculated

as the difference between the actual reinforcement and the amount predicted by the

agent’s reinforcement model (in updateRewardModel()). The calculated error and

the most recent feature vector is then used to update the reinforcement model (line

6, updateRewardModel). The agent then obtains the current state description (line

17, Algorithm 1) and greedily takes the action ‘a’ that, according to the human rein-

forcement model, yields the largest predicted reinforcement. The new feature vector

~f is calculated and the chosen action is taken (line 16, Algorithm 1) before the loop

restarts. The function UpdateReward-Model() i.e., Algorithm 2, updates its model

of the human’s reward pattern based on feedback on a previous action. The function

ChooseAction(), i.e., Algorithm 3, chooses an action based on the current model of

human reward. The core of the learning algorithm is a linear function approximator

used in line 6 of ChooseAction() and updated in line 6 of UpdateRewardModel().

Unlike many other learning algorithms, only one hand-tuned parameter(the update

step-size parameter) is used.

3.2.2 Tetris-specific aspects of the algorithm

For a board of size of 20×10, tetris has a state space of ≈2200. The work described

in [1], uses 21 feature vectors to describe the Tetris state space of a 10×20 board.

13
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Algorithm 1 RunAgent()

Require: Input : α
1: t← 0
2:
−→w ← −→0

3:
−−→
ft−2 ←

−→
0

4:
−−→
ft−1 ←

−→
0

5: a← ChooseAction(st,
−→w )

6: takeAction{a}
7: while true do
8: t← t+ 1
9: if t ≥ 2 then
10: rt−2 ← getHumanFeedback()
11: if rt−2 6= 0 then

12:
−→w ← UpdateRewModel(rt−2,

−−→
ft−1,

−−→
ft−2,

−→w , α)
13: end if
14: end if
15: a← ChooseAction(st, ~w)
16: takeAction{a}
17: st ← getState()
18: ft−2 ← ft−1

19: ft−1 ← getFeatureV ec(St)
20: end while

3.2.3 Domain specifications

The Tetris state space is described by the 21 feature vectors [1]. Ten of these are

the column heights. One is the height of the tallest column. Nine are the absolute

values of the height differences between adjacent columns. One is the number of

holes, defined as empty grid cells with at least one block above in the same column.

The action space consists of four actions i.e., move left, move right, rotate clockwise

and drop. The actions move left and move right moves the tetromino by one block to

left or right respectively in the 20×10 grid. The rotate action rotates the tetromino

clockwise and drop action drops the tetromino to stack upon the grid’s base or any

blocks below.

14
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Algorithm 2 UpdateRewardModel()

Require: Input : rt−2,
−−→
ft−2,

−−→
ft−1,

−→w , α
1: Set α as a parameter.

2:
−−−−−−→
∆ft−1,t−2 ←

−−→
ft−1 −

−−→
ft−2

3: projectedRewt−2 ←
∑
i

(−→wi ×∆ft−1,t−2,i)

4: error ←rt−2 − projectedRewt−2

5: for i in range (0, length(−→w )) do
6: wi ← wi + α× error ×∆ft−1,t−2,i

7: end for
8: return −→w

Algorithm 3 chooseAction()

Require: Input : st,
−→w

1:
−→
ft ← getFeatureV ec(st)

2: for each a ∈ getActions(st) do
3: st+1,a ← T (st, a)

4:
−−−→
ft+1,a ← getFeatureV ec(st+1,a)

5:
−−−−→
∆ft+1,t ←

−−−→
ft+1,a −

−→
ft

6: projectedRewa ←
∑
i

(wi ×∆ft+1,t,i)

7: end for
8: return −→w

Given the current state description, the agent’s goal is to choose the action that

will receive the most reward from the human. To do this, the agent models the

human’s “reward function” and greedily chooses actions that it expects will earn the

most reward. After learning an accurate model of the human feedback, the agent can

continue to perform the task in the absence of the human, choosing actions that are

predicted to maximize the received reward if the human were present.

Similar to the experiments reported in [1], we ran experiments to evaluate the

agent’s ability to learn from human feedback. The experimental results obtained are

presented in the following subsection.
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3.2.4 Experimental Results

As shown in Figure 3.3, the number of episodes required to train a Tetris agent using

TAMER framework is much smaller than standard reinforcement learning methods.

Also, maximum number of lines cleared reaches approximately 150 lines. The mean

number of lines cleared depends on the human trainer. However, the trainer need

not be an expert. Anyone who can judge the performance of the agent by merely

watching it, can train the agent. Figure 3.3 shows the performance of an agent trained

by three different humans (player 1, player 2 and player 3). It can be seen from Figure

3.3 that the maximum number of lines cleared (in the case of the agent trained by

player 1) after around seven training episodes is ≈150 while an agent trained using

a standard reinforcement learning algorithm needs 120 training episodes to clear 50

lines [1]. In addition, the mean number of lines cleared is approximately 72 after five

training episodes.
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Figure 3.3. Performance of an agent trained using TAMER framework in Tetris
domain: Maximum number of lines (≈150) are cleared after training for ≈ 7 episodes

3.3 QLearning Algorithm

The Q-learning algorithm (see Algorithm 4) is a reinforcement learning algorithm,

introduced by Watkins in 1989 [5]. It is exploration insensitive, and is so far one of the

popular and effective model-free algorithm for learning from delayed reinforcement.

However, it does not address the scaling problem, and may converge quite slowly.
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The Q-learning rule is given by

Q(s, a) = Q(s, a) + α[γ + γmaxa′Q(s′, a′)−Q(s, a)]

π∗(s) = argmaxa′Q(s, a) (3.1)

where s is the current state, a is the action taken in state s, s’ is the resultant state,

a’ is the action taken in state s’, r is the immediate reward, α is the learning rate,γ is

the discount factor, Q(s,a) is the expected discounted reinforcement of taking action

a in state s. The tuple <s, a, r, s’> is an experience tuple or transition function.

Algorithm 4 The Q-Learning Algorithm

1: For each (s,a), initialize table entry Q(s, a)←− 0

2: for each episode do

3: Choose a from s using policy derived from Q

4: Take action a, observe reward r, and the new state s’

5: Update the table entry for Q(s, a) using the equation

Q(s, a) = Q(s, a) + α[r + γmaxQ(s′, a′)−Q(s, a)]

6: s← s′

7: until s is terminal

3.3.1 QLearning Experimental results

Based on existing work, we ran experiments to measure the agent’s ability to learn

from environmental feedback using Q-learning algorithm. Figure 3.4 shows the per-

formance of Q-learning on Tetris domain. It is observed that a maximum of ≈ 38

lines are cleared after training for approximately 200 episodes. The poor performance
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of Q-learning is probably because it requires a good estimate of future rewards in or-

der to function properly, and that the stochastic nature of Tetris severely limits the

accuracy of these estimates [2]. We conclude that Q-Learning is not a good choice

for training a Tetris agent. Hence, we implemented more appropriate methods such

as policy gradient(PG) and cross entropy(CE) on the Tetris domain.

Figure 3.4. Performance of an agent trained using Q-Learning algorithm in Tetris
domain. a maximum of ≈ 38 lines are cleared after training for ≈ 200 episodes.

3.4 Policy gradient methods

Policy gradient methods [4] are reinforcement learning techniques that rely upon

optimizing parameterized policies with respect to the expected return (long-term cu-
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mulative reward) by gradient descent. They do not suffer from many of the problems

that have been marring traditional reinforcement learning approaches, such as the lack

of guarantees of a value function, the intractability problem resulting from uncertain

state information and the complexity arising from continuous states and actions. In-

stead of approximating a value function and using that to compute a deterministic

policy, PG methods approximate a stochastic policy directly using an independent

function approximator with its own parameters.

Let θ denote the vector of policy parameters and ρ be the the average reward per

step of the corresponding policy. Then, in the policy gradient approach, the policy

parameters are updated approximately proportional to the gradient:

∆θ = α(
δρ

δθ
) (3.2)

where α is a positive-definite step size. If such a gradient can be computed, then θ

can usually be guaranteed to converge to a locally optimal policy in the performance

measure ρ. Unlike the value-function approach, small changes in θ can cause only

small changes in the policy. Many approaches exist for estimating the policy gradient,

and these have been implemented in the form of open source libraries. We chose the

Libpg library and used it in all the experiments.
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Figure 3.5. Performance of an agent trained using policy gradient method in Tetris
domain: ≈ 6000 lines are cleared after training for 10000 episodes

The experimental results are as shown in Figure 3.5. It is observed that the max-

imum number of lines that can be cleared using policy gradient is ≈6000 lines after

training for 10,000 episodes.

3.5 Cross Entropy Method

The cross-entropy method [3] is an efficient and general optimization algorithm.

When used in the Tetris domain, it outperforms policy gradient or any RL algorithm.

We apply cross entropy(CE) to learn the weights of the feature vectors, drawing each
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weight from an independent gaussian distribution.

The CE method deals with combinatorial optimization problems in an efficient

manner. The basic steps of CE consist of generating random data samples and main-

taining a distribution of good samples according to some scoring mechanism in order

to generate new samples.

3.5.1 Value Function

CE can be applied to reinforcement learning by learning (optimizing) a value func-

tion given by

V (S) =
n∑
k=1

ωkφk(s) (3.3)

where ωk are weights to be learnt and φk are the feature vectors.

3.5.2 Action selection

The learned value function Vw is used to decide where to place a falling tetromino.

In order to do so, we evaluate the value of the resulting state (using Vw) when it is

placed in each column and for every possible rotation. Finally, we choose the column

and rotation with the highest value.

3.5.3 The Cross-Entropy Method

The task of the cross-entropy(CE) method is to optimize the weights of a value

function as described in Equation 4, which determines the actions of the agent. The

CE method then optimizes S(
−→
Ω ), which is a real valued scoring function of the

performance of the agent using weight vector
−→
Ω = |ω1, ...., ωn|

−→
Ω∗ = argmax−→

Ω
S(
−→
Ω ) (3.4)

22



Texas Tech University, Mamatha Aerolla, May 2011

3.5.4 Experimental Results

The experimental results are shown in Figure 3.6. The graph gives the performance

of the five best performing policies. It is observed that the maximum number of lines

that can be cleared using policy gradient is ≈ 18000 after training for 10,000 episodes.

Thus, after running experiments on giving human feedback in the Tetris domain

similar to prior work, we noticed that the TAMER framework [1], increased the learn-

ing speed of the agent. The results obtained when reinforcement learning algorithms

are implemented on Tetris domain show that policy gradient and cross entropy meth-

ods perform better than Q learning algorithm. The next Chapter desribes our effort

to combine human and environmental feedbacks along with experimental results.
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Figure 3.6. Performance of an agent trained using cross entropy method in Tetris
domain: showing the performance of top 5 policies. Maximum of ≈ 18000 lines are
cleared after training for 10000 episodes
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CHAPTER 4

PROBLEM FORMULATION

As stated earlier in Chapter 2, in order to permit a small number of humans to

supervise large team of agents, novel techniques and tools are required to understand

and model human-agent interactions. This thesis focuses on enabling an agent to

learn by efficiently combining human and environmental feedbacks. The technique

we implemented to combine human and environmental feedback is that of a function

approximator given by

a = argmaxaf(R,H) (4.1)

where R is the environmental feedback and H is the human feedback. When evaluating

the agent in Tetris domain, we considered the weighted linear combination of both

the feedbacks. it can be mathematically written as

a = argmaxa[R + weight ∗H] (4.2)

In case of Keepaway Soccer domain, we considered exponential combination and

the weighted linear combination of both the feedbacks(Chapter 5)

Our experiments in Tetris domain are based on the assumption that the rewards

from human are instantaneous, i.e., R : S × A× S ′ → <

Human feedback is rich in information yet flawed [6]. The human can get tired

with time or may not be good at judging the performance of the agent. The weight

is the trust factor(described in Section 3.1), which tells us how much to trust the hu-

man feedback. This makes our method do well despite the flaws in human feedback.
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Figure 4.1. Comparison of performance of an agent in Tetris domain. Our method
(CE+HF) outperforms the cross-entropy method and the method described in [6].
In addition, performance of agent is better when human and environmental feedback
are used, in comparison to using just the environmental feedback

When the performance of the weighted combination of the human and environmental

feedback is compared with just the environmental feedback, it is observed that the

weighted combination of human and environmental feedback has much better perfor-

mance than just the environmental feedback. This observation holds true for the CE

(see Figure 4.1) and policy gradient (Figure 4.2) methods and even in the case where

only the human feedback is considered.

Figure 4.1 also gives the performance of the agent when trained by a method

described in [6] where human and environmental feedbacks are combined such that
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a = argmaxa[R + weight ∗ Ĥ], where R(s,a,s’) is the environmental reward. The

weight here is an input parameter unlike the trust factor in our case and is annealed

periodically by some factor at the end of each episode. It is observed from Figure

4.2 that the agent trained using our method (CE+HF with H being updated during

testing) performs better than the agent trained by cross entropy method or by the

method described in [6]. It can also be seen from Figure 4.2 that the agent trained by

giving both human and environmental feedback (in case of policy gradient) performs

better than the agent trained using just the environmental feedback.

4.1 Determining the trust factor

Trust factor tells us how much to trust the human feedback. Here the performance

measure is the number of lines cleared. In order to determine this trust factor, we

followed the steps given below:

1. We first obtain the top five best performing policies(P1, P2, P3, P4, P5) by just

using the environmental feedback and computing the corresponding number of

lines cleared. Let L1, L2, L3, L4, L5 be the number of lines cleared in case of

P1, P2, P3, P4, P5 respectively.

2. For each policy repeat steps 3,4.

3. Let a human trainer train the agent.

4. Keep count of the average number of times the best action chosen by human

feedback matches the best action based on the environmental feedback.

5. Let the averages computed in step 4 be m1,m2,m3,m4,m5 for the policies

P1, P2, P3, P4, P5 respectively.
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6. Now the trust factor is given by

trust factor =
(L1 ∗m1 + L2 ∗m2 + L3 ∗m3 + L4 ∗m4 + L5 ∗m5)

(L1 + L2 + L3 + L4 + L5)
(4.3)

The human reward model can now be updated using human feedback even during

the testing phase. In other words, instead of separate training and testing phases,

the trust factor is updated incrementally based on the degree of match between the

action choices based on human feedback and those based on environmental feedback.

If this match count is m, the number of episodes is k, number of lines cleared in

(k-2)th episode is l1, and number of lines cleared in (k-1)th episode is l2, the trust

factor for kth episode is given by:

trust factor for kth episode =
(l1 ∗ trustfactor + l2 ∗m)

(l1 + l2)
(4.4)

In case of incorrect feedback from human, this incremental update mechanism

ensures that, the agent can quickly adapt by revising the corresponding trust factor.

Hence, our method of linear combination of human and environmental feedbacks

improves the performance of the agent in Tetris Domain. Considering the fact that

the Tetris domain is relatively simple, a more challenging domain such as Keepaway

Soccer is considered in the next chapter.

28



Texas Tech University, Mamatha Aerolla, May 2011

Figure 4.2. Comparison of performance of an agent trained using policy gradient
method. Performance of agent when both human and environmental feedback are
given(PG+HF) is better than just using environmental feedback(PG)
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CHAPTER 5

THE KEEPAWAY SOCCER DOMAIN

This chapter investigates the combination of human and environmental feedbacks in

the more complex domain of keepaway soccer. The hypothesis is that the combination

of feedbacks will enable agents in the Keepaway domain to perform better than the

individual application of either feedback mechanism. The keepaway soccer domain

[48] is described below.

5.1 RoboSoccer Keepaway Domain

Keepaway is a subtask of robot soccer (involving 5−9 players rather than the full

22) in which one team, the keepers, tries to maintain possession of a ball within a

limited region, while another team, the takers, tries to gain possession. Whenever

the takers take possession or the ball leaves the region, the episode ends and the

players are reset for another episode (with the keepers being given possession of the

ball again). The domain is implemented within the RoboCup soccer simulator [48].

Parameters of the task include the size of the region, the number of keepers, and the

number of takers. Figure 5.1 shows a screen shot of an episode with 3 keepers and 2

takers (called 3 vs. 2, or 3v2 for short) playing in a 20m × 20m region.
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Figure 5.1. A screen shot from the middle of a 3 vs. 2 keepaway episode in a 20m x
20m region.

Keepaway is a challenging machine learning task for several reasons:

1. The state space is far too large to explore exhaustively.

2. Each agent has only partial state information.

3. The action space is continuous.

4. Multiple teammates need to learn simultaneously.
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RoboCup simulated soccer has been used as the basis for successful international com-

petitions and research challenges[46]. As described in detail in [47], it is a fully dis-

tributed, multiagent domain with both teammates and adversaries. There is hidden

state, i.e., each agent has only a partial world view at any given moment. The agents

also have noisy sensors and actuators, i.e., they do not perceive the world exactly as

it is, nor can they affect the world exactly as intended. In addition, the perception

and action cycles are asynchronous, prohibiting the traditional AI paradigm of using

perceptual input to trigger actions. Communication opportunities are limited, and

the agents must make decisions in real-time. These domain characteristics combine

to make simulated robot soccer a realistic and challenging domain.

For the keepaway task, an omniscient coach agent manages the play, ending episodes

when a taker gains possession of the ball or when the ball goes outside of the region.

At the beginning of each episode, the coach resets the location of the ball and of the

players semi-randomly within the region of play. The takers all start in one corner

(bottom left). Three randomly chosen keepers are placed one in each of the three

remaining corners, and any keepers beyond three are placed in the center of the

region. The ball is initially placed next to the keeper in the top left corner.

As described in [48], keepaway problem maps fairly directly onto the discrete-

time, episodic, reinforcement-learning framework. Agents in the RoboCup simulator

receive visual perceptions every 150 msec indicating the relative distance and angle

to visible objects in the world, such as the ball and other agents. They may execute a

parameterized primitive action such as turn(angle), dash(power), or kick(power,angle)

every 500 msec (unlike 100msec in the work described in [48]). This 500msec in

between actions is assumed to be enough span for a human to give feedback for an
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action taken by the agent. As a way of incorporating domain knowledge, the agents

choose not from the simulator’s primitive actions, but from higher level macro-actions

based closely on skills which include:

1. HoldBall(): Remain stationary while keeping possession of the ball in a posi-

tion that is as far away from the opponents as possible.

2. PassBall(k): Kick the ball directly towards keeper k.

3. GetOpen(): Move to a position that is free from opponents and open for a

pass from the balls current position .

4. GoToBall(): Intercept a moving ball or move directly towards a stationary

ball.

5. BlockPass(k): Move to a position between the keeper with the ball and keeper

k.

An episode consists of a sequence of states, actions, and rewards selected and occur-

ring at the macro-action boundaries:

s0, a0, r1, s1, ..., si, ai, ri+1, si+1, ..., rj, sj

where action ai is chosen based on some, presumably incomplete, perception of

state si, and sj is the terminal state in which the takers have possession or the ball

has gone out of bounds. The reward ri is set to the the number of primitive time

steps that elapsed while following action ai−1. Thus ri = ti − ti−1. The keepers’ goal

at each learning step is to choose an action such that the remainder of the episode

will be as long as possible, and thus to maximize total reward.
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5.1.1 The Keepers

The keepers’ learning process searches a constrained policy space characterized only

by the choice of action when in possession of the ball [48]. Examples of policies within

this space are provided by our benchmark policies:

1. Random: Choose randomly among the n macro-actions, each with probability

1/n.

2. Hold: Always choose HoldBall macro action

3. Hand-coded: A hand-coded policy that selects from among the n macro-

actions based on an intuitive mapping from the same state features that are

used for learning.
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Figure 5.2. The state variables used for learning with 3 keepers and 2 takers. Keepers
and takers are numbered by increasing distance from K1, the keeper with the ball.
The 13 lines and angles show the complete set of state variables.

Figure 5.2 illustrates the representation of states used by the keepers. With 3

keepers and 2 takers, we use the following 13 state variables( see Figure 5.2):

1. dist(K1,C); dist(K2,C); dist(K3,C);
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2. dist(T1,C); dist(T2,C);

3. dist(K1, K2); dist(K1, K3);

4. dist(K1, T1); dist(K1, T2);

5. Min(dist(K2, T1), dist(K2, T2));

6. Min(dist(K3, T1), dist(K3, T2));

7. Min(ang(K2, K1, T1), ang(K2, K1, T2));

8. Min(ang(K3, K1, T1), ang(K3, K1, T2)).

This list generalizes naturally to additional keepers and takers, leading to a linear

growth in the number of state variables.

5.1.2 The Takers

The takers are relatively simple, choosing only macro-actions of minimum duration

(one step, or as few as possible given server misses) that exactly mirror low-level skills.

When a taker has the ball, it tries to maintain possession by invoking HoldBall() for a

step. Otherwise, it chooses an action that invokes one of GoToBall(), BlockPass(K2),

BlockPass(K3), . . . , BlockPass(Kn) for one step or as few steps as permitted by the

server. In case no keeper has the ball (e.g., during a pass), K1 is defined here as the

keeper predicted to next gain possession of the ball. We define the following three

policies as taker benchmarks, characterized by their behavior when not in possession:

1. Random-T: Choose randomly from the n macro-actions, each with probability

1/n.
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2. All-to-ball: Always choose the GoToBall action.

3. Hand-coded-T:

If no other taker can get to the ball faster than this taker, or this taker is the

closest or second closest taker to the ball: choose the GoToBall action;

Else let k be the keeper with the largest angle with vertex at the ball that is

clear of takers: choose the BlockPass(k) action.

Note that the All-to-ball and Hand-coded-T policies are equivalent when there are

only two takers, since Hand-coded-T specifies that the two closest takers at any given

time should go to the ball.

The state variables of the takers are similar to those of the keepers. As before,

C is the center of the region. T1 is the taker that is computing the state variables,

and T2 − Tm are the other takers ordered by increasing distance from K1. Kimid is

the midpoint of the line segment connecting K1 and Ki for i ∈ [2, n] and the Ki are

ordered based on increasing distance of Kimid from T1. That is, ∀i, j s.t. 2 ≤ i < j,

dist(T1, Kimid) ≤ dist(T1, Kjmid). With 3 keepers and 2 takers, we use the following

16 state variables:

1. dist(K1,C); dist(K2,C); dist(K3,C);

2. dist(T1,C); dist(T2,C);

3. dist(K1, K2); dist(K1, K3)

4. dist(K1, T1); dist(K1, T2);

5. dist(T1, K2mid); dist(T1, K3mid);

6. dist(K2mid, T2); dist(K3mid, T2);
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7. ang(K2, K1, T2); ang(K3, K1, T2);

8. number of takers closer to the ball than T1.

Once again, this list generalizes naturally to different numbers of keepers and takers.

In our experiments, we evaluate the agent in Keepaway soccer domain with 3

keepers and 2 takers. Sarsa(λ) reinforcement learning algorithm is used to get envi-

ronmental feedback.

5.2 Reinforcement Learning When Applied To The Keepaway Soccer
Domain

We use the SMDP(Semi Markov Decision Process) version of Sarsa(λ) reinforce-

ment learning algorithm for training our keepers. This part of the work, where we

train the keepers with just the environmental feedback, is based on the work described

in [48]. In the next section, we introduce Sarsa(λ) before presenting the full details of

the learning algorithm used to train the keepers using just environmental feedback.

5.3 Sarsa(λ)

As stated in [48], Sarsa(λ) is an on-policy learning method, i.e., the learning pro-

cedure estimates Q(s, a), the value of executing action a from state s, subject to the

current policy being executed by the agent. Meanwhile, the agent continually updates

the policy according to the changing estimates of Q(s, a).

In its basic form, Sarsa(λ) is defined as follows [51]:
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Algorithm 5 The Sarsa(λ) Algorithm

1: Initialize Q(s,a) arbitrarily and e(s,a)=0 for all s,a

2: FOReach episode

3: Initialize s

4: Choose a from s using policy derived from Q

5: for each step of episode do

6: Take action a, observe reward r, and the new state s’

7: Choose a’ from s’ using policy derived from Q

8: δ ←− r + γQ(s’,a’)-Q(s,a)

9: e(s, a)←− e(s, a) + 1

10: For all s,a: Q(s, a)←− Q(s, a) + αδe(s,a) e(s, a)←− γλe(s,a)

11: s← s′; a← a′

12: until s is terminal

Here, α is a learning rate parameter and is a discount factor governing the weight

placed on future, as opposed to immediate rewards. The values in e(s, a), known as

eligibility traces, store the credit that past action choices should receive for current

rewards. The parameter λ governs how much credit is delivered back to them. A

typical policy derived from Q, and the one we use in this thesis is an ε-greedy policy

in which a random action is selected with probability ε, and otherwise, the action

with maximum Q-value Q(s, a) from state s is selected. In the Keepaway Soccer

domain, the simulator retains the control and occasionally presents state perceptions

and action choices to the agent, as stated in [48]. This alternate orientation requires

a different perspective on the standard algorithm. We need to specify three routines:

1) RLstartEpisode, to be run by the player on the first time step in each episode in
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which it chooses a macro-action, 2) RLstep, to be run on each SMDP step, and 3)

RLendEpisode, to be run when an episode ends. These three routines are described

in detail in Section 5.5

5.4 Function Approximation

The basic Sarsa(λ) algorithm assumes that each action can be tried in each state

infinitely often so as to fully and accurately populate the table of Q-values. A key

challenge for applying RL in environments with large state spaces is to be able to

generalize the state representation so as to make learning work in practice despite

a relatively sparse sample of the state space. In particular, in keepaway we cannot

expect the agent to directly experience all possible sets of values of the variables

depicted in Figure 5.2. Rather, the agent needs to learn to act in new situations,

based on limited experiences. To do so, the table of Q-values must be approximated

using some representation with fewer free variables than there are states, a technique

commonly known as function approximation.

Here we use general tile coding to specify how the feature sets, Fa, are used for

learning. Tile coding allows us to take arbitrary groups of continuous state variables

and lay infinite, axis-parallel tilings over them (Figure 5.3). The tiles containing

the current state in each tiling together make up a feature set Fa, with each action

indexing the tilings differently. The tilings are formally infinite in extent, but in our

case, all state variables are in fact bounded. Nevertheless, the number of possible

tiles is extremely large, only a relatively few of which are ever visited (in our case

about 10,000). Thus the primary memory vector, ~θ, and the eligibility trace vector ~e

have only this many nonzero elements. Using open-addressed hash-coding only these

nonzero elements need to be stored.
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Figure 5.3. TileCoding

An advantage of tile coding is that it allows us ultimately to learn weights associated

with discrete, binary features, thus eliminating issues of scaling among features of

different types. The most straightforward way to get binary features is to break

the state space into discrete bins. However, doing so can lead to over-generalization

based on the fact that points in the same bin are required to have the same value

and under-generalization due to the fact that points in different bins, no matter how

close, have unrelated values. By overlaying multiple tilings it is possible to achieve

quick generalization while maintaining the ability to learn fine distinctions [48].

In our experiments we primarily used single-dimensional tilings, i.e., simple stripes

or intervals along each state variable individually. For each variable, 32 tilings were

overlaid, each offset from the others by 1/32 of a tile width. In each tiling, the current

state is in exactly one tile. The set of all these active tiles, one per tiling and 32 per

state variable, is what makes up the Fa vectors. In the 3v2 case, there are 416 tiles

in each Fa because there are thirteen state variables making thirteen single-variable
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groups, or 13×32 = 416 total. For each state variable, we specified the width of its

tiles based on the width of generalization that we desired. For example, distances

were given widths of about 3.0 meters, whereas angles were given widths of about

10.0 degrees. The choice of state variables, widths, groupings, and so on, was done

based on existing work [48].

5.5 Algorithm Description

In this section, we present the full details of our approach as well as the parameter

values we chose based on [48]. The pseudocode for the three top-level subroutines,

RLstartEpisode, RLstep, and RLendEpisode is shown in Figure 5.4.

5.5.1 RLstartEpisode

RLstartEpisode is run by each player on the first time step in each episode in which

it chooses a macro-action. In line 1, we iterate over all actions available in the current

state. For each action, and for each tiling of each state variable, we find the set of

tiles, Fa, activated in the current state (line 2). Next, in line 3, the action value for

action a in the current state is calculated as the sum of the weights of the tiles in

Fa. We then choose an action from the set of available macro-actions by following an

ε-greedy policy (line 4). The chosen action is stored in LastAction and the current

time is stored in LastActionTime (lines 4-5). In line 6, the eligibility trace vector is

cleared. Finally, in lines 7-8, the eligibility traces for each active tile of the selected

action are set to 1, allowing the weights of these tiles to receive learning updates in

the following step.
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5.5.2 RLstep

RLstep is run on each SMDP step (i.e., only when some keeper has the ball). First,

in line 9, the reward for the previous SMDP step is computed as the number of time

steps since the macro-action began execution. Second, in line 10, we begin to calculate

the error in our action value estimates by computing the difference between r, the

reward we received, and QLastAction, the expected return of the previous SMDP

step. Next, in lines 11-13, we find the active tiles and use their weights to compute

the action values for each action in the current state. In lines 14-15, the next action

is selected as in RLstartEpisode. In line 16, we finish our calculation of the error that

began on line 10. Here, we add the new QLastAction, the expected return of choosing

action LastAction in the current state. Next, in line 17, we adjust the weights by the

learning factor α times our error estimate δ, for tiles with non-zero eligibility traces.

Since the weights have changed, in line 18, we must recalculate QLastAction. In line

19, the eligibility traces are decayed. Note that the traces decay only on SMDP time

steps. In effect, we are using variable λ [51] and setting = 1 for the missing time

steps. In lines 20-25, the traces for the chosen action are set to 1, and the traces for

the remaining available actions are cleared. Note that we do not clear the traces for

actions that are not in As because they do not apply in this state. This scheme, known

as replacing traces, is one reasonable way to handle eligibility traces for SMDPs.

5.5.3 RLendEpisode

RLendEpisode is run when an episode ends. First, in line 26, we calculate the

reward for the last SMDP step. Next, in line 27, we calculate the error δ. There is

no need to add the expected return of the current state since this value is defined to

be 0 for terminating states. In line 28, we perform the final weight update for this
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episode.

For the results described in this thesis, we used the following values of the scalar

parameters: α = 0.125, ε = 0.01, and λ = 0. The parameter values were chosen based

on documentation of prior experiments conducted in the domain [48]

5.6 Experimental Results

All our experiments are run considering 3v2 keepaway Soccer in a 20×20 region.

For the takers, we used the Hand-coded policy (note that with just 2 takers, this policy

is identical to All-to-ball). The keepers are trained in three different conditions

1. Keepers are trained in the presence of just human feedback.

2. Keepers learn from just the environmental feedback.

3. Keepers are trained by giving both environmental and human feedback.

When evaluating agents(keepers), we considered two different types of function ap-

proximation

1. Linear: Here we considered weighted linear combination of both the feedbacks

(Equation 6) similar to that in case of Tetris Domain.

2. Exponential: Here we considered the exponential functions of human and envi-

ronmental feedbacks. It can be mathematically written as

a = argmaxa[R(1 +Hweight)] (5.1)

where the weight is the trust factor(as described in Section 3.1).
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Reward Propagation Assumption: The human feedback given is not instanta-

neous. The feedback given at time t is propagated over a duration of 500ms. Unlike

Tetris, Keepaway soccer domain require actions at a much faster rate. Thus a hu-

man trainer cannot accurately label individual state-action pairs in real time and a

credit assignment scheme that distributes the reinforcement across recent time steps

is required. Since it is difficult to estimate the exact time or event that the human is

responding to, the human feedback is assumed to be in response to a set of prior (and

possibly subsequent) time steps. Based on the study described in [52], we choose to

model the credit assignment as a gamma distribution function (Figure 5.5). Specifi-

cally, let time 0 be when a reinforcement h is given and let f(x) be the corresponding

gamma distribution used for credit assignment. For two consecutive time steps t and

t’ that occurred before reinforcement, the credit is computed as: h×
∫ t
t′
f(x)dx

Figure 5.6 shows the performance of keepers trained with just the human feedback.

Based on the agent’s recent performance, the trainer provides a reward that is mapped

to a function and hence a scalar value of specific time steps. The agent’s goal is to

take an action so as to maximize the human reward and hence increase the episode

duration (time for which the keepers can keep the ball with them before takers take the

possession of the ball or the ball goes out of the 20×20 field). It can be mathematically

written as action = argmaxaĤ(s, a). The y-axis is the average time that the keepers

are able to keep the ball from the takers (average episode duration) while the x-axis

is the number of episodes trained.
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Figure 5.6. Performance of Keepers trained with just human feedback.

Figure 5.7 shows experimental results of the performance of keepers when trained

with both human and environmental feedbacks using the weighted linear combination

scheme of Equation 6, in comparison to the exponential combination scheme of Equa-

tion 9. The comparison also includes the cases where the keepers learn from just the

environmental feedback or human feedback. Experiments were conducted separately

with and without the use of gamma distribution for credit assignment. Similar to

the results obtained in Tetris domain, it is observed that the keepers perform much

better when trained with both human and environmental feedbacks compared to that
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of training with just the environmental feedback. It is also observed that the gamma

distribution based credit assignment further improves the performance. The best

performance is seen to be achieved by training the agents using the weighted linear

combination of Human and environmental feedbacks using gamma distribution for

credit assignment.

Figure 5.7. A graph comparing the performance of keepers trained with “just the
environmental feedback” and “both human and environmental feedbacks”
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Figure 5.4. The three main routines of our Sarsa(λ) implementation presented for
a keeper. A taker has the sign of the reward, r, reversed. The set of macro-actions
available, As ⊆ A, depends on the current state, s. For example, the keepers not in
possession of the ball must select the Receive action, whereas the keeper with the ball
chooses from among HoldBall and PasskThenReceive [48].
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Figure 5.5. Probability density function f(x) for a gamma(2.0, 0.28) distribution.
Reinforcement signal h is received at time 0. If t and t’are times of consecutive time
steps, credit for the time step at t is h×

∫ t
t′
f(x)dx
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CHAPTER 6

CONCLUSION

For a human with no technical background, training an agent poses a major chal-

lenge in the field of human agent interaction. One of the main aims of this thesis is

to find more reliable ways of combining human and environmental feedbacks. The

experimental results obtained in the Tetris and Keepaway Soccer domain show that

better performance can be achieved by effectively combining human feedback and

environmental feedback, in comparison to using each of these feedbacks individually.

In addition, the agent can learn smoothly both in the presence and in the absence of

the human trainer. This research would be of great help in training agents in domains

where continuous human feedback is not possible but effective/reliable learning by

the agent is essential.
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