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Abstract

The concept of affordances has been used in robotics research to endow artificial
agents with the ability to reason about available actions and uses of objects. Previous re-
search has demonstrated that a representation of affordances improves performance when
planning and reasoning about available actions, and has introduced a distinction between
primitive and complex affordances. Complex affordances refer to actions the execution of
which depends on several different abilities, or aspects of object usage. Problem solving re-
search in behavioural biology and psychology provides some evidence that flexible tool use
and creative problem solving require a type of abductive reasoning that can be supported
by a representation of complex affordances, following the definition described in previous
works. The present study aimed to build on findings demonstrating the utility of primitive
affordances, by developing and implementing a representation of complex affordances that
capture the prerequisite conditions for complex actions which involve multiple interme-
diate steps. Complex affordances are encoded and tested in Answer Set Prolog (ASP),
a declarative programming paradigm that supports non-monotonic logical reasoning for
planning and diagnostics. The utility of complex affordances was evaluated by running
paired trials, where planning was carried out with complete domain knowledge and miss-
ing domain axioms relating to complex affordances. Use of complex affordances led to the
production of minimal plans, and resulted in a larger number of plans found for a given
goal. Domain axioms involving complex affordances led to a higher overall success rate,
while exclusion of these axioms led to the production of invalid plans. The present study
therefore demonstrated a successful implementation of complex affordances, and their util-
ity. Finally, areas of future work were explored, including the applicability of complex
affordances in the creation of complex plans, problem solving, and plan recognition.

1. Introduction

1.1. Background and Motivation

In order to provide useful assistance and cooperate effectively with humans,

artificial agents (e.g. robots) will need to be capable of learning the complex dy-

namics of real world domains. Furthermore, it will be crucial for them to reason

efficiently about a given situation and effectively utilize the acquired knowledge in

their respective domains. This is especially true in settings where limited informa-

tion is available, and a decision needs to be made without additional observations

due to time constraints, or the low likelihood of obtaining a particular observation.

One area this applies to is reasoning about actions and action capabilities. For

example, in an assistive setting, a robot may need to infer human action capacities

without access to additional empirical observations of the person carrying out a



particular action (e.g. if they are not capable of this action due to an injury). Hu-

mans are capable of such inference, as exemplified by their ability to infer motor

capabilities of other humans by observing their movement [1, 2], therefore missing

such a capacity might significantly impair human-robot interaction (HRI) [3]. This

implies the need for extrapolating existing knowledge about the action capabilities

of agents to new situations.

A similar need for analytic reasoning is true for flexible tool use and complex

problem solving. Research in psychology has long related the inability to perceive

an action capability i.e. the concept of functional fixedness [4], to impaired problem

solving. For example, learning the typical function of an object makes individuals

less likely to perceive other actions afforded by an object, and subsequently utilize

the object in a given task [4, 5].

One way of counteracting the problem of functional fixedness on a robot or

an agent could be through utilizing the concept of complex affordances. Primi-

tive affordances describe situations (e.g. presence of a particular object, domain

or object properties) in which an action is available given an agent’s character-

istics (such as an agent’s strength, or the type of their actuators) [6]. Complex

affordances denote different aspects of object usage and functionality by combin-

ing primitive affordances, and provide a way to reason about action capabilities

analytically, once the primitive affordances have been learned through empirical

observation. Complex affordances also provide a way to relate an agent’s capabil-

ities and properties to different actions and contexts: for example, if an agent is

able to grasp handles to pick up objects, they might also be able to grasp handles

of doors and windows, and therefore open them.

1.2. Related Literature

Affordances are a useful concept in robotics and artificial intelligence (AI) as

they provide a way to reason about agent and object properties conceptually. This

enables flexible reasoning, and allows a semantic mapping from perceived or rep-

resented physical attributes to their use, that is not restricted to their appearance

[3, 7]. Due to this, research on affordances in robotics and AI is abundant, and the

concept has been implemented in a number of different architectures [3, 8].

In humans, direct perception of affordances has been linked to problem solving

in numerous studies. For example, if an actor has learned the affordances support-

ing the typical function for which an object has been created, they are less likely

to identify alternative uses for the object [4, 5]. This impacts whether a solution

for a given problem is found, and the speed at which this solution is arrived at.

Duncker[4] coined the term functional fixedness, which refers to a strong perceptual
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focus on a particular functionality an object is associated with. This prevents the

object from being used in situations where it would appropriately solve a problem.

As a result, his, as well as later research in psychology have viewed functional

fixedness as a hindrance for creative problem solving.

Affordances, originally defined by Gibson [9], but also in their other permu-

tations described in later research [3, 10, 11], are a diametrically opposed concept,

in that the uses of an object are directly perceived. Thus it stands to reason that

use and representation of affordances in cognitive architectures is necessary for

creative problem solving and tool use. It is important to note that human par-

ticipants in the experiments mentioned above were capable of inferring that the

objects could be used in other ways, based on these simple concepts, without any

empirical trials. This is true despite their perceptive bias towards the functionality

of the object due to previous experience [5]. This implies that extrapolating, and

applying knowledge to a new setting requires abductive reasoning, whereas most of

the previous research in robotics has mainly focused on simpler variations of affor-

dances through experience [8]. Some research exists on using more sophisticated

affordances in robotics systems, for example Jamone et al. [7] model affordances

of intermediate objects that are involved in the execution of a composite action,

however, in their implementation affordances are modeled in separate categories

for different aspects of existing tools. While ability to reason about tool usage is

valuable, their model of affordances does not explicitly incorporate, or attend to

the properties which give tools a particular functionality. This may impede on

flexible tool use, as some properties of objects may be used for different purposes,

depending on the context (e.g. a broom may be used for cleaning, but the han-

dle of a broom may also be used to poke or move objects that are out of reach).

Other research in AI alludes to affordances as being necessary for creative problem

solving [12]. In Olteteanu [12] the importance of affordances is emphasized in sit-

uations where agents are faced with ill-structured problems. They also postulate

that problems requiring creative problem solving can be viewed at two resolutions,

representing low level motor actions, and higher level concepts.

In comparison, the concept of affordances in psychology and cognitive biology

has been applied in the context of more complex actions, at times describing highly

abstract capabilities to solve life-tasks involving a number of social and practical

factors [13]. Interestingly, in cognitive biology, affordances which would correspond

conceptually to the primitive affordances in the definition described by Langley,

Sridharan and Meadows [6] followed here, can be seen to be learned associatively,

and the individuals may not attend to, or reason about the functional properties

of objects enabling these affordances [14, 15, 16]. In contrast, human toddlers
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attend specifically to the functional aspects of objects, and are able to quickly

transfer their knowledge of object uses, and generalize to different tasks [17]. These

two findings can be seen as conceptually parallel to the definition of complex and

primitive affordances proposed in Langley, Sridharan and Meadows [6], where they

postulate that primitive affordances can be learned empirically through trial and

error, whereas complex affordances are inferred analytically, combining multiple

known aspects of the domain and extending it to a particular situation.

Previous research has shown that discovery of primitive affordances improves

plan quality and that these affordances provide a way to simplify knowledge in-

ference and reasoning [18, 19]. Missing knowledge, i.e. missing axioms relating to

affordances, leads to the failure of finding plans, and the selection of invalid actions

[18, 20]. However, the implementation and utility of complex affordances has not

yet been investigated. Following these previous findings, the aim of the present

research is to first implement complex affordances, and evaluate their utility in

plan generation.

Complex affordances should model how the ability to do one action determines

the capacity for another action, e.g. if an agent has flexible legs, they may squat

to lift a cumbersome object, but this also enables them to use stairs, and step

over high ledges. However, complex affordances can also inform when an action is

possible, if it consists of several intermediate actions, e.g. the ability to grasp a

handle may be necessary to lift an object that is otherwise unwieldy to lift.

Both categories described above are modelled as complex affordances in the

present study. The utility of such a representation was tested by comparing plan

generation for random goals for a program which had full knowledge of such axioms,

and a program that was missing this information. This enabled an investigation of

how the representation of complex affordances influenced the length and quality of

discovered plans.
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2. Methods

The utility of complex affordances was evaluated by running paired trials sim-

ulating agents that reason with complete domain knowledge and partial domain

knowledge, where complete domain knowledge (CDK) consists of the full domain

description. Conversely, partial domain knowledge (PDK) consists of a domain

description where axioms encoding complex affordance relations and their corre-

sponding executability conditions are omitted. This was implemented in Answer

Set Prolog (ASP), allowing for non-monotonic logical reasoning and search for min-

imal plans [21]. The domain in this implementation was a variation of the Blocks

World (detailed description below). Observational uncertainty is abstracted away,

enabling the isolation of the impact for each added complex affordance, or its cor-

responding executability conditions.

2.1. Domain Description

The domain in the present implementation is a variation on the blocks world

domain, and contains elements of setups used in problem-solving research within

cognitive biology [22] and ecological psychology [23]. The agent is situated in a

domain consisting of several enclosed areas, such as rooms and corridors, and has

access to different objects. The agent’s objective may be to stack objects using its

arms, or to change its own location. Both objectives may also require the agent to

move itself or objects to a different area, such as a room, which may be accessible

through an exit. Exits connecting adjacent areas may be located above, out of the

agent’s reach, requiring them to create a suitable configuration of objects in order

to reach the opening, as well as step through the exit on the other side.

The agent’s ability to pick up objects, and travel to different surfaces depends

on several properties. These mostly concern the objects location along the vertical

axis in the simulated space, and the characteristics of the agent’s limbs. Agents

legs and arms may possess different levels of strength and different capacities for

movement, characterized by joint mobility. For example, agents with flexible arms

and legs are able to pick up objects that are located low compared to the agent i.e.

on, or just below, the surface the agent is standing on. These properties further

interact and are influenced by the object’s weight, and the agent’s strength.

Agents with flexible legs can travel to surfaces within a specified range of the

surface they are located on. This same capacity also determines the broader set

of situations where it is possible for an agent to go through an opening to another

area. For example, agents with better leg mobility and strength are also able to

use an exit to change their location in situations where the exit is not aligned with
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the agents legs or actuators, if the lower threshold of the exit is within their leg

movement range, and if a surface on the other side of the exit is also within their

leg movement range. To give an example of how this may translate to a real-world

scenario, an agent or a person with good leg mobility may be able to go to another

room via a connecting window at the height of their waist. Conversely, a wheeled

robot may not be able to travel to an adjacent area through a door that has a very

high threshold and a person with a leg injury may not be able to use the stairs.

As such, complex affordances in this domain capture the following information:

• Heavy objects just above the agent cannot be picked up unless the agents

arms are strong and flexible, (i.e. they can reach and remain stable when

lifting arms above their head)

• Heavy objects just below the agent cannot be picked up unless the agent can

squat, and remain stable while lowering their arms (the latter is captured by

the previous affordance relation concerning heavy objects above the agent).

These examples each have two complex affordance relations for different agent

ability and object weight combinations. In this case the complex affordance re-

lation combines primitive relations that refer to the same action, i.e. the same

characteristics that enable the agent to pick up heavy objects placed higher than

the agent are also one of the required characteristics for picking up heavy objects

placed at the level of the agent’s base. Complex affordance relations can also be

modelled by combining relations for several different actions. The following is an

example in the present domain:

• Agents cannot travel to surfaces at a different height, unless the agent’s legs

are flexible, and the surfaces are within the specified movement range

• If the surface the agent is on, and the surface on the other side of the exit

is not aligned with its lower threshold, the agent cannot use the exit, unless

the agent also has sufficient leg mobility to travel to surfaces at a different

height.

That is, an agent’s capacity to move to surfaces at a different height is a

prerequisite for the action of going through an opening to another area, if the

lower threshold of this opening is not in line with the surface the agent is on. The

2d location, and intermediate actions in this domain are abstracted away - as an

example, for the affordance relation described above, no intermediate ’squat’ action

is described in the domain dynamics.
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2.2. Encoding of domain

The dynamics of the domain are first captured in a system description SD,

consisting of a set of action language ALd statements [24]. The action language

ALd allows a formal description of the state action transitions of a domain using

causal laws, state constraints and executability conditions [25] following the general

form:

1. a causes l if p

2. l if p0...pn

3. Impossible a if p0...pn

Where a is an action, l is a domain literal (any domain property or its nega-

tion), and p is a domain property.

System descriptions inALd have a sorted signature consisting of statics, fluents

and actions. Statics are domain elements with unchanging truth values. Fluents

represent domain elements with truth values that are dynamic: inertial fluents

change their value as a direct consequence of actions, whereas the values of defined

fluents are determined by some aspects of the current state. Different entities and

domain attributes are described by sorts; the system description SD contains a

sorted signature. Sorts of the domain include limb, agent, object, area, weight,

material. The signature also contains the ground terms of these sorts, e.g. room

of sort area, arm and leg of sort limb, door of sort exit. Sorts vertsz, and step

are numeric, and are used to represent height and time step accordingly. Static

properties such as agents and objects height and weight, and object material, as

well as agents limb strength are expressed with predicates. Fluents of the domain

include z loc, location, and in hand; z loc specifies the location of an entity along

the vertical/ Z axis, at a particular time-step, in integers. Location specifies the

area an agent or an object is in at a particular time-step. Defined fluents include

in range, specifying the vertical distance from the base of two entities. Actions

include pick up, put down, go to and go through. Fluents, actions, and relations

are described by the sorts of their arguments.

The domain representation also includes a history H, which retains the truth

values of fluents observed at a particular time-step, and the occurrences of actions:

this information is used for diagnostic inference.

2.3. Representation of Complex Affordances

Affordance relations specify actions that are available for a particular agent,

given the agent and object (if applicable) properties. As multiple affordance re-

lations can apply to the same action, affordance relations are also specified by an
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identifying index ID. As some of the properties which shape affordances in the

present domain vary over time (such as z loc), affordance relations also specify the

time at which they enable an action. Following previous research in this area [18],

enabling affordance relations take the following general form:

affordance permits(A, ID, I) if ...

Impossible A if ..., not affordance permits(A, ID, I)

where A is an action, ID is the affordance relation Identifier, and not is a

default negation operator indicating atoms for which truth values are not known,

i.e. the above rules state that action A is normally impossible, unless the complex

affordance relation ID is known to be true at time I [18]. The first axiom specifies

domain properties which need to apply at a given time-step in order for the affor-

dance relation to be true, and the second rule is an executability condition stating

the conditions in which an action is only possible if it is enabled by the affordance

relation.

Enabling affordances specify situations where an action, which normally would

be considered impossible, is possible in the context of a specific agent and an object,

whereas forbidding affordances specify situations where an action is impossible

given particular agent and object properties [18, 20]. Primitive affordances in the

domain are represented using both enabling and forbidding affordances.

Complex affordances can denote different aspects of object and tool usability

and model situations where the execution of a more complex action depends on

the agents ability to perform the individual steps [6]. Another benefit of using

complex affordances to describe action capabilites is that the individual affordance

relations can be used to encode other actions depending on the same characteristics.

Complex affordances in the present implementation are represented by combining

several enabling affordances. Following the two examples from the previous section,

a complex affordance combining several aspects of the same action can be modelled

as follows:

affordance permits(pick up(A,O), 14) if joint mobility(A, arm, good),

limb strength(A, arm, good).

affordance permits(pick up(A,O), 16) if affordance permits(pick up(A,O), 14),

limb strength(A, leg, good),

joint mobility(A, leg, good).
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This also allows abstracting some intermediate actions, the consequences of

which are not necessary to model for a particular application. For example, the

agent being able to bend its legs and squat could be encoded by a squat action

through adding the corresponding causal laws to represent this action in the system

description, however, this is not required for the purposes of the present investiga-

tion.

2.4. Implementation

The above SD in AL, containing the description of actions and state transi-

tions, affordance relations, and history H, is translated into an ASP program Π, for

planning and inference. ASP supports non-monotonic logical reasoning, and de-

fault reasoning using consistency restoring rules. ASP allows for minimal planning

and diagnostics, through the use of consistency restoring (CR) rules [21]. More

specifically, while a goal (i.e. a domain literal that is not known to be true) has

not been achieved, it causes an inconsistency, and a CR rule permits the agent to

select an action in order to resolve the inconsistency. In the case of diagnostics,

observations which do not match the expected outcomes of actions lead to an incon-

sistency, and a CR rule permits the agent to consider the failure of actions [26, 27].

Plans and explanations correspondingly are found in the answer sets obtained by

solving Π. Π also contains an inertia axiom which specifies that inertial fluents

retain their truth values overtime, unless specifically changed by an action, and a

closed world assumption (CWA) for actions, defined fluents, and affordance rela-

tions. By removing an axiom from the domain knowledge, a planning agent may

consider actions that are impossible leading to the production of incorrect plans.

Upon the execution of such plans, some actions may fail, resulting in a prediction

error (i.e. inconsistency between the expected and received sensor observation).

Alternatively, exclusion of knowledge may prevent the agent from considering a

legal action, resulting in longer plans.

2.5. Experimental setup

Experiment 1: The objective of the first experiment was to test whether

plans generated when reasoning with partial domain knowledge were minimal.

Here, partial domain knowledge refers to the deletion of domain axioms. In this

experiment, the axioms related to the implementation were either complex affor-

dance relations or an executability condition containing a complex affordance in

its body. The deletion of these two types of axioms has different effects on the

outcome. Missing affordance relations prevent the agent from finding plans that

are possible to execute, as it is not known that an enabling affordance applies in

9



Figure 1: Overall structure of the implementation. Action Language description is used to produce
the main ASP program. Initial states and goals are generated randomly, and added to the complete
and partial knowledge programs, which produce the resulting plans.

a given state. This forces the agent to perform unnecessary actions in order to

reach a particular state, resulting in longer plans, or a failure to find the solution.

Deleting an executability condition containing an enabling affordance should result

in the agent finding plans which are incorrect, as the agent is not informed that a

particular transition is impossible. This may also lead to finding shorter plans.

Due to their different effects, experiment 1 compared performance when rea-

soning with omission of an increasing number of complex affordance relations, and

the omission of executability conditions separately. The two experimental groups

forming the results were therefore complete domain knowledge (CDK) and partial

domain knowledge (PDK). The domain contained a total of six complex affordance

relations, informing 11 executability conditions, and the omission of 1-6 axioms

in each category was tested. 1000 paired trials were run at each level of deletion,

where goals, initial conditions, and the omitted axioms were randomized for each

trial. The plans were searched for using ASP inference with CR rules, therefore the

plans returned were minimal. The number of returned plans, sequences of actions

they contain, and their length were recorded.

Experiment 2: The second experiment tested whether the plans produced

by reasoning with CDK and PDK in the first experiment were correct. Each plan

was simulated by executing its constituent actions in an ASP program containing

complete knowledge of the modelled domain dynamics. The action consequences

were added to history H as observations. In cases where the action has failed,

this produced an inconsistency and invokes the diagnostics module, which identi-

fied the failed action leading to this discrepancy. Information about failed actions

was recorded, and the true success rate of an agent operating with partial domain
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knowledge was compared to plan failure rates when reasoning with complete do-

main knowledge. In addition, for plans containing failed actions, the first time at

which a failed action occurs was recorded.
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3. Results

3.1. Experiment 1

Experiment 1 compared differences in plan length when reasoning with com-

plete (CDK) and partial (PDK) domain knowledge. The average plan length in-

creased per each omitted affordance relation. In order to assess whether the distri-

butions of plan length were statistically significantly different, a paired two-tailed

t-test between the plans produced in CDK and PDK conditions was performed at

each level of axiom deletion. Although the average plan length was different, this

difference was not found to be statistically significantly different when reasoning

without 1-2 axioms. However, the plan length when reasoning with 3-6 missing

complex affordance relations was found to be significantly higher, providing evi-

dence that missing complex affordance relations prevented finding minimal plans.

These results are summarized in Table 1 and can be seen visually in Figure 2.

N deleted axioms 1 2 3 4 5 6

t-value 0.69 1.03 1.97 2.82 3.74 10.61

mean difference 0.02 0.08 0.10* 0.13** 0.18*** 0.16***

Table 1: Summary of t-values from paired t-tests for PDK and CDK differences in plan length
with number of deleted affordance relations. Significance levels: ∗ ≤ 0.05,∗∗ ≤ 0.01,∗∗∗ ≤ 0.001

Changes in plan length depending on the number of deleted affordance rela-

tions are displayed in Figure 2. The values are scaled relative to the maximum

plan length returned in the experiments, therefore the values presented here are

relative to 1. When collapsing across the number of deleted axioms, the overall

average plan length was 0.30 for CDK and 0.41 for PDK. Average plan length for

PDK increased by 15% with each additional deleted affordance relation.

Figure 2: Changes in average plan length in conditions readoning with CDK, and PDK with the
omission of complex affordance relations.

When executability conditions were omitted in PDK, the plans found with

PDK were shorter. This result confirms the action constraints imposed by the
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executability conditions of complex affordance relations.

In summary, experiment one has provided evidence for an increase in aver-

age plan length as the number of missing axioms increases in the partial domain

knowledge. Furthermore, with more than two missing complex affordance relations,

this increase became statistically significantly different from the complete domain

knowledge condition.

3.2. Experiment 2

Experiment 2 further tested whether the plans returned when reasoning with

PDK and CDK were correct. In the present analysis, this was quantified by two

factors: the ratio of success and the ratio of correct plans. Ratio of success repre-

sents the fraction of trials in which a plan was found for a given goal, whereas ratio

of correct plans shows the true fraction of successful plans, that do not contain an

impossible action which would cause the plan to fail.

Overall, the results from experiment 2 show that inclusion of complex affor-

dances enabled finding plans in a large fraction of trials, that would otherwise be

falsely considered as impossible. The results of experiment 2 show that overall

success rates when reasoning with CDK were 2.5 times higher than PDK, when

averaging across different numbers of ommited affordance relations. The success

rate for PDK decreased by 21 % on average with each deleted axiom. Figure 3

illustrates this change by showing the success rate for CDK and PDK with each

deleted complex affordance relation.

Figure 3: Fraction of successful trials when reasoning with CDK and PDK for different numbers
of omitted affordance relations.

In addition to higher success rates, the addition of complex affordances enabled

finding more plans to achieve a given goal. In trials where plans were found, the

average number of plans found was greater when reasoning with CDK. These results

are depicted in Figure 4. On average, CDK returned 5.91 plans, 2.93 times more

than PDK condition, in which 2.16 plans were found per successful trial.
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Figure 4: Changes in number of plans generated per trial with increasing numbers of missing
complex affordance relations.

This implies that for any given goal, a larger set of alternative plans is returned

when information about complex affordances in the given domain was available.

With the omission of complex affordance relations, all plans returned by rea-

soning with both PDK and CDK were correct. This in in agreement with the results

stated above, as missing complex affordances prevents the agent form considering

some actions to achieve a particular goal.

With missing executability conditions, all plans generated with CDK were

correct, withstanding the simulation test. Conversely, each omitted executability

condition resulted in a decrease in correct plans found with PDK: the fraction of

correct plans decreased from 0.97 with 1 missing executability condition, to 0.30

with 6 missing executability conditions (Figure 5). On average across all six levels

of deletion, 38% of the plans generated by PDK were incorrect. Each omitted

executability condition resulted in a 20% increase of incorrect plans.

Figure 5: Ratio of correct clans out of all plans generated with increasing numbers of missing
executability conditions 1-6.

Executability conditions referring to complex affordances also affected the

speed at which the set of incorrect plans found in the PDK condition failed. When

fewer executability conditions were excluded from the domain knowledge, impos-
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sible actions which led to plan failure occured later in the plan. These results are

summarised in Table 2. On average, the first time-step at which an action was

detected to fail was 2.42, when reasoning with 1 missing executability condition.

This decreased to the first action failure to be observed at 1.28 time-steps when

reasoning with 6 missing executability conditions.

N deleted axioms 1 2 3 4 5 6

Time to First Failure 2.42 2.60 1.87 1.38 1.62 1.28

Table 2: Average Time to First Failure for Increasing Numbers of Deleted Executability Conditions
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4. Discussion

Overall, the results in the experiments conducted here have shown that adding

a representation of complex affordances improves plan quality, and can increase

the proportion of goals for which an agent with given characteristics is able to

find a plan. Depending on the type of missing axiom, a domain representation

lacking complex affordances and their respective executability conditions led to the

production of incorrect, non-minimal plans.

These findings are in agreement with previous research, building on findings

that demonstrate the utility of affordances in both finding newly enabled plans

and excluding unsuitable plans. This demonstrates that in a given domain, a

large fraction of the possible state transitions can be captured with relatively few

statements. Complex affordance relations inform the agent about what actions are

possible based on a complex interplay of agent characteristics, object attributes and

configurations that would be complicated to represent with separate executability

conditions.

Based on previous research in robotics [18, 20, 12, 6], psychology [1, 13, 17],

and cognitive biology [28], such a representation can be used to improve planning,

plan recognition, HRI, and generalizing knowledge to novel tasks, allowing creative

problem solving. In addition, this type of representation can allow to temporar-

ily abstract intermediate actions without consequences on selecting valid actions,

simplifying inference and planning to achieve goals involving intermediate steps.

This type of zooming out could help constructing complex plans that extend over

longer time periods, while retaining enough detail in the domain description to

also determine the intermediate steps and actions. Previous research has coupled

ASP inference with the execution of lower level motor commands, operating at dif-

ferent, but tightly coupled levels of refinement [29], where low level motor actions

are reasoned with probabilistically, and higher level actions are reasoned about

with non-monotonic logical inference. If applied in such architectures, complex

affordances may enable agents to reason about more abstract actions at a coarse

resolution. With sufficiently complex domain representations, this may enable a

more general form of problem solving and long-term plan creation similar to the

highly abstract affordance concepts in human situational problem solving [13]. In

an assistive setting an agent may take into account the importance of a person’s

belongings, for example their house keys, a computer, and a cello, and reason about

their role in achieving immediate and long-term goals through affording highly ab-

stract actions occurring on different time-scales such as going on an errand, or

earning livelihood. Such concepts may also enable a more natural HRI, where the

robot is able to understand the concept of long-term goals, or is able to explain an
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event or action at the appropriate level of detail.

In a similar fashion, complex affordances may be also be used to increase the

autonomy of a robotic system through capturing knowledge about what long-term

behavioural strategies or goals may be valuable for a particular agent. Another way

such a representation can improve HRI is through plan recognition [6]. Implemen-

tations of plan recognition using Natural Language Processing and Combinatory

Categorical grammars may lend itself to an extension which incorporates complex

affordances, as these methods decompose goals into sub-goals, and individual ac-

tions, therefore representing plans at different resolutions. Complex affordances

may disambiguate the composition of sub-tasks in the grammars used to generate

plan libraries [30].

All of the above-mentioned applications may only be successful if complex af-

fordances can be learned, or inferred. Immediate follow up research should address

this by implementing or adapting an existing architecture for learning complex

affordances.

A possible drawback of the present implementation, is that the intermediate

actions were abstracted away and did not have a direct causal law informing the

agent of their effects. For example, the actions could be subdivided into bending

legs and squatting, which results in lowering the agent and changing the range of

action available for its arms. However, as stated above, previous research exists

where low level motor commands have been abstracted away, allowing agents to

reason about the higher level sequences of actions they need to take. In principle, it

is possible to represent the causal structure (and the corresponding affordances) of

the intermediate actions, however the present implementation attempts to simplify

action modeling and focuses on testing the implementation of complex affordances.

Testing of complex affordances in the domain developed in the present study did not

require the information about some of the intermediate actions represented in the

domain description. Nonetheless, follow up research in this area should endeavor

to develop a more sophisticated representation, if this enables the production of

useful complex affordances.

5. Conclusion

The present study implemented a representation of complex affordances, and

demonstrated their utility in plan generation. Future research should investigate

the inference and learning of complex affordances, and explore their application in

areas such as plan recognition, HRI, and others.
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